Human biases limit algorithmic boosts of cultural evolution.
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1 Abstract

Humans are impressive social learners. Researchers of cultural evolution have studied the many biases that
enable solutions and behaviours to spread socially from one human to the next, selecting from whom we
copy and what we copy. In a digital society, algorithmic and human agents both contribute to transmission
of knowledge. One hypothesis is that machines may influence the patterns of social transmission not only
by providing a means for spreading human behavior but also by providing novel behaviors themselves. We
propose that certain algorithms might show (either by learning or by design) different behaviors, biases
and problem-solving abilities than their human counterparts. This may in turn foster better decisions in
environments where diversity in problem-solving strategies is beneficial. In this study, we ask whether
machines with complementary biases to humans could boost cultural evolution in a lab-based planning
task, where humans show suboptimal biases. We conducted a large behavioral study and an agent-based
simulation to test the performance of transmission chains with human and algorithmic players. In half
of the chains, an algorithmic bot replaced a human participant. We show that the algorithm boosts the
performance of immediately following participants in the chain, but this gain is lost for participants further
down the transmission chain. Our findings suggest that algorithm can potentially improve performance, but
human bias can hinder algorithmic solutions from being preserved. Our results suggest that the conditions
for hybrid social learning and cultural evolution may be limited by task environment and human biases.

2 Introduction

When the first superhuman computer program in the game of Go—AlphaGo— beat the world champion Lee
Sedol in 2016, its gameplay was considered surprising and unconventional, apparently violating longstanding
Go traditions. In particular, for move 37, AlphaGo calculated the chance of a human player making the same
move as 1 in 10000 [1]. Its unconventional play might originate from the fact that AlphaGo [2], and more so
its successor AlphaZero [3], learned through self-play and, in the case of AlphaZero, do not rely on historic
records of human gameplay. In the following years different teams created open-source reimplementations
of AlphaZero, namely Leela Zero [4] and OpenGO [5]. These algorithms have in common, that they self-
learned their gameplay independently from humans, and thus allow for an exciting new way to evaluate
human cultural evolution of GO play. Replaying historic human games of the last 300 centuries, OpenGo,
over the years, increasingly often chooses the same move then humans, suggesting a convergence towards
an similar gameplay [6]. Remarkably, there has been a steep increase in this alignment since 2017 when
Leela Zero became available to the public [6, 7]. Similar patterns of increased alignment between human
and algorithmic play have been suggested in the game of chess [§].

The use of tools, such as books or software, for human training in games such as Go and chess is not
a novel phenomenon and represent one way how knowledge is socially transmitted among people through
technology. Yet, current development in AI made it possible not only for algorithms to play chess but to
play creatively and without the need to rely on human games. This opened up the fascinating possibility of
social learning, namely learning by observation [9], between algorithms and humans [10]. We hypothesized
that social learning between human and algorithms may be especially beneficial when human and algorithms
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show diversity in problem-solving. Diversity of information and problem-solving strategies tend to reduce
herding and error cascades [11-15]. By self-learning or by design, algorithms showing complementary biases
to humans could foster the discovery of new solutions in domain-specific problems and improve outcomes
compared to human-only problem solvers[16].

Researchers have already pointed out that the widespread use of digital technology can influence the
processes of social learning in humans by providing new and faster means of communication and social
learning [17, 18]. Going one step further, we argue that rather than a mere means for cultural evolution
(such as books or Twitter), digital technologies and AI may also play an active role in shaping cultural
evolution processes. Domain-specific algorithms like AlphaZero, either by learning or by design, may improve
on cultural adaptation by increasing problem-solving diversity in domains where human bias is damaging
performance. Algorithms learning from interaction with their environment, rather than from observing
human data, may be in a better position to foster innovation, as in our AlphaZero example. Similarly,
when human biases are known, algorithms can be designed to exhibit complementary biases to their human
counterpart.

For example, when humans face decisions under cognitive constraints, they apply heuristics [19-22],
which then under different circumstances can manifest themselves as a misadapted bias [23-25]. One in-
stance of a human bias is a tendency for myopic behavior when facing a sequential decision [26-29]. Many
problem-solving tasks are composed of sequential decisions, and a solution strategy is the exploration of the
corresponding decision tree. With an increasing number of decisions, humans and algorithms do not explore
the decision tree’s total depth [2, 29-31]. For instance, Huys et al. [29] showed that people tend to selectively
prune the decision tree after the anticipation of a large loss. Such heuristic can lead to sub-optimal solutions
if a great effort or loss has to be accepted first for a large reward to be acquired.

