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Abstract

The framework of multidimensional item response theory (MIRT) offers psychometric

models for various data settings, most popularly for dichotomous and polytomous data.

Less attention has been devoted to count responses. A recent growth in interest in count

item response models (CIRM)—perhaps sparked by increased occurrence of psychometric

count data, e.g., in the form of process data, clinical symptom frequency, number of ideas

or errors in cognitive ability assessment—has focused on unidimensional models. A few

recently proposed unidimensional CIRMs rely on the Conway-Maxwell-Poisson distribution

as the conditional response distribution which allows to model conditionally over-, under-,

and equidispersed responses. In this article, we generalize one of those CIRMs to the

multidimensional case, introducing the Multidimensional Two-Parameter

Conway-Maxwell-Poisson Model (M2PCMPM) class. Using the Expectation-Maximization

(EM) algorithm, we develop marginal maximum likelihood estimation methods, primarily

for exploratory M2PCMPMs. The resulting discrimination matrices are rotationally

indeterminate. We pursue the goal of obtaining a simple structure for them by (1) rotating

and (2) regularizing the discrimination matrix. Recent IRT research has successfully used

regularization of the discrimination matrix to obtain a simple structure (i.e., a sparse

solution) for dichotomous and polytomous data. We develop an EM algorithm with lasso

(ℓ1) regularization for the M2PCMPM and compare (1) and (2) in a simulation study. We

illustrate the proposed model with an empirical example using intelligence test data.

Keywords: Item Response Theory, count data, Conway-Maxwell-Poisson

distribution, 2PCMPM, multidimensional IRT, EM algorithm, lasso regularization
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Every Trait Counts: Marginal Maximum Likelihood Estimation for Novel

Multidimensional Count Data Item Response Models with Rotation or

ℓ1–Regularization for Simple Structure

Multidimensional item response theory (MIRT) provides a framework in which

responses to a set of items are explained by the items’ relation to a number of latent traits

(Reckase, 2009). We assume that person i’s response to item j is influenced by L latent

traits θ1i, . . . , θLi, where the influence strength is determined by discrimination parameters

αj1, . . . , αjL similar to factor loadings in linear factor analysis. The discrimination

parameters for all items and all traits are contained in the discrimination matrix α. The

assumption of a number of latent traits—rather than just one, as in more traditional

unidimensional item response models—is often considered more realistic in psychological

research. Psychological constructs are often by definition composed of multiple

subcomponents, or response behavior is assumed to be complex and multifactorial.

Multidimensional item response models can be divided into confirmatory and

exploratory models, analogous to the factor analytical tradition (McDonald, 1999). While

confirmatory models test the fit of a pre-specified item-trait relationship structure to the

data, exploratory models aim to determine which items stand in relation to which factors,

for instance through rotation of the discrimination (or factor loadings) matrix α. A

common goal of this popular method is to find a simple structure, that is, an item-trait

relationship structure where each item loads primarily onto one factor and not (or only to

a small extent) on the remaining factors (Browne, 2001; Thurstone, 1947). An alternative

strategy to this end—which has only recently gained popularity in the context of MIRT—is

regularization (Cho, Xiao, Wang, & Xu, 2022; Sun, Chen, Liu, Ying, & Xin, 2016).

Regularization includes techniques often originally developed for variable selection in

(generalized) linear models (Hastie, Tibshirani, & Friedman, 2009). By including a penalty

term in the model likelihood, sparse parameter estimates with many zeroes can be

enforced. In comparison to unpenalized estimation, parameter values are shrunken towards
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0, often improving predictive performance and model interpretation. In the context of

MIRT, this leads to more parsimonious estimates of discrimination matrices α by selecting

only notable item-trait relationships and shrinking the rest towards 0 (see also Trendafilov,

2014).

Research into regularization as a tool to find simply structured discrimination

matrices α in MIRT models has so far focused on models for binary and ordinal response

data. But some psychometric tests and self-reports generate another type of response data:

counts. For instance, divergent thinking and verbal fluency tasks (Forthmann et al., 2016;

Myszkowski & Storme, 2021), or processing speed tasks (Baghaei, Ravand, & Nadri, 2019;

Doebler & Holling, 2016). Psychological count responses also occur among self-reports

(e.g., in clinical psychology; Magnus & Thissen, 2017; Wang, 2010), or as biometric

indicators (e.g., number of fixations in eye-tracking; Man & Harring, 2019). Count data

naturally occur in text data analysis (Proksch & Slapin, 2009). Corresponding count data

item response models have received increasingly more attention in the psychometric

literature in recent years (e.g., Beisemann, 2022; Forthmann, Gühne, & Doebler, 2020;

Graßhoff, Holling, & Schwabe, 2020; Man & Harring, 2019).

The simplest count data item response model, Rasch’s Poisson Counts Model

(RPCM; Rasch, 1960; see also e.g., Holling, Böhning, & Böhning, 2015; Jansen, 1994, 1995;

Jansen & van Duijn, 1992; Verhelst & Kamphuis, 2009), models the expected count

response µij for person i to item j as µij = exp(δj + θi), where δj is the item easiness and θi

is the sole latent trait.1 Conditional (upon θi) responses are assumed to follow a Poisson

distribution. Extensions of the RPCM provided more general models, for example by

substituting the log-linear relationship in the RPCM by a sigmoid curve (Doebler, Doebler,

& Holling, 2014), or by addressing the conditional equidispersion implied by the Poisson

1 For consistency and readability, we use a parameterization and notation here which is going to most

easily generalize to the multidimensional case in the following sections. The original parameterization by

Rasch (1960) is not log-linear but multiplicative.
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distribution. Conditional equidispersion leads to the strong assumption that

E(Xij|θi) = Var(Xij|θi). Early extensions of the RPCM allowed overdispersed (i.e.,

E(Xij|θi) < Var(Xij|θi)) conditional response distributions (e.g., Wang, 2010; Hung, 2012).

More recently, models for item-specific conditional equi-, over-, or underdispersion (i.e.,

E(Xij|θi) > Var(Xij|θi)) were proposed by employing the more general

Conway-Maxwell-Poisson (CMP) distribution (Conway & Maxwell, 1962; Huang, 2017;

Shmueli, Minka, Kadane, Borle, & Boatwright, 2005). The Conway Maxwell Poisson

Model (CMPCM; Forthmann et al., 2020) has no discrimination parameters like a Rasch

model, while the Two Parameter Conway Maxwell Poisson Model (2PCMPCM;

Beisemann, 2022) includes discrimination parameters. Qiao, Jiao, and He (2023) propose a

CMP-based joint modeling approach. Tutz (2022) provides an alternative approach all

together for dispersion handling. Regardless of the approach, the adequate consideration of

dispersion for count data is important to ensure proper uncertainty quantification, i.e.,

correct standard errors and model-implied reliability (Forthmann et al., 2020).

These generalizations have focused on unidimensional count item response models.

Apart from bidimensional extensions of RPCM (Forthmann, Çelik, Holling, Storme, &

Lubart, 2018 for a model without discrimination parameters, and Myszkowski & Storme,

2021 for a two-parameter Poisson model), multidimensional count data models have mostly

been developed within the frameworks of generalized linear latent and mixed models

(GLLAMM; Skrondal & Rabe-Hesketh, 2004) or factor analysis (Wedel, Böckenholt, &

Kamakura, 2003) rather than within MIRT. These works have primarily relied on the

Poisson distribution, with Wedel et al. (2003) accomodating some flexibility through

truncation of the Poisson distribution leading to underdispersion, and allowing different

link functions.

With the present work, we aim to generalize the 2PCMPM (Beisemann, 2022) to a

multidimensional count data item response model framework which offers the advantages of

multidimensional item response modeling for count data in conjunction with the dispersion
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flexibility of the CMP distribution. The framework contains a number of existing count

data item response models as special cases, allowing for easy testing of assumptions by

means of model comparisons. Our goal is further to provide marginal maximum likelihood

estimation methods for the framework, with a focus on exploratory models. For these,

interpretability of the discrimination matrix α is a crucial goal and is aided by pursuing a

simple structure for α. To this end, we explore both traditional rotation techniques

(Browne, 2001), and more novel regularization approaches (Hastie et al., 2009). The

remainder of the paper is structured as follows: In the next section, we introduce and

formulate the proposed multidimensional count data item response model framework. We

proceed to present marginal maximum likelihood estimation methods for the framework,

based on the Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).

We present both unpenalized and penalized estimation methods. Afterward, we assess the

proposed models and algorithms in a simulation study and illustrate the framework with a

real-world application example. Finally, a discussion of the presented work is provided.

