Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
**Required software:** - [Download JASP][1] - [Download R][2] - [Download RStudio][3] - [Download JAGS][4] **RoBMA:** - [CRAN package][5] - [GitHub: Issues/Help/Feature Requests][6] (or email f.bartos96@gmail.com) - [Manual & Vignettes][7] **Publications:** - "OG" RoBMA: Maier, M., Bartoš, F., & Wagenmakers, E. J. (2022). Robust Bayesian meta-analysis: Addressing publication bias with model-averaging. *Psychological Methods*. ([article][8], preprint at [PsyArXiv][9]) - RoBMA-PSMA: Bartoš, F., Maier, M., Wagenmakers, E. J., Doucouliagos, H., & Stanley, T. D. (2022). Robust Bayesian meta-analysis: Model-averaging across complementary publication bias adjustment methods. *Research Synthesis Methods*. ([open-access][10]) - Tutorial: Bartoš, F., Maier, M., Quintana, D. S, & Wagenmakers, E. J. (2022). Adjusting for publication bias in JASP and R—Selection models, PET-PEESE, and robust Bayesian meta-analysis. *Advances in Methods and Practices in Psychological Science*. ([open-access][11], [code][12], and [videos][13]) [1]: https://jasp-stats.org/download/ [2]: https://cloud.r-project.org/ [3]: https://www.rstudio.com/products/rstudio/download/#download [4]: https://sourceforge.net/projects/mcmc-jags/ [5]: https://cran.r-project.org/web/packages/RoBMA/ [6]: https://github.com/FBartos/RoBMA/issues [7]: https://fbartos.github.io/RoBMA/ [8]: https://doi.org/10.1037/met0000405 [9]: https://psyarxiv.com/u4cns/ [10]: https://doi.org/10.1002/jrsm.1594 [11]: https://doi.org/10.1177/25152459221109259 [12]: https://osf.io/uhaew/ [13]: https://bit.ly/pubbias
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.