In their experimental study Huys et al. [29] introduced a simple sequential, goal-directed decision-making
task where participants plan and make sequential moves on a directed network (Figure 1). Each move is
associated with gains or losses of different magnitude. Participants have full knowledge of the network and
the rewards associated with each transition between two nodes. For this task, which we will call the reward
network task, a policy based on a state-action value function that selectively discounts rewards following
large losses, is best in describing the human decision-making [29, 32]. We call the corresponding bias the
aversive pruning bias. As it can lead to sub-optimal behavior in the reward network task, Lieder et al.
[33] investigated if an algorithm can augment human decisions by providing pseudo-rewards, which render
a myopic strategy optimal. We address the same question from a different angle, namely whether humans
can overcome their inherent bias via social learning from an algorithm and whether humans further transmit
this new behavior. Social learning is especially important in complex problems and decisions taken under
uncertainty [9, 34, 35]. Hybrid social learning may thus be beneficial in contexts where humans show biases
that limit their potential for exploration and problem-solving.

This paper explores this possibility in the lab, using a transmission chain paradigm [36-39] where human
and algorithmic players play the reward network task sequentially. Participants who are playing on the same
network repeatedly tend to reuse similar actions between different games [32]. To exclude such non-social
learning, we developed a novel randomized version of the reward network task, in which each participant
plays the same network only once. Additionally, we developed a classification strategy, which allowed us to
compare environments for which the human aversive pruning bias is either adapted or misadapted. We ask
whether humans can learn from the observation of an algorithm whose play shows complementary problem-
solving biases. We designed the algorithmic player to show a bias opposite to humans, namely to explore
decision branches associated with initial losses. In the treatment condition, an algorithm replaced a human
in the second generation. We predicted better performance in the treatment condition than in a control
condition of humans-only due to the increased strategic diversity of the hybrid chain.

Transmission chain experiments have been used to investigate how biases shape cultural evolution [40-43].
Previous research has shown that humans have different biases of what (content bias) and who (context bias)
is copied [9, 44, 45]. A bias based on characteristics of who is copied has important implications on hybrid
social learning because humans tend to quickly lose trust in algorithms [46, 47]. In this study, however, we
are interested in how algorithmic and human biases interact and therefore we control for a context bias by
hiding whether an artefact was created by a human or the algorithm. Prior to the experiment, we expected
the performance of a solution (fitness) to be the decisive feature driving social learning, yet we learned
that the bias we intended to compensate with the algorithm, the aversion of large losses, plays an equally
important role.

In line with our preregistered hypothesis, we found an increase in performance over generations and a
short term performance improvement due to algorithmic solutions. However, in contrast to our hypotheses,
the positive impact introduced by the algorithm was not sustained over time. Solutions that conflict with



human aversive pruning bias, had higher copy error rates and therefore quickly disappeared in the long run.
We discuss our results in terms of content bias, which defines the limits under which behaviours are socially
transmitted and stable across generations.

We contribute to the literature on social learning and cultural evolution by hypothesising hybrid human-
algorithm social learning, while previous studies focused on human behaviour [36, 48]. We also show that
although theoretically possible, under conditions of time-pressure, working memory load or uncertainty, the
benefits introduced by diverse algorithms may be limited. Ultimately, the conditions for successful hybrid
cultural evolution may be limited by task characteristics and human biases.

3 Methods

3.1 Participants

The study was approved by the ethics committee of the Max Planck Institute for Human Development. All
177 Participants were recruited through Prolific (www.prolific.co), where they were forwarded to an external
website to complete the experiment. Before starting, they received a consent form and instructions. The
experiment, including two practice rounds, took around 60 minutes in total. Participants were paid £7 for
the completion of the experiment. Furthermore there was a reward of one penny given for every 100 points
gained during the experiment. Participants received on average £3.20 bonus payments, depending on their
performance. In some cases, where participants had to drop out because of technical issues on their sides
(failed network connection, etc.), they were paid £3.50 for their participation. The experiment was run in
multiple sessions. Two sessions failed for technical reasons. The data from those sessions was disregarded
entirely and the experiment restarted with a database snapshot created before those sessions. The only entry
requirement was speaking English. We did not exclude any participants from the analyses.