Multidimensional Two-Parameter Conway-Maxwell-Poisson Models

The tests and self-reports for which methods are developed in this article consist of

count data items. Item scores are calculated by counting events or by aggregating across a

large number tasks each with a binary score. From each participant i ∈ {1, . . . , N} we

obtain a response xij to each item j ∈ {1, . . . , M}, where xij ∈ N0, ∀i ∈ {1, . . . , N},

∀j ∈ {1, . . . , M}. An example of such count data tests in the psychological literature are

tests in the creative thinking literature which ask participants for different associations in

response to items (e.g., the alternate uses task, AUT, to assess divergent thinking; see e.g.,

Forthmann et al., 2016, 2020; Myszkowski & Storme, 2021 for psychometric analyses of

AUT items). The associations given by each person i to each item j can be counted,

resulting in the count response xij.

To model these count responses in an item response theory framework, we assume

that the responses depend on item characteristics and L different latent traits θli for person
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i and trait l ∈ {1, . . . , L}. When L > 1, the model is multidimensional. This assumption

grants more flexibility as (1) unidimensional models are contained as special cases (for

L = 1), and (2) the assumption of more than one latent trait is often frequently more

realistic and is often empirically supported. An overarching latent trait can be made up of

different subdomains which influence item responses differently. Items may also share

commonalities beyond the unidimensional trait they measure, violating the local

independence assumption in unidimensional models (in the AUT example, this could be

different domains the items tap into like figural or verbal; Forthmann et al., 2018;

Myszkowski & Storme, 2021). In a multidimensional framework, this can be accounted for

by modeling the item domains as different latent traits.

We propose to extend the recently proposed Two-Parameter

Conway-Maxwell-Poisson model (2PCMPM; Beisemann, 2022)—which models differing

item discriminations and dispersions in a unidimensional model—to the multidimensional

case. The proposed Multidimensional Two-Parameter Conway-Maxwell-Poisson Models

(M2PCMPM) assumes a log-linear factor model for the expected count response µij;

µij = exp (αj1θ1i + · · · + αjLθLi + δj) = exp
(

L∑
l=1

αjlθli + δj

)
. (1)

In this extension of the slope-intercept parametrized 2PCMPM, we denote by αjl the slope

for item j and trait l, which quantifies the extent to which differences in the latent trait l

are reflected in the expected responses to item j. The parameter δj is the intercept for item

j, which is related to—but does not directly correspond to—item j’s easiness. Analogously

to the 2PCMPM, we then assume that responses follow a Conway-Maxwell-Poisson (CMP)

distribution conditional on the L latent traits. We use the mean parameterization of the

CMP distribution (Huang, 2017), denoted as CMPµ. Thus, we assume that

P (xij; θi, ζj) = CMPµ(xij; µij, νj) = λ(µij, νj)xij

(xij!)νj

1
Z(λ(µij, νj), νj)

, (2)

with θi = (θ1i, . . . , θLi)T denoting the L latent traits of person i, µij as in Equation 1 and

νj as the item-specific dispersion parameter (νj < 1 implies overdispersed, νj > 1



MULTIDIMENSIONAL COUNT DATA ITEM RESPONSE MODELS 10

underdispersed, and νj = 1 equidispersed conditional responses). In Equation 2 the

expression Z(λ(µij, νj), νj) = ∑∞
x=0 λ(µij, νj)x/(x!)νj is the normalizing constant of the

CMPµ distribution (Huang, 2017). For simpler notation, we denote all item parameters αjl,

∀l, δj, and νj, for one item j concatenated in one vector with ζj. As Huang (2017) showed,

we obtain the rate λ(µij, νj) by solving

0 =
∞∑

x=0
(x − µij)

λx

(x!)νj
(3)

for λ(µij, νj).

With the assumption of conditional independence given all L latent traits, the

probability of the response vector xi = (xi1, . . . , xiM)T of person i is the product of

Equation 2 for each item. The L latent traits θi for each person i jointly follow a

multivariate normal distribution with mean vector µθ = 0 ∈ RL and covariance matrix Σθ,

where Σθ is a full rank L × L matrix with all diagonal entries equal to 1 for model

identification purposes (more details on assumptions for Σθ follow in section Latent Trait

Covariance Matrix). Assuming that persons respond independently of each other, we

obtain

Lm(ζ; x) =
N∏

i=1

∫
· · ·

∫ M∏
j=1

P (xij; θi, ζj)Ψ(θi; µθ, Σθ)dθ1i . . . dθLi (4)

as the marginal likelihood for the data x of all N respondents, where Ψ denotes the density

of the multivariate normal distribution and ζ denotes the item parameters {ζ1, . . . , ζM} for

all M items.

Special cases

The M2PCMPM contains a number of count data item response models as special

cases. For L = 1, the M2PCMPM simplifies to the 2PCMPM (Beisemann, 2022) and with

the additional constraint that α11 = · · · = α1M the model further simplifies to the

Conway-Maxwell-Poisson Counts Model (CMPCM; Forthmann et al., 2020). For L > 1,

but equal slope parameters across items and traits, the M2PCMPM simplifies to a

multidimensional CMPCM. Whenever all item-specific dispersions are fixed to be equal to
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1 (i.e., ∀j ∈ {1, . . . , M} : νj = 1), the CMP density simplifies to the Poisson density.

Consequently, the M2PCMPM also contains the RPCM (Rasch, 1960), the Two-Parameter

Poisson Counts Model (2PPCM; Myszkowski & Storme, 2021), and multidimensional

extensions of the RPCM and the 2PPCM (Forthmann et al., 2018; Myszkowski & Storme,

2021). Thereby, the M2CMPM offers the possibility of a comprehensive framework for

count data item response modeling which subsumes a number of existing count data item

response models.

Model identification

The full M2PCMPM as presented in Equation 1 constitutes an exploratory

multidimensional item response model: Any item can be associated by any degree with any

latent trait. For this reason, the full M2PCMPM as in Equation 1 is not uniquely identified;

it is rotationally indeterminate. To enable estimation, we thus need to impose identification

constraints on the discrimination matrix α. A common constraint is a triangular

(L − 1) × (L − 1) submatrix of zeroes in the discrimination matrix (as we believe is for

example implemented in the mirt package; Chalmers, 2012), i.e., we impose constraints to

L − 1 out of the M items to fix rotational indeterminacy. W.l.o.g., let these be the first

L − 1 items. αj1 on the first trait is estimated freely and ∀αjl′ = 0, l′ ∈ {2, . . . , L}. For the

following items j ∈ {2, . . . , L − 1}, the first j discriminations are free and we constrain

∀αjl′ = 0, l′ ∈ {j + 1, . . . , L}. In the following, this constraint will be referred to as the

upper-triangle identification constraint. See e.g., Sun et al., 2016, for examples of

alternative constraints. Note that imposing too strong or empirically insensible constraints

may impact the model fit (negatively) (Sun et al., 2016). Identification constraints are

imposed upon initial estimation to enable finding a likelihood mode. When rotating the

initial solution, constraints are lifted, and the discrimination matrix α is rotated freely.

Marginal Maximum Likelihood Estimation Methods for the M2PCMPM

The goal of (frequentist) model estimation of the M2PCMPM is to maximize the

model’s marginal likelihood (Equation 4) in terms of item parameters ζ. An elegant and
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popular approach to marginal likelihood estimation in the context of item response models

is the Expectation-Maximization (EM) algorithm (Dempster et al., 1977; for an

introduction see McLachlan & Krishnan, 2007; see Bock & Aitkin, 1981 for the first IRT

application). The expected complete-data likelihood—rather than the observed marginal

likelihood—is determined in each Expectation (E) step. It includes unobservable

parameters, i.e., the latent traits. The expected complete-data likelihood is maximized in

each Maximization (M) step. E and M steps are repeated until a convergence criterion is

met.

Expectation-Maximization Algorithm

As the M2PCMPM is an extension of the 2PCMPM, estimation methods for the

2PCMPM can be extended to develop estimation methods for the M2PCMPM. Beisemann

(2022) provided an EM algorithm for the 2PCMPM which we use as the basis for

proposing EM algorithms for the M2PCMPM. The integral in Equation 4 does not exist in

closed form and thus has to be approximated in estimation, for example by Gauss-Hermite

quadrature with fixed quadrature points. Relying on such a Gauss-Hermite quadrature for

the integral approximation with KL quadrature points, we generalize the expected

complete-data log likelihood of the 2PCMPM (Beisemann, 2022) to L ≥ 1 latent traits for

the expected complete-data log likelihood of the M2PCMPM:

E(LLc) ∝
K∑

kL=1
. . .

