Studying Equilibria of Polymers in Solution by Direct Molecular Dynamics Simulations: Poly(N-isopropylacrylamide) in Water as a Test Case

Contributors:
  1. Edder Garcia
  2. Hans Hasse

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: It is well known that studying equilibria of polymers in solution by atomistic simulations is computationally demanding as a large phase space has to be adequately sampled. Nevertheless, direct molecular dynamics (MD) simulations are often used for this purpose in the literature. To assess whether such approach is adequate, we have conducted a case study for a polymer+solvent system that has been commonly studied with direct MD simulations by many authors: poly(N-isopropylacrylamide) (PNIPAM) in water. The total simulation time of the present study is much longer than that typically used in MD simulations of that system. A NIPAM chain of 30 monomers was studied in explicit water at 295K. Three initial configurations were used. For each configuration, five replicas were run for 1000ns. The statistical analysis of our data shows that the equilibration time is of the order of 600-700ns and that the remaining time for the production run is not sufficient to sample the equilibrium state adequately. These results underpin the well-known difficulty of sampling equilibrium states of polymers in solution with direct MD simulations and the need for a careful interpretation of results of such studies. The problem with the unsatisfactory sampling persists despite the increasing available computing power. Therefore, enhanced sampling techniques and workarounds, such as simplified scenarios or coarse-graining, remain important.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.