3.2 Task

Huys et al. [29] developed the reward network task in which participants were ask to find an optimal sequence
of moves on a carefully designed directed network of 6 nodes. We generalized the task, by randomly sampling
the networks, instead of using a single fixed network. From each node there were exactly two moves to other
nodes possible, each being associated with one of four possible payoffs (-100, -20, 20, or 140) (see Figure
1.a). Possible moves were visualized by directed arrows with colors matching their respective payoffs (red,
orange, blue, and green). The objective was to find a path of 8 moves beginning at a fixed starting node,
which maximizes the accumulated payoff. Unlike in [29], networks were randomly generated (see below). We
called a network together with a specific starting position an environment. The experiment was implemented
using a customized version of the Empirica framework [49] and consisted of 3 consecutive stages (see Figure
l.a). In the first stage, participants were asked to watch the solution of a previous player. They saw
the score of the previous player and a 15 seconds animation of the 8 moves. FEach move between two
nodes was animated individually for 2 seconds with both nodes being highlighted by a darker color and the
corresponding directed arrow and reward being thickened (see Supplementary Figure 1 for a screenshot). In
the second stage, participants were shown the same environment and were asked to select a path of 8 moves.
The path could be entered by clicking on the nodes involved in sequence. The currently occupied node was
displayed in darker color. If a node was selected which could not directly be reached from the current node,
the erroneously selected node was colored in bright red. The participant was then able to select a different
node instead. Participants were able to see their current accumulated score of this round, the number of
steps remaining and a score of the last moves entered. This information got updated immediately, whenever
a participant clicked a possible target node (see Supplementary Figure 2 for a screenshot). The answer of
the participant was considered to be valid if all 8 moves were played in the given time. Participants received
a punishment of -500 for the round if they did not provided a valid answer within time, to strongly incentives
participants to responds even if being uncertain about the solution. In the third and final stage, the final
score of the current round was displayed in large letters (see Supplementary Figure 3 for a screenshot).
Participants were also informed if they received a punishment for failing to provide a valid solution. The
first and the third stage had a fixed duration of 15 and 5 seconds, respectively. The second stage had a
maximum duration of 15 seconds, which ended once a valid solution was entered. Participants were shown
their remaining time of each stage at all times together with their total score across all previous rounds.
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Figure 1: (a) In the first stage of the network task participants were seeing a animation of the solution of
the previous player. Here we are depicting a snapshot showing the transition from node E to node C. In
the second stage the participants could enter a path by clicking on the respective nodes in sequence. The
node with gray background color indicates the current node, in this case the starting node. The network
presented here is classified as human regretful. In the last stage the total score of the sequence is presented.
(b) For each environment we constructed two chains of 8 player. In hybrid chains, the second player was
replaced by an algorithm. The networks depict the solutions of the first 4 generations as well as the last
generation for a handpicked environment (corresponding to (a)). The value on the arrows denotes the step
at which a player was choosing the move. The cumulative reward is shown in the upper right corner of each
graphics. In this example for the human-only chain the cumulative reward increases at first, but stagnates
quickly. For the hybrid chain, the algorithm shows a performance beyond that observed in the human-only
chain, but this increase gets lost over the subsequent human generations.



3.2.1 Experimental Design

We created chains of 8 different players. The positions within the chain were called generations. Players
could be human participants or an algorithm. Within each chain, each player was exposed to the solution
of the previous player. Players in the first generation were exposed to a random solution.

In a 2x2 design, chains of two different types were created (see Figure 1.b). In human-only chains, the
control condition, all 8 generations comprised human participants. In hybrid chains, the treatment condition,
an algorithm (described below) replaced a human and provided the solution of the 2nd generation. The rest
of the chain comprised human participants. 800 environments of two different types were investigated. As
described below in detail, the two types, ’human rewarding’ and "human regretful’, differ in whether aversive
pruning is increasing or reducing the expected reward, respectively. For each of the 800 environments two
chains where constructed, one for each of the two conditions. This lead to a total of 1600 chains and 12800
games, of which 800 are played by the algorithm.

Participants were assigned to new environments on the fly at random based on availability, with the
constraints that the previous generation in the chain has been successfully finished and that the participant
plays each environment at most once. If a participants did not entered a path of 8 moves in time, the
solutions was considered as invalid and the corresponding position in the chain was reopened for a new
participant. Each participant had to play a maximum of 80 rounds. Towards the end of the experiment,
participants left the experiment earlier, when no further matching game was available. Due to the random
assignment procedure, participants were likely playing in each of the chain types as well as the environment
types throughout the experiment. However, participants entering the experiment at the beginning were more
likely to be placed in earlier generations, compared to participants who entered the game at a later stage.

3.2.2 Aversive Pruning Model

Huys et al. [29] described a pruned tree search algorithm for this type of task. The model calculates the
state-action value Q(a, s) of each action (move) a in state s. The value of a particular action is given by the
sum of the immediate reward R(a,s) and the maximum value of the next action a’ from the next state s’
= T (a,s) where T is the deterministic transition function. At each level of depth of the search tree, future
rewards are discounted by a factor of (1 —v,,s). Together this leads to the well known Bellman equation

Qa(a, s) = R(a, ) + (1 = 7a,s) max Qa(d’, T(a, 5)). (1)

The parameter v, s is interpreted as the rate of pruning of the search tree in a mean field approximation.
Correspondingly, rewards k steps ahead are discounted by a factor of (1 — va,s)(l’k). Scaling the state-action
value Q4 by the inverse temperature 8 and applying a softmax leads to the policy

eBQalat,st)

7T(aft|st) = Za/ eBQa(a’,se) (2)

Central to their work, Huys et al. [29] defined a ’Pruning’ version of this model to account for stronger

pruning when the participants encounter a large negative reinforcement. A large negative reinforcement is

defined as a reward of -100 in this experiment. In this model, which we will call the aversive pruning model,

the 7, s parameter takes two different values, a specific pruning rate v, in the case of large negative losses
and general pruning rate 7, in all other cases [3].