K∑
k2=1

K∑
k1=1

N∑
i=1

M∑
j=1

(xij log(λ(µjk1,...,kL
, νj)) − νj log(xij!)

− log(Z(λ(µjk1,...,kL
, νj), νj)))P (qk1 , . . . , qkL

|xi, ζ ′), (5)

where LLc denotes the complete-data log likelihood, and

µjk1,...,kL
= exp(αj1q1k1 + · · · + αjlqlkl

+ · · · + αjLqLkL
+ δj) (6)

with kl ∈ {1, . . . , K} as the node index for trait l. Here, the joint posterior probability of

the multidimensional quadrature point (qk1 , . . . , qkL
) is given by

P (qk1 , . . . , qkL
|xi, ζ ′) =

∏M
j=1 CMPµ(xij|qk1 , . . . , qkL

, ζ ′
j)wk1 . . . wkL∑K

k′
1=1 · · ·∑K

k′
L=1

∏M
j=1 CMPµ(xij|qk′

1
, . . . , qk′

L
, ζ ′

j)wk′
1
. . . wk′

L

, (7)
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where wkl
, kl ∈ {1, . . . , K}, denote the nodes’ quadrature weights. The E step consists of

computing Equation 7. In the subsequent M step, we maximize Equation 5 iteratively as a

function of the item parameters ζ. To this end, we need to take the derivatives of Equation

5 with respect to the item parameters. We optimize in log νj rather than νj to search on an

unconstrained parameter space (compare Beisemann, 2022). Similar to the techniques in

Beisemann (2022) and Huang (2017), we form derivatives (using some results from Huang,

2017), resulting in gradients

∂E(LLc)
∂αjl

=
K∑

kL=1
· · ·

K∑
k1=1

N∑
i=1

qkl
µjk1,...,kL

V (µjk1,...,kL
, νj)

(xij − µjk1,...,kL
)P (qk1 , . . . , qkL

|xi, ζ ′) (8)

for slopes αjl (note that qkl
in the numerator of the fraction does not loop over all trait

dimensions 1 to L, but instead is specific to dimension l ∈ {1, . . . , L} for the slope αil we

are considering),

∂E(LLc)
∂δj

=
K∑

kL=1
· · ·

K∑
k1=1

N∑
i=1

µjk1,...,kL

V (µjk1,...,kL
, νj)

(xij − µjk1,...,kL
)P (qk1 , . . . , qkL

|xi, ζ ′) (9)

for intercepts δj, and

∂E(LLc)
∂ log νj

=
K∑

kL=1
· · ·

K∑
k1=1

N∑
i=1

νj

(
A(µjk1,...,kL

, νj)
xij − µjk1,...,kL

V (µjk1,...,kL
, νj)

− (log(xij!) − B(µjk1,...,kL
, νj))

)

× P (qk1 , . . . , qkL
|xi, ζ ′) (10)

for log dispersions log νj, with A(µjk1,...,kL
, νj) = EXj

(log(Xj!)(Xj − µkj)) and

B(µjk1,...,kL
, νj)) = EXj

(log(Xj!)) (Huang, 2017). Furthermore,

V (µjk1,...,kL
, νj) =

∞∑
x=0

(x − µjk1,...,kL
)2λ(µjk1,...,kL

, νj)x

(x!)νj Z(λ(µjk1,...,kL
, νj), νj)

(11)

(Huang, 2017) is the variance of the CMPµ distribution which depends on µjk1,...,kL
and νj.

A known limitation of quadrature is its poor scaling to high dimensions (McLachlan

& Krishnan, 2007); that is, in the context of the M2PCMPM, settings with greater

numbers of latent traits. However, as illustrated with our example, in count data item

response settings a smaller number of latent traits is frequently realistic.
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Simple Structure via Rotation

After obtaining an initial solution with the EM algorithm described above, the

classical approach for interpretable results is to apply a rotation to the discrimination

parameters. Lifting the identification constraints after the initial solution is obtained, we

have an infinite number of alternative solutions which can be obtained via rotation (i.e.,

rotational indeterminancy) (Scharf & Nestler, 2019). That is, there is an infinite number of

rotation matrices V ∈ RL×L for which αΘT = αV V −1ΘT = (αV )(V −1ΘT ), where

α ∈ RM×L is the discrimination matrix and Θ ∈ RN×L the latent trait matrix (Scharf &

Nestler, 2019; Trendafilov, 2014). A preferred rotation matrix V has to be selected, usually

one optimizing a specific criterion such as indicating a simple structure (Browne, 2001;

Thurstone, 1947) of α (Scharf & Nestler, 2019). Rotation techniques differ in the employed

criterion and in whether they allow latent traits to be correlated (i.e., oblique methods) or

not (i.e., orthogonal methods) (Scharf & Nestler, 2019; Trendafilov, 2014). Popular

rotation techniques are for instance Varimax (Kaiser, 1958, 1959), which is an orthogonal

rotation method, and Oblimin (Carroll, 1957; Clarkson & Jennrich, 1988), which is an

oblique rotation method.

Simple Structure via Regularization

Recently, a simple structure has also been obtained with regularization techniques

(Cho et al., 2022; Sun et al., 2016; Trendafilov, 2014). A perfect simple structure is a

sparse matrix: Each item loads on exactly one latent trait, and the other loadings are zero

(Scharf & Nestler, 2019; Trendafilov, 2014). Finding a sparse solution to an optimization

problem is one aim of regularization (Hastie et al., 2009). By imposing a penalty term R

onto the likelihood, regularization methods shrink parameter estimates toward 0 (Hastie et

al., 2009). R is a function of all parameters to be regularized and grows as the absolute

value of each parameter estimate grows (Scharf & Nestler, 2019). As a result, only

substantial parameters (in our case, loadings or discriminations) remain notably different

from 0, essentially encouraging a (more) simple structure of the discrimination matrix α
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(Scharf & Nestler, 2019). As opposed to rotation methods, which are implemented after

finding an initial estimate with the M2PCMPM EM algorithm, regularization methods

modify the likelihood and have to be integrated into the EM algorithm. In general, the

regularized estimates cannot be rotated without changing the value of R; they are hence

rotationally determined in this sense.

As we maximize the expected complete-data log likelihood in each M step, we

subtract the penalty term R ≥ 0 from it, weighted with a hyperparameter η (notation here

inspired by Scharf & Nestler, 2019; Sun et al., 2016 and in line with Beisemann, 2022). The

penalty term R is a function of all slopes α11, . . . , αjl, . . . , αML, as contained in α. We aim

for a sparse solution specifically for α (ideally a simple structure), which is why we only

impose the penalty term over α. We obtain

E(LLc)reg ∝
K∑

kL=1
. . .

K∑
k2=1

K∑
k1=1

N∑
i=1

M∑
j=1

(xij log(λ(µjk1,...,kL
, νj)) − νj log(xij!)

− log(Z(λ(µjk1,...,kL
, νj), νj)))P (qk1 , . . . , qkL

|xi, ζ ′) − ηR(α), (12)

with P (qk1 , . . . , qkL
|xi, ζ ′) as in Equation 7. We can immediately see that for η = 0, the

unregularized maximum likelihood estimate is optimal. The hyperparameter η ≥ 0 should

be tuned, i.e., selected from a grid of possible values to provide the best result in terms of a

tuning criterion (Hastie et al., 2009). We are going to return to this point further below.

Depending on the penalty term R, different regularization methods are implemented

(for an introduction and an overview, see Hastie et al., 2009). In this work, we employ the

lasso (Tibshirani, 1996) penalty,

Rlasso(α) = ||α||1 =
L∑

l=1

M∑
j=1

|αjl|. (13)

For binary and polytomous MIRT models, the lasso penalty has yielded promising results

as a method to find a well-fitting discrimination matrix α with a (rather) simple structure

(Cho et al., 2022; Sun et al., 2016).
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Lasso Penalty

Integrating the lasso penalty (Tibshirani, 1996) into the M2PCMPM EM algorithm

requires an extension of the algorithm. We plug Equation 13 into Equation 12 and we

observe that the E step of the M2PCMPM algorithm remains unaltered by the penalty

term. In the M step, we are confronted with the problem that due to the ℓ1 norm, the

gradient only exists for αjl ̸= 0. To solve this issue for binary and polytomous MIRT

models, Sun et al. (2016) employed the coordinate descent algorithm (Friedman, Hastie, &

Tibshirani, 2010) in the M step (see also Cho et al., 2022, for a related approach using

variational estimation). Binary and polytomous MIRT models have an estimation

advantage over count MIRT models in that they require only the estimation of

discrimination and location parameters (e.g., item intercepts or threshold parameters) since

the conditional variance is implied by the location parameters. The M2PCMPM

additionally requires estimation of the dispersion parameters. A strategy in the context of

(generalized) linear mixed models optimizing penalized (fixed) effects in one step, and then

optimizing remaining model parameters in another step, alternating the steps until

convergence (note that random effects are estimated in yet another step, but this is not of

interest to us here; Nestler & Humberg, 2022; Schelldorfer, Meier, & Bühlmann, 2014).

Inspired by these approaches, we propose the M2PCMPM lasso-EM algorithm (see

Algorithm 1) that—during each M step—first optimizes α’s and δ’s using item-blockwise

coordinate descent, and then optimizes dispersion parameters using Equation 10.

Taking an item-blockwise optimization approach as in Sun et al. (2016), we exploit

that the expected complete-data log likelihood decomposes into the sum of the item

contributions (immediately observable in Equation 5). During each M step of the EM

algorithm, we further assume (as is common in EM algorithms) the posterior probabilities

from the previous E step for latent traits to be known (via the quadrature approximation).

Thus, the (penalized) optimization problem during each M step and for each item j is that

of a generalized linear model (GLM) with intercept δj and (penalized) slopes αj. Note that
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Algorithm 1 Lasso EM with Blockwise Coordinate Descent during M Step
(0) Choose start values and η value

(1) EM cycle:

while not converged do ▷ EM algorithm

(a) E step: Equation 7

(b) M step:

(i) Optimization of slopes αj and intercept δj

for j = 1, . . . , M do ▷ Blockwise cyclic coordinate descent

while not converged do

(i’) Update δj using Equation 14

(ii’) Update αj:

for l = 1, . . . , L do

(i*) Update αjl with Equation 15

(ii*) Update αj with new αjl value

end for

end while

end for

(ii) Optimization for remaining parameters νj with Equation 10

end while

CMPµ-regression is a "bona fide GLM[...]" (Huang, 2017, p. 365). This allows the use of

algorithmic techniques developed for ℓ1-regularization in GLMs, such as coordinate descent

(Friedman et al., 2010).

As we can see in Algorithm 1, we need updating rules for δj and the αj within the

blockwise coordinate descent during the M step. To this end, we follow Sun et al. (2016):

They approximate the expected complete-data log likelihood for item j (i.e., item-specific

increment in Equation 5 in our case) as a univariate function of each item parameter,

respectively, with a local quadratic approximation. Using this approximation, the resulting
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lasso update (with tuning parameter η) takes the following shape (Sun et al., 2016;

adapted to our model and parameterization):

δ̂j = δ
′

j −
∂E(LLc)j

∂δj

∂2E(LLc)j

∂2δj

(14)

(Sun et al., 2016) for each δj and

α̂jl = −
S(−∂2E(LLc)j

∂2αjl
α

′
jl + ∂E(LLc)j

∂αjl
, η)

∂2E(LLc)j

∂2αjl

(15)

(Sun et al., 2016) for each αjl.2 Here, S denotes the soft thresholding operator (Donoho &

Johnstone, 1995) which is defined as

S(x, η) = sign(x)(|x| − η)+ =



x − η, if x > 0 and η < |x|,

x + η, if x < 0 and η < |x|,

0 if η ≥ |x|

(16)

(Sun et al., 2016). We substitute the M2PCMPM specific terms. ∂E(LLc)j/∂δj and

∂E(LLc)j/∂αjl are given in Equations 8 and 9. Using the second derivatives of the variance

V (µjk1,...,kL
, νj) in terms of δj and αjl (see Appendix A) and results from Huang (2017), we

obtain the following second derivatives in terms of δj and αjl,

∂2E(LLc)j

∂2αjl

=
K∑

kL=1
· · ·

K∑
k1=1

N∑
i=1

q2
kl

µjk1,...,kL
P (qk1 , . . . , qkL

|xi, ζ ′)
V (µjk1,...,kL

, νj)2 C(µjk1,...,kL
, νj) (17)

and
∂2E(LLc)j

∂2δj

=
K∑

kL=1
· · ·

K∑
k1=1

N∑
i=1

µjk1,...,kL
P (qk1 , . . . , qkL

|xi, ζ ′)
V (µjk1,...,kL

, νj)2 C(µjk1,...,kL
, νj), (18)

where

C(µjk1,...,kL
, νj) = V (µjk1,...,kL

, νj)(xij − 2µjk1,...,kL
)

− µjk1,...,kL
(xij − µjk1,...,kL

)
(
EX(X3 − µjk1,...,kL

X2)
V (µjk1,...,kL

, νj)
− 2µjk1,...,kL

)
.

(19)

2 Following our understanding of the notation in Sun et al. (2016), in each iteration of (1)(b)(i) in

Algorithm 1, we update δj one-step late in (ii’). That is, we update δj in (i’) on the basis of the at that

point most up-to-date αj , but use the previous δj in (ii’). Please compare the appendix in Sun et al. (2016).
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Latent Trait Covariance Matrix

In the M2PCMPM EM algorithm (including the regularized variants), we assume

the latent trait covariance matrix, Σθ, fixed. The diagonal of Σθ is fixed to the canonical

value 1 ∈ RL for identification purposes in this model with discrimination parameters—this

is analogous to the identification assumption made in the unidimensional case in Beisemann

(2022). A convenient choice for the off-diagonal is to assume orthogonal latent traits

during estimation (i.e., fix all off-diagonal elements of Σθ to 0). If the latent traits are in

fact correlated, pronounced double loadings of items can result. For the classical rotation

approach, an oblique rotation can find a correlated solution with fewer double loadings.

In the case of strong(er) correlations between latent factors, this may put the

regularized approach at a disadvantage as a sparse solution will not fit well when double

loadings are required to account for latent factor correlations. Sun et al. (2016) approach

this problem by first estimating an unpenalized MIRT model to obtain latent factor

correlation estimates from this model, which they plug into Σθ for the respective

off-diagonal estimates. We use the same approach in this work, but we obtain the latent

factor correlation from oblique rotation of the α matrix. Note that an alternative would be

to estimate the latent factor correlations within the EM algorithm, albeit this would

require adjustments to the algorithm as well as the model identification constraints

(compare Sun et al., 2016).

Confirmatory Models by Imposing Constraints

While not a focus of the present work, we wanted to note that with the M2PCMPM

EM algorithm, one can also fit confirmatory multidimensional count data item response

models. That is, one can impose constraints on the item parameters (in particular but not

exclusively, the slope parameters) and evaluate the specified model’s fit to the data.

Confirmatory models should be identified by the imposed constraints. For instance, the fit

of a perfect simple structure to the data can be evaluated by imposing constraints which

imply single loadings of each item onto only one trait l (for a fixed l) of the latent traits,
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respectively, and αjl′ = 0 ∀l′ ̸= l.

Computational Aspects

The M2PCMPM EM algorithms are computationally expensive. Thus, we dedicated

some effort to improving computational efficiency, as outlined below.

Start Values

In line with the start value approach Beisemann (2022) uses for the 2PCMPM, we

set starting values for the M2PCMPM by fitting multi-dimensional two-parameter Poisson

models to the data and compute starting values for the dispersion parameters as described

in Beisemann (2022). Fitting these Poisson variants first saves computation time as each

Poisson iteration of the EM algorithm is much less expensive than a CMP iteration, the

obtained start values are already quite close to the CMP solution for the αjl and the δj,

and therewith reduce the number of required iterations of the M2PCMPM EM algorithm

(compare Beisemann, 2022).

Regularization tuning and warm starts

For the lasso-penalized M2PCMPM EM algorithm, the hyperparameter η requires

tuning to be optimally chosen. To this end, we use a grid of η values to assess. Values of

the grid are chosen equidistantly on the log scale (Hastie et al., 2009). To increase

computational efficiency when fitting a penalized M2PCMPM for each η value on the grid,

we implemented warm starts (Hastie et al., 2009), that is, we used the model parameter

estimates of the previous model as start values for the subsequent model. To select the

optimal η, one has to impose a criterion which η has to optimize. Traditionally, one may

use cross-validation and optimize the RMSE of model predictions (Hastie et al., 2009).