3)
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3.3 Network Generation, Selection and Classification

800 environments were created before the experiment, each one characterised by a directed network of nodes
and a starting node, with each edge of the network defining a possible move between two nodes. We started
with creating a pool of 60000 strongly connected directed networks and sampled uniformly for each link
between two nodes one of four possible reward (-100, -20, 20, 140). Counsidering 6 possible starting nodes for
each network, this yielded 360000 environments. We then calculated for each environment a path maximising
the reward. To gain a more compact reward distribution, environments with a maximum reward in the upper
and lower quartile were removed from the pool. To avoid trivial solutions, environments were rejected if the
maximum path did not cover at least 4 distinct nodes. Finally, to exclude environments with myopic optimal



solutions, we compared for each node on the optimal path, the reward of the optimal move with the reward
of the alternative, sub-optimal move. We required environments to have at least four moves, in which the
optimal one has the same or a lower direct reward then the sub-optimal one.

The final selection of environments was based on the sensitivity of aversive pruning on the expected
total reward. The aversive pruning sensitivity for each environments was examined by choosing a reference
model (2], 74 = 7s = 0.35 and S = 0.03) and calculating the derivative of the expected reward in respect
of the aversive pruning parameter ;. We then randomly selected 400 environments each with their aversive
pruning sensitivity in the lowest and the highest decentile. Environments for which the aversive pruning bias
led to lower rewards were named ‘human regretful’. The other type of environments were correspondingly
named ‘human rewarding’.

3.4 Matching the algorithmic performance

We aimed for the algorithm to have a performance comparable with a human participant, to similarly
discount future rewards and yet to have a different bias. On a pilot study we estimated with a Bayesian
model fit (see supplementary material) the model parameter of human participants as v, = 0.20 (Clgo:
(0.15,0.25)), vs = 0.45 (ClIgo: (0.32,0.58)) and 8 = 0.012 (CIgg: (0.011,0.014)). Note that v, and -y, are
of comparable magnitude of what was found by Huys et al. [29], however in our pilot we observed a lower
inverse temperature 8 our policy. In their work participants could learn the environment as they were trained
repeatedly on one specific network, while in our work participants where playing different environments and
each only once.

To obtain a risk seeking algorithm with a bias inverse to humans but with comparable performance we
fixed v, = 0.5 and v, = 0.05 and then fitted 8 = 0.0264 to match the performance of human participants on
the pilot study. To mimic social learning the algorithm is using an additional heuristic at run time. First,
a solution, i.e. a sequence of 8 actions, is sampled using the aversive pruning model with the parameter
describe above, then the total reward of this solution is compared with the one of the previous player. If the
solutions of the algorithm matches or surpasses the previous reward, it is enter into the chain. Otherwise an
exact copy of the solution of the previous player is entered.

3.5 Statistical Analysis

We run a hypothesis driven linear regression with the reward of a solution as the response variable. The
reward of a solution is the sum of the rewards of each of the 8 moves of a single round. Additional,
we run explorative Poisson regressions with a logarithmic link on the number of actions copied between
solutions as the response. Transformations of factors are described alongside the results. Different models
were compared by performing a pairwise ANOVA and comparing the AIC. We used a single model for
both types of environments and consequently added interactions between each fixed effect of interest and
the environment type. As our main focus within this work is on environments challenging for humans, we
used the human regretful environments as the baseline to ease interpretation. 95% confidence intervals are
reported throughout. The code of the statistical analysis and the corresponding data is published with this
work.

Prior to the experiment, we expected as preregistered that (H1) in human-only chains, individual solutions
will improve across generations, within each environment, via social learning. We expected that placing the
machine in the chain at generation two (GenHy2), will (H2) locally increase performance so that a score boost
is observed in generation three (GenHy3) and following compared to the first generation (GenHyl). We
expected our manipulation to (H3) globally increase performance as measured by normalized score accrued in
the game, to (H4) accelerate solution discovery as measured by the slope of score improvement and reduction
of error compared to the global optimal solution, and to (H5) increase the likelihood of chains discovering
the best solution. We furthermore expected (H6) to not have an effect of the machine intervention on human
rewarding networks as people will be able to judge that their own solution is better than the machine’s.

4 Results

4.1 Algorithm impacts following generations, but effect quickly decays

To investigate and compare the evolution of the performance of solutions in the different chains, we run a
linear mixed-effects model predicting the reward of a individual solution, by considering (a) the numeric
position in the chain (generation), (b) individual generations following the algorithm and (c¢) the number of



rounds participants had previously played (max 80) as additive effects. For the first two effects (a, b) we
added an interaction with the environment type. Additionally we added random effects for the (d) individual
participants and (e) individual environments. The round of a participant (¢) was added to account for non-
social learning of participants. We considered the first generation of the human regretful environments as the
baseline. Algorithmic solutions were not considered in this analysis because they were part of our treatment.
We encoded (b) the influence of the algorithm on the performance of following generations by adding
two independent effects for the two generations directly following the algorithm (GenHy3 and GenHy4).
All further generations were assigned a single effect (GenHy5+) and we considered solutions not following
an algorithm in the chain as the baseline. This includes all solutions in human-only chains as well as the
first generation (GenHyl) in the hybrid chains, where the algorithm has not yet been introduced. This
most parsimonious model (Supplementary Table 2) had a smaller AIC (/chi® = 1.99, df = 2, p = 0.37
and /chi® = 5.13, df = 6, p = 0.52) compared to one that included independent effects for all generations
following the algorithm (Supplementary Table 1) and one that included independent effects on the three
generations (GenHy3, GenHy4 and GenHyb5) following the algorithm (Supplementary Table 3).
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Figure 2: (a) Average within chain improvement of performance over generations; (b) average performance
difference between human-only and hybrid chains; (¢) average difference (hybrid — human-only) in the log-
likelihood of two models (solid: model fit to human data, dashed: algorithm used in hybrid chains) to choose
the same move then the player; (d) Average number of matching actions with generation 2 over generations
in hybrid chains. Vertical bars are indicating bootstrapped 95 % confidence intervals of the mean. (d)
Difference of average count of matching actions with generation 2 over generations between treatment and
control groups. Vertical bars are indicating bootstrapped 95 % confidence intervals of the mean. Dashed
vertical line at generation 2 shows the algorithm’s position.

As a first validation of our experimental setup, we quantified the effect of social learning by investigating
the impact of generation (a) on reward. We found for human regretful environments an improvement of



3.867 (o = 1.244, Z = 3.109, p = 0.002, CI = (1.429,6.305)) points from generation to generation, and for
the human rewarding environment an additional improvement of 4.859 (¢ = 1.390, Z = 3.495, p < 0.001,
CI = (2.134,7.583)) points per generation. Figure 2a depicts the average reward of solutions in human-
only chains in relation to the reward of the first player in the chain. The increase in performance over
the 8 generation suggests the presence of social learning as predicted (H1) and the accumulation of higher
performing solutions in later generations. Social learning appears to lead to larger increases in performance
for ‘human rewarding‘ environments where the human bias is beneficial.

Having found, that social learning does occur, we investigated the impact of the algorithm on following
generations (b) in mixed chains. Figure 2b depicts the average reward difference comparing hybrid chains
with human-only chains. We found for human regretful environments an effect of 30.786 (¢ = 7.974,
Z = 3.861, p < 0.001, CI = (15.157,46.415)) points for participants directly following the algorithm and
a weak effect of 13.225 (0 = 7.922, Z = 1.669, p = 0.095, CI = (—2.302,28.753)) points for the second
generation following. No effect was found the remaining generations -2.473 (o = 5.094, Z = —0.485, p =
0.627, CI = (—12.457,7.511)). We did not find evidence for interactions of these effects with the environment
type (see Supplementary Table 2). Human participants in the generation following the algorithm (generation
3) have higher rewards than their counterparts in human-only chains. However, this effect appears to quickly
wear off. These findings support a boost in performance of participants by social learning from the algorithm
(H2). We could not find evidence for global increase in performance for hybrid chains (H3) when considering
in the second half of the chain (generation 5-8).

Given that the algorithm had an significant, but short lived, effect on following humans performance, we
then investigated if participants behavior was likewise effected. As a measure of behavior we utilized two
models, one resembling the algorithm as used in the experiment and a second one fitted on human data from
a pilot study (see 3.4), and calculated the likelihood of the models to select the same move then the player in
the experiment. We obtained a single score for each solution by summing the log-likelihoods of all 8 moves.
We then calculated the average log-likelihood for each condition and generation as a measure of behavioral
similarity between the player and the model. Figure 2c depicts the difference in the likelihood between
hybrid and human-only chains for the different generations (see also Supplementary Figure 5 showing both
conditions separately).

For the human regretful environments we found in the third generation, directly following the algorithm,
a significant difference in the log-likelihood for the risk-seeking model (...) comparing hybrid and human-only
chains, but no difference for the human model (...). In the last generation, we did not found an evidence
for a difference in the log-likelihood for the risk seeking model between both conditions (...). For the human
regretful model we did not find evidence for a relative increase in the log-likelihood of the risk-seeking model
in the third generation in hybrid chains (...). These findings suggests that solutions transmitted from the
algorithm to humans contain characteristics of the algorithm.