However, due to the high computational cost of the M2PCMPM EM algorithm and in line

with prior research (Sun et al., 2016), we opted to use the Bayesian Information Criterion

(BIC) as a criterion to optimize instead. Following Sun et al. (2016), for the lasso penalty,



MULTIDIMENSIONAL COUNT DATA ITEM RESPONSE MODELS 21

we computed the BIC (Schwarz, 1978) dependent on η as

BICη = p∗ log N − 2LLm(ζ̂η; x), (20)

where LLm(ζ̂η; x) is the unpenalized marginal log-likelihood for the penalized model

parameter estimates (using hyperparameter value η), and p∗ is the number of parameters

̸= 0, i.e., the number of parameters for which the estimate is neither shrunken to 0 nor

constrained to 0. We select the η value minimizing BICη.

Implementation

We implemented M2PCMPM EM algorithm (with and without penalities) in the R

package countirt (https://github.com/mbsmn/countirt; please consult the package’s

GitHub page for more information on the implementation and its limitations)3. For

computational efficiency, the algorithm was implemented in R and C++, using among others

the package GSL (Galassi et al., 2010), tied into R using Rcpp (Eddelbuettel et al., 2011).

Multidimensional Gauss-Hermite quadrature was implemented using MultiGHQuad

(Kroeze, 2016). For efficiency, quadrature grid truncation is used per default (i.e.,

quadrature points with very low quadrature weights are precluded from the grid).

Simulation Study

In this small simulation study, we aimed to validate the proposed algorithms, and

illustrate the viability of their usage in different psychometric settings. The simulation

study was run in R (R Core Team, 2023), using the package countirt to fit the

M2PCMPMs. The code for the simulations as well as rds files of the saved simulation

results are available at https://osf.io/n5792/.

3 At the time of writing this manuscript, the M2PCMPM related algorithms are implemented on

multidimensional branch: https://github.com/mbsmn/countirt/tree/multidimensional. In the

future, this branch is going to be merged into the main branch.

https://github.com/mbsmn/countirt
https://osf.io/n5792/
https://github.com/mbsmn/countirt/tree/multidimensional
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Design

In line with previous simulations regarding regularized item response models (Sun

et al., 2016), we varied the number of latent traits between L = 3 and L = 4. Further, we

varied the correlation between these latent traits (ρ = 0 vs. ρ = .3). For the model

parameters, we used the same range of δj and νj values across all conditions. For δj, we

used values between 1.5 and 3.5, and for log νj, we used values between -0.8 and 0.8 (i.e.,

implying—not very large—over- and underdispersion of varying degree), assigned randomly

to the items. These values are empirically realistic for CMP-based count item response

models (but not extreme, cf. Beisemann, 2022; Beisemann, Forthmann, & Doebler, 2024;

Forthmann et al., 2020; see also Application Example). The true αj values depended on the

simulation condition: Apart from the number of latent traits, we also varied the number

number of items per trait (m = 3 vs. m = 5). To the best of our knowledge, settings with

small(er) numbers of items are realistic for count tests, with count tests often being

comprised of less items than binary tests. We further varied the type of structure of the α

matrix (simple vs. slightly complex). With regard to the α matrix structure, simple

implies only single loadings of items on their assigned traits. Slightly complex implies that

a quarter of the items for each trait additionally—but to a lesser extent—load onto at least

one of the other traits. For the simple structure, non-zero discriminations αjl were chosen

between 0.2 and 0.3. For the slightly complex structure, one quarter of zero-elements in the

simple structure discrimination matrix of the same dimensions were randomly replaced

with values of 0.05 or 0.1 (each with probability p = .125). Ranges for the discrimination

parameters were again chosen to be empirically realistic (cf. Beisemann, 2022; Beisemann

et al., 2024; Forthmann et al., 2020, but not extreme; see also Application Example). All

true parameter values for the respective conditions can be reproduced from the R code on

the OSF repository (https://osf.io/n5792/). The described design factors were fully

https://osf.io/n5792/
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crossed to yield 16 simulation conditions. We ran T = 40 simulation trials per condition.4

Data Generation and Model Fitting

In each trial in each respective condition, we generated (inspired by our application

example) N = 1200 responses to M = L × m items under the M2PCMPM with the

condition-specific model parameters. With regard to simulating item response data from

the CMP distribution, we followed prior simulation studies on CMP-based item response

models, using and adapting code from Forthmann et al. (2020) and Beisemann (2022). In

each trial, we first fitted an exploratory M2PCMPM with upper-triangle identification

constraint. The obtained solution was rotated once using the orthogonal Varimax

criterion(Kaiser, 1958, 1959) and once using the oblique Oblimin (Clarkson & Jennrich,

1988), relying on the GPArotation package (Bernaards & Jennrich, 2005). Then, we fitted

the lasso-penalized M2PCMPMs for hyperparameter tuning with regard to the BIC.5 We

used a 12-value penalization grid of [0, 1000] with values chosen equidistantly on the log

scale (compare Hastie et al., 2009). We tuned the lasso-penalized M2PCMPMs once with

the orthogonal latent trait assumption and once with a latent trait covariance matrix

which incorporates the latent traits correlations obtained from the obliquely rotated

M2PCMPM (see Latent Trait Covariance Matrix). All M2PCMPMs were fitted using the

countirt package (see Computational Aspects).

We enhanced computational efficiency through several techniques. First, we used

4 Note that with these models and the hyper parameter tuning for the regularization, each trial is

computationally very expensive. For computational feasibility and as we simulated for a large sample of

N = 1200, we were only able to run 40 simulation trials. This is in line with prior research (e.g., Sun et al.,

2016 ran only 50 trials).

5 Here, we opted for fitting the penalized models for the different η values on the entire data set and

selected the best fitting one. This approach is more comparable to the rotated models. However, note that

in the machine learning literature, it would be preferred to tune the hyperparameter first on a training

data set (i.e., a sub-sample of the sample) and then fit the model with the selected η on the remaining test

data set. The latter approach will be less prone to overfitting than the first.
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warm starts in tuning η with regard to the BIC for the penalized M2PCMPMs (see

Computational Aspects). Second, we used the parameter estimates obtained from the

unpenalized exploratory M2PCMPM as start values for η = 0 (which should result in

immediate convergence as η = 0 is the unpenalized case). Third, we adjusted the number

of quadrature nodes per trait, in relation to the number of latent traits (with 10 nodes per

trait for L = 3, and 4 nodes per trait with L = 4).

Evaluation Criteria

For the penalized M2PCMPMs, we evaluated the models for the η value selecting

during hyperparameter tuning. Following Sun et al. (2016), we evaluated the correct

estimation rate (CER) which we adapted to the upper-triangle identification constraint

used here. The CER (adapted from Sun et al., 2016) is defined here as

CER =
∑L

l=1
∑M

j=1 I(λ̂jl = λjl) − c

L × M − c
, (21)

with c is the number of constraints imposed on α for identification, L × M the number of

elements in α, and λjl = I(αjl ̸= 0) and λ̂jl = I(α̂jl ̸= 0), where I(.) denotes the indicator

function. Note that we defined the CER slightly differently than Sun et al. (2016) to better

accommodate our identification constraint. The CER helps to assess whether the variable

selection in the lasso-penalized models worked correctly, or to what extent. Performance of

the BIC-based tuning for the lasso-penalized models was assessed by comparing the two ηs

selected by minimizing BIC and maximizing CER (Sun et al., 2016).

Further, we assessed bias and RMSE for the intercept and (log-)dispersion

parameters, as well as for the multidimensional discrimination parameters. As there are an

infinite number of rotated solutions, bias and RMSE on each single discrimination

parameter are less meaningful for rotated exploratory item response models.

Multidimensional discrimination instead assesses the impact of all factors onto each item j

at once. We computed the item-specific multidimensional discrimination as

Aj =

√√√√ L∑
l=1

α2
jl. (22)
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(Reckase & McKinley, 1991).

Results

All trials were completed without any numerical instabilities and the EM

algorithm(s) converged for all models in all trials and conditions. Bias and RMSE

estimates for the multidimensional discriminations across trials and items are displayed in

Figure 1. As the x-axes show, the range of bias and RMSE estimates is rather small for

most conditions. Conditions with simple as opposed to more complex α structure showed

less bias and RMSE, with less variation between items. Generally, the M2PCMPM EM

algorithm in conjunction with rotation performed most often well in terms of bias and

RMSE on multidimensional discrimination parameters. In any conditions where the

M2PCMPM EM algorithm in conjunction with rotation performed very well, the

lasso-regularized M2PCMPM EM algorithm also performed decently in terms of bias and

RMSE, albeit slightly less well than the rotation approach. We observed more bias and

larger RMSE estimates for conditions with four (as opposed to three) latent traits, more so

for five than for three items per trait. This result is likely explained by the number of

observations to number of parameters ratio which decreases as the number of parameters

grow with L and m, while the number of observations N remained the same in our

simulation.

Figure 2 shows the average CER per condition and per method or model used. In

the first two rows of Figure 2, we see the results for the simple α structure, and in the last

two rows, the results for the complex α structure are displayed. There was a clear

difference in performance between the two different α structures. For the simple α

structure, in line with expectations, we see poor performance of the rotation methods

(which are not able to shrink estimates down to exactly 0, putting them at a disadvantage

in general in terms of CER). In conditions with complex α structure, the rotation methods

performed better in these conditions as we would expect when there are fewer parameters

that require shrinkage to exactly 0. In conditions with correlated latent traits, we can see
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that only the oblique lasso model showed decent performance (in most but not all

conditions) in terms of CER. Especially for correlated latent traits, performance fell off for

four latent traits in conjunction with five items per trait, even for the oblique lasso. For

L = 3 latent traits, more items per trait tended to increase performance (at least for

complex α structure), but for L = 4 latent traits, more items tended to decrease

performance (for both α structures). One can again speculate that these last two observed

patterns in the results might be due to the number of observations to number of

parameters ratio which is considerably decreased for 4 traits and 5 items per trait.

Figure 3 plots the (condition average) CER for the tuning parameter η selected via

the BIC (on the y axis) against the maximum (condition average) CER obtained by any of

the models on the η grid, i.e., the model we would have selected based on the CER. Figure

3 shows the two different lasso models in two separate panels. Figure 3 describes how well

the BIC performed in terms of parameter tuning (Sun et al., 2016). Ideally, the

BIC-selected η is the CER-selected η which would mean that the condition’s point in

Figure 3 would lie on the diagonal black line. In Figure 3, we can see that this is the case

for one condition for the oblique lasso (L = 4, ρ = 0.3, m = 3 with simple α structure), and

for four conditions for the orthogonal lasso (L = 3, ρ = 0.3, m = 3, L = 3, ρ = 0.3, m = 5,

L = 4, ρ = 0.3, m = 3, and L = 4, ρ = 0.3, m = 5 with simple α structure, and

L = 3, ρ = 0.3, m = 5 with complex α structure). For either method, conditions with

simple α structure, more items, and/or more traits tended to exhibit better accuracy of

BIC-based η tuning with points in proximity of the line. For complex α structure

(compared to the other conditions), the CER were lower even when η was selected based

on the CER. Figure 3 shows here that for complex α structure (compared to the other

conditions), BIC-based tuning works notably better (with points closer to the diagonal line)

for more items per trait (and even better if that is in conjunction with more latent traits).

Bias and RMSE estimates for the remaining item parameters (δj’s and log νj’s) are

shown in Tables 1 and 2, respectively. We can see that the intercept parameters can be
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estimated very well with very little bias (Table 1). For the dispersion parameters, we have

slightly larger bias and RMSE estimates (Table 2), but overall still satisfactory

performance. In particular for L = 4 traits, performance is better for larger m, that is, for

more items per trait. Settings with L = 3 traits yielded better performance than those

with L = 4, likely as the number of observations to number of items ratio is smaller in the

latter case for constant N = 1200.

Application Example

To illustrate the application of an exploratory M2PCMPM together with a

comparison of the two regularization based approaches with the traditional rotation based

approach, we re-analyze data (N = 1318 adolescents, including 434 adolescents diagnosed

as highly gifted) from a German intelligence test (Berliner Intelligenzstrukturtest für

Jugendliche: Begabungs- und Hochbegabungsdiagnostik, BIS-HB; Jäger et al., 2006). The

BIS-HB is an operationalization of the Berlin model of intelligence structure (Jäger, 1967,

1982, 1984). In line with this model, the BIS-HB assesses intelligence across four

operational abilities (each measured in three content domains: figural, verbal, and

numerical): processing capacity, creativity, memory, and processing speed. We re-analyze

the responses for the two operational abilities, creativity and processing speed, which

generate count responses. Processing speed is assessed using nine items (also re-analyzed in

Doebler et al., 2014), creativity (in terms of idea flexibility) with five.

In our re-analysis, we investigate in how far we can recover the theoretical factor

structure of two latent traits in an exploratory M2PCMPM. We fit the two variants (i.e.,

lasso and rotation) of the exploratory two-factor M2PCMPM with the upper-triangle

identification constraint to the data and 12 quadrature nodes per trait, using the countirt

package (see Computational Aspects). For the M2PCMPM in conjunction with rotation, we

used an orthogonal Varimax (Kaiser, 1958, 1959) and an oblique Oblimin rotation

(Clarkson & Jennrich, 1988). For the lasso-penalized M2PCMPM, we fitted one model

with a priori orthogonal (i.e., uncorrelated) latent factors and one with a priori oblique
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(i.e., correlated) latent factors. For the latter, latent factor correlations obtained from the

obliquely rotated M2PCMPM were used (compare Sun et al., 2016). We tuned the

lasso-penalized M2PCMPMs using a 20-value penalization grid of [0, 1000] with values

chosen equidistantly on the log scale (cf. Hastie et al., 2009) and used warm starts in

η-tuning (see Computational Aspects). As in the simulation study, start values for the first

M2PCMPMs on the tuning grid (i.e., for η = 0) were the parameter estimates from the

unpenalized M2PCMPM (before rotation).

The results are shown in Table 3. While we do not obtain a pattern of perfect α

simple structure for any of the methods, we can see that in particular for the approaches

with oblique latent traits, the estimates for the α matrix align well with theoretical

considerations. That is, for the Oblimin-rotated unpenalized M2PCMPM, we can see that

the processing speed items load mostly on the first trait (i.e., processing speed), while the

creative thinking items load mostly on the second trait (i.e., creative thinking). Only the

processing speed items BD and OE load overall rather weakly onto either factor, with a

small preference for the processing speed factor. A similar pattern of results emerged for

the lasso-penalized M2PCMPM with oblique latent traits, with the penalty-imposed

shrinkage amplifying the theoretically implied loading structure further. For the creative

thinking items AM and ZF as well as for the processing speed item UW, the discrimination

parameters were even shrunken to 0. We can see that the assumption that the latent traits

are uncorrelated (i.e., Varimax-rotated unpenalized M2PCMPM and lasso-penalized

M2PCMPM with orthogonal latent traits) yielded a less differentiated loading structure, in

particular for the creative thinking items which still load highest onto the second trait but

also less negligibly onto the first, especially for the lasso-penalized M2PCMPM with

orthogonal latent traits. Intercept (δj) and log-dispersion (log νj) estimates were—as we

would expect—very similar across methods. Note the rotated M2PCMPMs have only one

set each as they are both based on the same unpenalized M2PCMPM for which we only

rotate the α matrix, leaving the other parameters unchanged. Items exhibited a mix of
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over- and underdispersion, with some even close to equidispersion (i.e., 0 for log νj as

log(1) = 0), highlighting the strength of the CMP distribution to account for such a

variation of dispersion across items.

Discussion

This work proposes a novel multidimensional count item response model with

flexible dispersion modeling: the multidimensional two-parameter Conway-Maxwell-Poisson

model (M2PCMPM). A number of existing count item response models (Beisemann, 2022;

Forthmann et al., 2018, 2020; Myszkowski & Storme, 2021; Rasch, 1960) can be

understood as special cases of the M2PCMPM, rendering the M2PCMPM a general

overarching model class. The M2PCMPM can be employed in an exploratory

manner—which this work primarily focused on—but also in a confirmatory manner by

imposing constraints on model parameters. As a consequence, even more special cases of

count item response models can be obtained and formulated as well as estimated within

the M2PCMPM framework. We derived marginal maximum likelihood estimation methods

based on the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). For

exploratory M2PCMPMs, we investigated using rotation methods (e.g., Carroll, 1957;

Clarkson & Jennrich, 1988; Kaiser, 1958, 1959) in conjunction with the proposed

M2PCMPM-EM algorithm for obtaining a simple structure solution for the discrimination

parameter matrix. Alternatively, we developed a ℓ1-penalized (i.e., lasso-penalized;

Tibshirani, 1996) variant of the M2PCMPM-EM algorithm which can be used to the same

end. We explored versions of this algorithm with a priori uncorrelated latent traits and

with a priori correlated latent traits. In a simulation study and an application example, we

assessed and compared the two proposed algorithms for fitting exploratory M2PCMPMs.

Performance Patterns from the Simulation Study

The conducted simulation study showed stable numerical performance for the

developed algorithms in the investigated simulation settings. Bias and RMSE on the

intercept and (log) dispersion parameters were overall satisfactory, with differences in
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performance between conditions in line with prior research on CMP-based count item

response models (Beisemann, 2022; Beisemann et al., 2024). In conditions with more latent

traits, we tended to observe more bias, in particular for the (log) dispersion parameters.