Finally, we investigated the rate at which participants in human-only and mixed chains do follow optimal
strategies (see Supplementary Figure 4). We found for hybrid chains an increased rate at which optimal
solutions are discovered in generation 3 (...) compared to human-only chain suggesting social learning from
the algorithm, however the difference decays quickly and we do not found a significant difference in the
solution discovery in the final generation (...). Correspondingly these findings do not support the hypotheses
of an accelerated solution discovery (H4) and sustained increase in discovery rate (H5) induced by the
algorithm.

4.2 Of equally scoring solutions, the algorithmic ones are copied less.

Figure 2b depicts the average number of matching moves between solutions of the second generation (either
from a human or the algorithm) and the following (human) solutions. Despite the higher performance of
algorithmic solutions, those do not appear to be copied at a higher rate. We suspected that there are two
effects at play with opposite sign. On the one hand the higher reward of algorithm solutions, could lead to
a higher rate of imitation. On the other hand the mismatch with the inherent bias of participants, might
reduce copying.

To explore further the potential drivers of imitation we created a set of exploratory Poisson regressions
predicting the number of actions being copied. As fixed effects we considered (a) the creator of the previous
solution (algorithm or human), (b) the reward of the previous solution and (c) the number of large losses in
the previous solution. We scaled the reward (b) by its variance. We added random effects for the participants
and the environment. A full model (Supplementary Table 4) showed very weak interactions in general, with
the exception of an interaction with the environment type. For this reason we added interactions with the
environment type to each factor and did not considered any additional interaction in the smaller models.



In a first analysis we focused on the solutions of participants in generation 3 as there the effect the
algorithm should be the strongest. A model (Supplementary Table 4) only including whether the previous
solution was from a human or the algorithm (a) as dependent variable did not showed a significant effect
(B(0) = —0.011(0.038), Z = —0.280, p = 0.780, CI = (—0.085,0.064)). However, when including the reward
of the previous solution (Supplementary Table 5) we found an increased rate of copying of solutions with
higher scores ( (5(0) = 0.394(0.034), Z = 11.423, p < 0.001, CI = (0.326,0.461))) and a lower rate of copying
of algorithmic solutions (8 (¢) = —0.189 (0.041), Z = —4.625, p < 0.001, CT = (—0.269,—0.109)). This
findings suggests that once controlling for the higher reward of algorithmic solutions, that those solutions
are copied at a lower rate compared to human solutions. A model (Supplementary Table 6) including an
interaction between the reward (b) and whether the previous solution was from a human or the algorithm
(a), did not found this interaction to be significant ( (8 (¢) = —0.027 (0.059), Z = —0.468, p = 0.640,
CI =(—0.143,0.088))), suggesting that the two effects were additive. Also, in none of the presented models
interactions suggest a significant difference between the two types of environments.

Participants did not know whether the previous solution they see is from an algorithm or from another
human. We thus investigated which features mediated the apparent difference in social transmissions. The
large number of paths collected in the control condition gave us the opportunity to independently test the
hypotheses that both higher rewards and fewer number of large losses lead to a higher chance of a solution
being copied. In this second analysis we used the data from generation 2 to 8 in human-only chains and
run another Poission regression (Supplementary Table 7) on the number of actions being copied, in human-
only chains. We excluded the first generation as participants there are exposed to a random solutions
of in general very poor performance. We found a positive effect on the reward of the previous solution
(b) (B (o) = 0.393 (0.014), Z = 28.162, p < 0.001, CI = (0.366,0.420)) and a negative effect on the
number of large losses within the previous solution (¢) (8 (¢) = —0.040 (0.011), Z = —3.544, p < 0.001,
CI = (—0.061,—0.018)).

These findings indeed suggest a content bias in the social transmission in which solutions with higher
reward and less large loss are transmitted with increased fidelity. Consequently solutions alien to humans,
such as those from our algorithm, are less well preserved.

4.3 Agent-based model shows that only repeated algorithmic participation has
a sustained effect.

We developed a simple agent based model mimicking our experimental setup to theoretically explore the
impact of a specific biases on social learning in hybrid cultural evolution (see supplementary methods for
details). We stripped out most of the details of the experiment and modeled solution as a point in a two
dimensional space with two independent qualities. The dimension s9 represents the general quality of a
solution and the second dimension s® the specialization of a solution, i.e. the adaptation to an environment.
This specialization can be either adaptive or misadaptive. Correspondingly we model a ‘human-rewarding’
and a ‘human-regretful’ environment in which higher values of s® lead to higher and lower rewards, respec-
tively. Higher values of s9 lead to higher rewards in both environments. We model human agents as being
adapted to a fix positive value of s* = 0.5 and algorithmic agents to be adapted to fixed negative value of
s° = —0.5.

As in the experiment we construct chains of 8 agents. Agents first accessed a perceived quality of
the previous players solution, then depending on this perceived quality decided whether to copy it, and
finally either perfectly copied or sampled an entirely new solution. The perceived quality determines the
content bias of the agent. We compare agents with adapted content-biases who consider both the score
of the previous solutions and the match with their own specialization (dashed in Fig. 3) to agents with a
utilitarian content-bias who consider only the score of the previous solution (solid in Fig. 3).