Due to rotational indeterminacy, we assessed bias and RMSE on the discrimination

parameters for the multidimensional discriminations. For a number of the conditions, we

observed decent performance here, with the rotation approach performing slightly better

than the lasso approach. Conditions in which bias and RMSE were more pronounced were

those with more traits, especially in conjunction with more items per trait. This pattern

also emerged when we assessed the rate of parameters which was correctly estimated to be

different from 0 (compare Sun et al., 2016): Even though especially the lasso-penalized

M2PCMPM-EM algorithm which accounted for a priori correlated latent traits performed

quite well in a number of conditions, performance for it as well as all other variants of the

M2PCMPM-EM algorithms decreased for conditions with more traits in conjunction with

more items per trait, that is, for conditions with overall larger number of items (and

therewith model parameters). This may be a suprising pattern at first glance as

regularization may be expected to offer more advantages for larger α matrices.

We speculate that this pattern of results for intercept, (log) dispersion, and

discrimination parameters might be explained by the ratio of number of observations to

number of model parameters. As the sample size was held constant in the simulation

study, this ratio decreased for conditions with more traits and more items per trait, that is,

more model parameters. For larger sample sizes where the ratio of number of observations

to number of model parameters is similar to conditions with fewer traits in our simulation

study, we would hypothesize that performance should be improve for more traits and items

per trait. Further, to be able to achieve acceptable (albeit still long) computation times, we

used a comparably low number of quadrature nodes per trait for conditions with four

latent traits. This may also have affected parameter estimation accuracy.

In terms of BIC-based hyperparameter tuning for the lasso-penalized
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M2PCMPM-EM algorithm (with either a priori correlated or a priori uncorrelated latent

factors), we found performance differed notably depending on the condition. Assessing

tuning performance following Sun et al. (2016), we found that performance was in general

better for an underlying simple structure of the α matrix. Unsurprisingly, more complex

structures of the α matrix were more challenging as these are less clearly variable selection

problems. With more items and/or more traits, the accuracy of the BIC-based

hyperparameter tuning tended to improve. Compared to Sun et al. (2016)’s assessment of

BIC-based hyperparameter tuning for lasso-penalized binary models, we observed overall

(more or less pronounced) worse performance for count models (not just of the BIC tuning,

but also of the CER based tuning which is perhaps surprising at first glance). It is worth

pointing out that the direct comparison to the models in Sun et al. (2016) is not entirely

appropriate as Sun et al. (2016) defined the CER slightly differently to us (see above). The

observed pattern may also be confounded with the number of penalized parameters—in our

simulation, the smallest setting only included nine items, which leaves (with identification

constraints) only six freely estimated, penalized parameters. In this instance, a

misclassification equates to a change of 1
6 in the CER, while in a setting with for example

20 freely estimated, penalized parameters, it would equate to only 1
20 . As Sun et al. (2016)

studied settings with far more items—as is realistic for binary data, but not for count

data—this means that single or small numbers of misclassifications affected the CER

estimates less drastically than in our simulation. As discussed further below, these results

suggest that while the BIC-based hyperparameter tuning appears to work decently for

some conditions, hyperparameter tuning for the lasso-penalized M2PCMPM-EM algorithm

could still be improved by future research. These results also suggest that future research

might wish to consider alternatives to the CER for performance evaluation. For example,

one could extract the model-implied item covariance matrix and compare it to the observed

item covariance matrix using matrix norms.
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Limitations and Further Avenues for Future Research

Our simulation study was designed to provide a proof of concept for the proposed

model and algorithms. As such, and as guided by previous research (Sun et al., 2016), it

focused on scenarios with three or four latent traits. Future research could explore higher

dimensional scenarios. In such settings, the Gauss-Hermite quadrature based M2PCMPM

EM algorithm is likely going to reach its limitation, as Gauss-Hermite quadrature is known

not to scale well to high-dimensional problems (Chalmers, 2012). Thus, future research in

this regard could explore alternative integral approximations, such as Monte Carlo based

methods. Further, the maximum test length investigated in our simulation study was 20

items. Future research could investigate more extensive tests. An important point to

address in corresponding future research would be the ratio of the number of observations

to the number of model parameters. With its fixed sample size, the simulation study

cannot sufficiently speak to sample size recommendations—albeit observed results patterns

suggest that estimation performance may suffer from too low ratios of the number of

observations to the number of model parameters.

We implemented the proposed algorithms in R and C++ within the countirt

package. To this end, we built upon implementations of the 2PCMPM (Beisemann, 2022)

and related models (Beisemann et al., 2024) in countirt. These implementations all use a

naive interpolation-from-grid approach for some of the CMP distribution related quantities

to stabilize, facilitate and fasten computations. This approach worked well in our

simulation study and its settings, but can be expected to work less well in settings where

the data do not align well with the interpolation grid (see

https://github.com/mbsmn/countirt for details). In a regression framework, Philipson

and Huang (2023) developed a sophisticated and theory-based interpolation approach for

CMP models which allows not only inter- but also extrapolation from a specifically

designed grid. Future research could aim to apply and extend their work to the

(multidimensional) IRT context for CMP models.

https://github.com/mbsmn/countirt
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For comparability with the rotation approach and for computational reasons, we did

not tune our lasso penalty term on a training data set. However, for regularization

methods that would be the recommended approach (Hastie et al., 2009) and is what we

would recommend for high-stakes applications. This approach should prohibit over-fitting

to the data more aptly. In general, our tuning for the lasso penalty term simply used a grid

with equidistant tuning parameter values on the log-value space (as is typically

recommended; Hastie et al., 2009) and was based on the BIC. As we saw in the simulation

study results, for certain settings, the selection of the tuning parameter could still be

improved. In fact, sometimes the correct estimation rates were even low when they were

used to choose the tuning parameter value. Future research might research how parameter

tuning can be improved for the M2PCMPM lasso-EM algorithm and what computationally

equally economical alternatives to the BIC as a tuning criterion could be used. Further,

more investigation of tuning and the tuning grid used could also be interesting and helpful.

Such investigations are going to have to face the computation time challenge that these

computationally expensive models pose. Other than the warm starts already used in this

work, other avenues such as EM algorithm accelerators might be explored (see Beisemann,

Wartlick, & Doebler, 2020, for a recent overview of state-of-the-art methods).

Using the lasso penalty in the M2PCMPM not only encourages a sparse solution for

the discrimination matrix α, but it also imposes a certain degree of shrinkage onto each

discrimination estimate in α. To avoid shrunken estimates, future research could explore

the relaxed lasso (Meinshausen, 2007): The lasso-penalized M2PCMPM can be fitted to

the data for model selection, and afterwards an unpenalized M2PCMPM with appropriate

constraints (as selected by the lasso) can be fitted to the data for interpretation of the

model parameters.

For the penalization, we focused on the lasso (Tibshirani, 1996) which aligns with

other research on penalization in item response models (Cho et al., 2022; Sun et al., 2016).

However, lasso penalization is known to perform less well in settings with correlated
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variables (Hastie et al., 2009), which corresponds to latent factor correlations in item

response model settings. However, as we can see from our application example, such

settings are empirically realistic. Future research could address such limitation by

extending the lasso-penalized M2PCMPM EM algorithm to penalties such as the elastic

net (Zou & Hastie, 2005) which adaptively combines properties of the lasso and the ridge

(Hoerl & Kennard, 1970) penalty. Alternative penalties such as the smoothly clipped

absolute deviation (SCAD; Fan & Li, 2001) could also be explored (for an application of

SCAD in IRT, see e.g., Robitzsch, 2023). Other ways in which the penalized algorithms

themselves could be extended by future research would be for example the incorporation of

latent factor correlation estimation into the algorithm, rather than the two-step method by

Sun et al. (2016) that we used here to have the algorithm account for a priori expected

correlated factors. In the unpenalized M2PMCPM, such extensions would not be as

necessary as factor correlations can be accounted for by oblique rotations (e.g, Clarkson &

Jennrich, 1988).

Finally, the M2PCMPM framework proposed in this work can also in itself be a

stepping stone for future research. That is, the M2PCMPM framework offers researchers

the opportunity to propose, fit, and investigate a number of new count item response

models that can be accomodated by the M2PCMPM framework as special cases. This can

be achieved by exploring the confirmatory side of the M2PCMPM framework which the

present work only briefly touched on. Future research could suggest new constraints

through which new count item response models can be obtained from the M2PCMPM.

Furthermore, for the M2PCMPM framework to be complete and applicable in practice, it

needs to be enriched in the future by developing multi-group and differential item

functioning extensions within the framework as well as by deriving person parameter

estimators, item fit, and person fit measures.
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Table 1

Average bias (between-item SD in parentheses) and RMSE (between-item SD in

parentheses) on δj parameters across all items per condition

Design Bias (SD) RMSE (SD)

L α structure ρ m Lasso (obli) Lasso (ortho) Rotate Lasso (obli) Lasso (ortho) Rotate

3 simple 0 3 0.001 (0.002) 0.001 (0.002) -0.001 (0.002) 0.011 (0.002) 0.011 (0.002) 0.011 (0.002)

3 simple 0 5 0.002 (0.003) 0.002 (0.003) -0.001 (0.002) 0.012 (0.004) 0.012 (0.004) 0.012 (0.004)

3 simple .3 3 0.002 (0.002) -0.000 (0.001) -0.001 (0.001) 0.012 (0.003) 0.012 (0.003) 0.012 (0.003)

3 simple .3 5 0.003 (0.003) 0.000 (0.002) -0.001 (0.002) 0.014 (0.004) 0.013 (0.004) 0.013 (0.004)

3 complex 0 3 0.002 (0.002) 0.002 (0.002) 0.001 (0.002) 0.011 (0.002) 0.011 (0.002) 0.011 (0.002)

3 complex 0 5 0.000 (0.002) 0.002 (0.002) -0.000 (0.002) 0.013 (0.004) 0.013 (0.004) 0.013 (0.004)

3 complex .3 3 0.003 (0.001) -0.000 (0.001) -0.001 (0.001) 0.013 (0.003) 0.012 (0.003) 0.012 (0.003)

3 complex .3 5 0.002 (0.002) 0.000 (0.002) -0.000 (0.002) 0.014 (0.003) 0.012 (0.003) 0.012 (0.003)

4 simple 0 3 0.006 (0.005) 0.006 (0.004) 0.002 (0.003) 0.013 (0.004) 0.014 (0.003) 0.013 (0.002)

4 simple 0 5 0.006 (0.002) 0.009 (0.003) 0.004 (0.002) 0.014 (0.003) 0.016 (0.003) 0.015 (0.003)

4 simple .3 3 0.008 (0.006) 0.005 (0.004) 0.003 (0.003) 0.015 (0.005) 0.014 (0.003) 0.013 (0.003)

4 simple .3 5 0.007 (0.003) 0.006 (0.002) 0.005 (0.002) 0.015 (0.003) 0.014 (0.002) 0.014 (0.002)

4 complex 0 3 0.005 (0.003) 0.005 (0.004) 0.003 (0.003) 0.014 (0.004) 0.013 (0.004) 0.013 (0.004)

4 complex 0 5 0.006 (0.002) 0.008 (0.002) 0.005 (0.002) 0.015 (0.003) 0.016 (0.003) 0.014 (0.002)

4 complex .3 3 0.007 (0.002) 0.005 (0.003) 0.005 (0.003) 0.015 (0.003) 0.014 (0.003) 0.014 (0.003)

4 complex .3 5 0.003 (0.003) 0.005 (0.003) 0.004 (0.003) 0.018 (0.003) 0.017 (0.004) 0.016 (0.004)

Notes. Note that rotated models have the same δj estimates regardless of rotation methods as

those only affect α̂. obli = oblique (latent traits are a priori assumed to be correlated). ortho =

orthogonal (latent traits are a priori assumed to be orthogonal). L = number of latent traits. ρ =

true latent trait correlation. m = number of items per trait.
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Table 2

Average bias (SD in parentheses) and RMSE (SD in parentheses) on log νj parameters

across all items per condition

Design Bias (SD) RMSE (SD)

L α structure ρ m Lasso (obli) Lasso (ortho) Rotate Lasso (obli) Lasso (ortho) Rotate

3 simple 0 3 -0.007 (0.013) -0.007 (0.014) 0.007 (0.017) 0.084 (0.029) 0.084 (0.029) 0.082 (0.030)

3 simple 0 5 -0.006 (0.009) -0.010 (0.027) -0.004 (0.031) 0.060 (0.018) 0.062 (0.022) 0.061 (0.022)

3 simple .3 3 -0.007 (0.014) 0.010 (0.012) 0.013 (0.013) 0.071 (0.020) 0.075 (0.025) 0.076 (0.026)

3 simple .3 5 -0.013 (0.022) -0.002 (0.020) -0.001 (0.022) 0.061 (0.023) 0.060 (0.019) 0.060 (0.019)

3 complex 0 3 0.006 (0.013) 0.012 (0.015) 0.015 (0.015) 0.075 (0.023) 0.076 (0.022) 0.077 (0.022)

3 complex 0 5 -0.005 (0.008) -0.010 (0.021) -0.005 (0.019) 0.056 (0.013) 0.058 (0.017) 0.055 (0.014)

3 complex .3 3 -0.007 (0.012) 0.011 (0.010) 0.013 (0.011) 0.068 (0.018) 0.074 (0.025) 0.075 (0.024)

3 complex .3 5 -0.014 (0.019) -0.001 (0.012) -0.000 (0.011) 0.059 (0.018) 0.056 (0.015) 0.056 (0.014)

4 simple 0 3 -0.076 (0.148) -0.106 (0.214) -0.071 (0.165) 0.126 (0.134) 0.156 (0.194) 0.132 (0.144)

4 simple 0 5 -0.069 (0.095) -0.077 (0.104) -0.068 (0.106) 0.095 (0.087) 0.102 (0.096) 0.098 (0.095)

4 simple .3 3 -0.077 (0.142) -0.064 (0.147) -0.057 (0.138) 0.125 (0.124) 0.122 (0.129) 0.115 (0.120)

4 simple .3 5 -0.059 (0.098) -0.049 (0.088) -0.048 (0.089) 0.093 (0.088) 0.085 (0.075) 0.086 (0.075)

4 complex 0 3 -0.068 (0.135) -0.073 (0.209) -0.066 (0.206) 0.120 (0.122) 0.133 (0.186) 0.132 (0.182)

4 complex 0 5 -0.064 (0.093) -0.065 (0.093) -0.064 (0.096) 0.097 (0.081) 0.096 (0.081) 0.096 (0.082)

4 complex .3 3 -0.067 (0.146) -0.060 (0.173) -0.060 (0.173) 0.122 (0.131) 0.126 (0.151) 0.126 (0.150)

4 complex .3 5 -0.059 (0.080) -0.053 (0.076) -0.053 (0.076) 0.091 (0.071) 0.086 (0.064) 0.086 (0.064)

Notes. Note that rotated models have the same δj estimates regardless of rotation methods as

those only affect α̂. obli = oblique (latent traits are a priori assumed to be correlated). ortho =

orthogonal (latent traits are a priori assumed to be orthogonal). L = number of latent traits. ρ =

true latent trait correlation. m = number of items per trait.
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Figure 3

Condition average CER for the BIC-selected model (y-axis) against condition average CER

for the CER-selected model (x-axis), shown in two separate panels (lasso with oblique latent

covariance matrix on the left and lasso with orthogonal latent covariance matrix on the

right). Simulation conditions (in terms of number of latent traits (L), latent factor

correlation (r), and number of items per trait (m)) are shown in different colours as

indicated by the legend on the right-hand side (under "Condition"). Different α structures

are represented by different shapes as indicated by the legend on the right-hand side (under

"Structure").
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Appendix

First derivative of the CMP Variance

For the second derivatives in terms of δj and αjl in Equations 17–18, we need the derivative

of the variance V in terms of δj and αjl. That is,

∂V (µjk1,...,kL
, νj)

∂αjl

= ∂EX(X2)
∂αjl

−
∂µ2

jk1,...,kL

∂αjl

(A1)

= µjk1,...,kL
qkl

V (µjk1,...,kL
, νj)

EX(X3 − µjk1,...,kL
X2) − 2qkl

µ2
jk1,...,kL

, (A2)

and

∂V (µjk1,...,kL
, νj)

∂δj

= ∂EX(X2)
∂δj

−
∂µ2

jk1,...,kL

∂δj

(A3)

= µjk1,...,kL

V (µjk1,...,kL
, νj)

EX(X3 − µjk1,...,kL
X2) − 2µ2

jk1,...,kL
. (A4)

The first equality in both equation holds because for any random variable W it holds that

V(W ) = E(W 2) − E(W )2. Taking the derivative of µ2
jk1,...,kL

with regard to αjl and δj is

trivial. To take the derivative of EX(X2) with regard to αjl and δj, we used results

provided in Huang (2017) and derivation rules.
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