Both humans and algorithm agents sample new solutions from a 2-dimensional Gauss distribution which
is shifted to higher values of s® for humans and to lower values of s° for the algorithm agents, and thereby
mimicking the inverse biases of those two agent types. Chains are initialised with a sampled solution with
neutral bias s* = s9 = 0.

Figure 3 depicts the averaged reward over 8 generations. We depict chains of human agents, algorithmic
agents and two hybrid chains. The ‘single-algorithm‘ condition corresponds to the hybrid chains in the
experiments and only has a single algorithm in the second generation of a chain of otherwise human agents.
In ‘random-hybrid‘ chains we randomly mix human and algorithmic agents.

In the ‘single-algorithm‘ condition the algorithm shows strong super-human performance in the the
second generation in ‘human-regretful’ environments. Agents with an adapted content-bias (left, green,
solid) following the algorithm show a higher performance then their peers in the human-only condition,
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Figure 3: Average reward of the solutions of 100000 modeled agents. Human-only chains are depicted in
blue, algorithm-only in orange, hybrid chains with a single algorithm (as in the experiment) in green and
randomly mixed hybrid chains in red. On the left panel the environment favors the algorithmic bias, on
the right panel it favors the human bias. We compare two type of content bias, one with a bias for higher
performing solutions (solid) and a second with an additional bias to match the specific bias of the agent.

however, as in the experiment, the performance boost is quickly lost and chains with (left, green, solid)
and without (left, blue, solid) the algorithm converge to the same performance level. The convergence is
much quicker for agents with an adapted content-bias (left, green/blue, solid) compared to agents with an
utilitarian content-bias (left, green/blue, dashed). On ‘human-rewarding’ environments the introduction of
the algorithm (right, green) lead to a performance drop in comparison to ‘human-only* chains (right, blue),
however this performance drop is then made up for in the subsequent generations.

Having shown that within our model, a single algorithm has no sustained effect on the performance,
we investigate the effect of randomly mixing humans and the algorithm. Humans and the algorithm are
modeled symmetrical, and hence ‘human-only* chains on ‘human rewarding' environments correspond in their
performance with a ‘algorithmic-only‘ on ‘human regretful‘ environments and visa versa. Randomly mixed
hybrid chains (red) do show a performance in-between the performance of solely-adapted, e.g. algorithmic
agents in human regretful environments, and solely-misadapted, e.g. human agents in human regretful
environments. For those ‘random-hybrid‘ chains agents with an ‘utilitarian‘ content-bias (red, dashed) do
eventually show a higher average performance compared to agents with an ‘adapted* content-bias (red, solid),
however in the first two generation agents with an ‘adapted‘ content-bias have a slight edge over their peers.
The same can be observed for chains with solely-adapted agents.

In the simplified setting explored by the agent-based model the performance of chains in the same
condition converge to a fix value irrespective of the algorithm participation at the beginning of the chain.
For the algorithms better adapted to the environment then humans, this lead to a decrease of performance in
the generations following the algorithm. This loss in performance is sped up when human agents preferentially
imitate solutions which matches their own biases and hence mismatch the bias of the algorithmic solutions.

5 Discussion

In this work, we investigated the long-term impact of algorithmic strategies on social learning using a
transmission chain experiment. We adapted the reward network task introduced by Huys et al. [29] to a
transmission chain paradigm to test for improvement in performance via social learning over generations of
the chains. In this task, people are known to show an aversive pruning bias in exploring the decision tree.
As expected, we found evidence of an improvement of performance over generations due to social learning.
Contrary to our expectations, adding an algorithm with a problem-solving bias complementary to humans
into the chain did not improve chain performance. While humans did copy solutions from the algorithm,
they appeared to do so at a lower rate than they copied other humans’ solutions with the same performance.

Our first contribution is expanding previous proposals in cultural evolution by suggesting a relatively
unexplored area of investigation, namely hybrid social learning. Scholars of cultural evolution have long
investigated how social learning could lead to the unmatched explosion of human cultural complexity in
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comparison to non-human animals [35, 50, 51]. Similarly, we might ask if the advent of self-learning algo-
rithms can lead to another acceleration in cultural evolution via hybrid human-algorithm social learning.
Going one step beyond prior work looking into cultural evolution with digital technology [17, 52], we suggest
that in a hybrid society, algorithm may not be just a medium for cultural transmission and evolution, but
they may play an active role in the production of cultural artifacts. In particular, we suggest that successful
hybrid social learning may occur when algorithms, either by design or by self-learning, show different biases
than their human counterparts. Algorithms increasingly learn from interactions with their environments,
thereby showing behaviors and biases that are independent of humans. Greater variance in problem-solving
and copying skills has been associated with greater cultural variance [53, 54] and—as long as there are se-
lection biases in who to learn from—greater innovation. We looked at situations where human biases are
known to constrain human performance [29], and therefore humans could benefit most from observing an
algorithmic strategy.

In our experiment, we tested these hypotheses by introducing algorithmic players adopting different
decision-making strategies than human players. Investigating hybrid groups of human and algorithmic
players provides the experimenter with the advantage to closely control the behavior of algorithmic agents
while observing the effect on the rest of the population [55-57], yet, to the best of our knowledge, bots have
not prominently featured in transmission chain experiments.

Our second contribution lies in our empirical findings. We showed that humans did not preserve algo-
rithmic solutions if they were incongruent with human exploration. Although human and algorithmic biases
have been thoroughly investigated in their respective fields (psychology/economics and computer science),
how the two interact together is still poorly understood. We show that learning from algorithms might be
limited by task and cognitive constraints. This is in contrast with evidence showing that algorithms take in
human biases [58-60].

In our experiment, higher-performing solutions that were incongruent with human biases were not copied,
and consequently lost over generations. Such preference for copying congruent solutions may limit high-
fidelity copying and thus the accumulation of algorithmic solutions into human repertoire [50, 54]. These
findings are in agreement with Griffiths, Kalish, and Lewandowsky [61] analytical works, which suggests that
when the bias of participants and fitness of solutions mismatch, high fidelity in the transmission is needed
for the superior solution to be adopted. In follow up work, Thompson and Griffiths [62] modeled cultural
evolution in transmission chain experiments as being influenced by attraction towards preexisting biases,
and local innovations. If both conflict, they showed experimentally that participants’ solutions converge to a
middle ground. In their model, inductive biases transform artifacts; in our agent-based model, content biases
control imitation, yet biases hinder the discovery of optimal solutions in both cases. Our work goes beyond
their findings and suggests that even if an algorithm aids humans in archiving optimal solutions, humans’
bias in whom and what to copy can lead to those solutions being quickly lost in successive human-human
transmissions [9, 44, 47, 61].

A lot of work in the field of cultural evolution tried to scale findings in the lab to the real-world [36,
63], including critical discussions about the limitations of such extrapolations [64]. We suggest that hybrid
social interaction among human and algorithmic players may play an increasingly critical role in today’s
digital society. Investigating human-algorithmic social learning in the lab is the first step to study how
these phenomena might unfold in the real-world, and how interactions in hybrid social systems may foster
or hinder innovations and collective performance.

Designing algorithms to nudge collective behavior may add to an already long list of ethical concerns
in AT [58, 60, 65, 66]. However, from an empirical point of view, our results seem to suggest that even if
algorithms were designed to improve human performance, the features of what behaviors people copy and
who are they willing to copy from may limit social learning, especially in situations of uncertainty, high
cognitive demand, or high time pressure. Under these conditions, humans are likely to follow well-known
and adaptive biases[20, 22]. We acknowledge the limitations of our study, both in terms of generalisability
and sample size. Future studies will need to address whether AI-human collaboration may be more successful
in other domains or simpler environments.

In our experiment, we were interested to isolate cultural transmission by exposing participants to one
solution only. This may limit the generalisability of our study. Outside the lab, people can copy from multiple
models, which may give them the option to compare human and algorithmic solutions. Also, while in our
experiment we tested the effect of a single algorithmic player, the frequency of encountering algorithmic
generated solutions in the real-world may be higher. Our agent-based model (Figure 3) suggests that
sustained improvement in performance might be observed with greater chances to copy from algorithms,
but more work is needed. Finally, in our experiment people visited each environment only once. This
likely reduced the effect of individual learning as well as given participants inadequate feedback on their
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performance. Repeated unsuccessful feedback with the same environment before being exposed to a superior
algorithmic solution might give participants additional opportunities to copy the algorithm.

In this work we focused on the transmission of behaviour, rather then then the transmission of strategy.
Social learning seem to be more effective when copying exact behaviors rather than strategies and reasoning
[35, 67, 68]. Copying reasoning strategies is not a prerequisite for cultural evolution [69]. Yet, an more inter-
active communication between generations, i.e. teaching, could allow for the transmission of strategy. It has
been shown that communication of intention improves human-algorithm cooperation [70]. Correspondingly,
we hypothesise that an algorithm that communicates the reasoning behind a solution might be copied at a
higher rate and allow following humans to contest their preexisting beliefs.

To conclude, in this work, we found limited influence of bots on long-term human cultural evolution. This
finding by no means suggests that there are no algorithmic influences on human culture. The relationship
between human biased strategies and the algorithmic strategies derived by self-play might look different
outside the lab where complex Al algorithms are at play. However, studying these phenomena in controlled
environment is an important first step to understand hybrid social learning. In this study we suggested that
differences between human and Al behavior might be relevant for emerging properties in cultural evolution.
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