Main content
Online Sleep Trainings for the Prevention and Treatment of Depression – An Individual Patient Data Meta-Analysis
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Project
Description: Major Depression (MDD) is an important challenge in mental healthcare, as MDD is a highly prevalent mental disorder (Gutiérrez-Rojas, Porras-Segovia, Dunne, Andrade-González, & Cervilla, 2020) with considerable individual (Ferrari et al., 2013; Lépine & Briley, 2011) as well as societal (Greenberg, Fournier, Sisitsky, Pike, & Kessler, 2015; Vos et al., 2004) burden. Estimates suggest that worldwide only 21% of individuals with MDD receive adequate treatment (Scott, de Jonge, Stein, & Kessler, 2018) and even in a hypothetical scenario with full coverage of and compliance to evidenced-based treatments models suggest that only a third of MDD-related disease burden could be avoided (Chisholm, Sanderson, Ayuso-Mateos, & Saxena, 2004). Barriers for help seeking most often include attitudinal barriers, such as the wish to handle one’s own problems or a perceived stigma of mental health problems and to a lesser degree structural barriers such as financing, time or transportation constraints (Andrade et al., 2014; Mojtabai et al., 2011). While some of the structural barriers can be countered with the use of internet-based interventions, which can be used independent of time and location (Ebert et al., 2018), some attitudinal barriers, like perceived stigma might be reduced by using an indirect approach (Cuijpers, 2021). In indirect interventions, instead of focusing on depression, common everyday problems such as low self-esteem, procrastination (Cuijpers et al., 2021), stress (Harrer et al., 2021; Weisel et al., 2018) or less stigmatized conditions such as insomnia (van der Zweerde, van Straten, Effting, Kyle, & Lancee, 2019) are addressed and by improving these also reduce depressive symptoms. Addressing sleep problems seems especially promising for targeting mental health problems, due to its association with multiple other mental health disorders (Hertenstein et al., 2019). Insomnia is especially linked to MDD in terms of predicting MDD onset (Baglioni et al., 2011; Li, Wu, Gan, Qu, & Lu, 2016), often being comorbid to MDD (Staner, 2010) and outlasting depression treatment (Vargas & Perlis, 2020). Several studies already showed the effects of (online) insomnia interventions on depressive symptom reduction (Cunningham & Shapiro, 2018) both in subthreshold (Batterham et al., 2017; Cheng et al., 2019; Christensen et al., 2016; van der Zweerde et al., 2019) and clinical relevant depression (Blom et al., 2015; Blom, Jernelöv, Rück, Lindefors, & Kaldo, 2017; Chan et al., 2021; Hertenstein et al., 2022). One study reporting on depression onset after an online-insomnia treatment found no group differences (Christensen et al., 2016) while another trial showed that in individuals with an insomnia subtype with a high risk for depression (characterized by different patterns in general distress, rumination and reduced positive effect), predicted symptom worsening could be avoided (Leerssen et al., 2021).To our knowledge, no studies directly compare subthreshold and clinically relevant levels of depressive symptoms in one study, so that effects of an indirect treatment or prevention approach concerning depressive symptom severity remain unclear. In terms of factors that possibly moderate the efficacy of an indirect approach and guide researchers and practitioners to individuals who would profit most from this approach, the literature is insufficient. (Work-related) ruminations and worries are suggested to mediate the effects of online insomnia interventions on depression (Behrendt, Ebert, Spiegelhalder, & Lehr, 2020; Cheng, Kalmbach, Castelan, Murugan, & Drake, 2020). Evidence of the influence of clinical (e.g. baseline severity) and demographic characteristic (e.g. sex, age, education) is mixed (Batterham et al., 2017; Cheng et al., 2019; Christensen et al., 2016). Therefore, the individual patient data from seven studies originally evaluating the efficacy of online sleep training will be pooled and analyzed to 1) evaluate their efficacy on depressive symptom reduction in both individuals with subclinical and clinical levels of depressive symptoms and 2) identify possible moderating and 3) mediating effects of clinical as well as demographic participants and intervention characteristics. References 1) Andrade, L. H., Alonso, J., Mneimneh, Z., Wells, J. E., Al-Hamzawi, A., Borges, G., … Kessler, R. C. (2014). Barriers to mental health treatment: results from the WHO World Mental Health surveys. Psychological Medicine, 44(6), 1303–1317. https://doi.org/10.1017/S0033291713001943 2) Baglioni, C., Battagliese, G., Feige, B., Spiegelhalder, K., Nissen, C., Voderholzer, U., … Riemann, D. (2011). Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. Journal of Affective Disorders, 135(1–3), 10–19. https://doi.org/10.1016/j.jad.2011.01.011 3) Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. Biometrika, 86(4), 948–955. http://www.jstor.org/stable/2673599 4) Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 5) Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 6) Batterham, P. J., Christensen, H., Mackinnon, A. J., Gosling, J. A., Thorndike, F. P., Ritterband, L. M., … Griffiths, K. M. (2017). Trajectories of change and long-term outcomes in a randomised controlled trial of internet-based insomnia treatment to prevent depression. BJPsych Open, 3(5), 228–235. https://doi.org/10.1192/bjpo.bp.117.005231 7) Behrendt, D., Ebert, D. D., Spiegelhalder, K., & Lehr, D. (2020). Efficacy of a self-help web-based recovery training in improving sleep in workers: Randomized controlled trial in the general working population. Journal of Medical Internet Research, 22(1), 1–18. https://doi.org/10.2196/13346 8) Blom, K., Jernelöv, S., Kraepelien, M., Bergdahl, M. O., Jungmarker, K., Ankartjärn, L., … Kaldo, V. (2015). Internet Treatment Addressing either Insomnia or Depression, for Patients with both Diagnoses: A Randomized Trial. Sleep, 38(2), 267–277. https://doi.org/10.5665/sleep.4412 9) Blom, K., Jernelöv, S., Rück, C., Lindefors, N., & Kaldo, V. (2017). Three-year follow-up comparing cognitive behavioral therapy for depression to cognitive behavioral therapy for insomnia, for patients with both diagnoses. Sleep, 40(8). https://doi.org/10.1093/sleep/zsx108 10) Braun, L., Titzler, I., Ebert, D. D., Buntrock, C., Terhorst, Y., Freund, J., … Baumeister, H. (2019). Clinical and cost-effectiveness of guided internet-based interventions in the indicated prevention of depression in green professions (PROD-A): study protocol of a 36-month follow-up pragmatic randomized controlled trial. BMC Psychiatry, 19(1), 278. https://doi.org/10.1186/s12888-019-2244-y 11) Braun, L., Titzler, I., Terhorst, Y., Freund, J., Thielecke, J., Ebert, D. D., & Baumeister, H. (2021). Effectiveness of guided internet-based interventions in the indicated prevention of depression in green professions (PROD-A): Results of a pragmatic randomized controlled trial. Journal of Affective Disorders, 278, 658–671. https://doi.org/10.1016/j.jad.2020.09.066 12) Bürkner, P.-C. (2017). Brms: An r package for bayesian multilevel models using stan. Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01 13) Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01 14) Chan, C. S., Wong, C. Y. F., Yu, B. Y. M., Hui, V. K. Y., Ho, F. Y. Y., & Cuijpers, P. (2021). Treating depression with a smartphone-delivered self-help cognitive behavioral therapy for insomnia: a parallel-group randomized controlled trial. Psychological Medicine, 1–15. https://doi.org/10.1017/S0033291721003421 15) Cheng, P., Kalmbach, D. A., Castelan, A. C., Murugan, N., & Drake, C. L. (2020). Depression prevention in digital cognitive behavioral therapy for insomnia: Is rumination a mediator? Journal of Affective Disorders, 273(August 2019), 434–441. https://doi.org/10.1016/j.jad.2020.03.184 16) Cheng, P., Luik, A. I., Fellman-Couture, C., Peterson, E., Joseph, C. L. M., Tallent, G., … Drake, C. L. (2019). Efficacy of digital CBT for insomnia to reduce depression across demographic groups: A randomized trial. Psychological Medicine, 49(3), 491–500. https://doi.org/10.1017/S0033291718001113 17) Chisholm, D., Sanderson, K., Ayuso-Mateos, J. L., & Saxena, S. (2004). Reducing the global burden of depression: Population-level analysis of intervention cost-effectiveness in 14 world regions. British Journal of Psychiatry. https://doi.org/10.1192/bjp.184.5.393 18) Christensen, H., Batterham, P. J., Gosling, J. A., Ritterband, L. M., Griffiths, K. M., Thorndike, F. P., … Mackinnon, A. J. (2016). Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): A randomised controlled trial. The Lancet Psychiatry, 3(4), 333–341. https://doi.org/10.1016/S2215-0366(15)00536-2 19) Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78(4), 685–709. https://doi.org/10.1007/S11336-013-9328-2 20) Cuijpers, P. (2021). Indirect prevention and treatment of depression: An emerging paradigm? Clinical Psychology in Europe, 3(4). https://doi.org/10.32872/cpe.6847 21) Cuijpers, P., Smit, F., Aalten, P., Batelaan, N., Klein, A., Salemink, E., … Karyotaki, E. (2021). The Associations of Common Psychological Problems With Mental Disorders Among College Students. Frontiers in Psychiatry, 12(September), 1–9. https://doi.org/10.3389/fpsyt.2021.573637 22) Cuijpers, P., Turner, E. H., Koole, S. L., Van Dijke, A., & Smit, F. (2014). What is the threshold for a clinically relevant effect? the case of major depressive disorders. Depression and Anxiety, 31(5), 374–378. https://doi.org/10.1002/da.22249 23) Cunningham, J. E. A., & Shapiro, C. M. (2018). Cognitive Behavioural Therapy for Insomnia (CBT-I) to treat depression: A systematic review. Journal of Psychosomatic Research, 106(December 2017), 1–12. https://doi.org/10.1016/j.jpsychores.2017.12.012 24) Ebert, D. D., Van Daele, T., Nordgreen, T., Karekla, M., Compare, A., Zarbo, C., … Taylor, J. (2018). Erratum: Internet and mobile-based psychological interventions: Applications, efficacy and potential for improving mental health. A report of the EFPA E-Health Taskforce (European Psychologist (2018) 23 (167-187) DOI: 10.1027/1016-9040/a000318). European Psychologist, 23(3), 269. https://doi.org/10.1027/1016-9040/a000346 25) Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., … Whiteford, H. A. (2013). Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. https://doi.org/10.1371/journal.pmed.1001547 26) Garge, N. R., Bobashev, G., & Eggleston, B. (2013). Random forest methodology for model-based recursive partitioning: The mobforest package for R. BMC bioinformatics, 14, 125. https://doi.org/10.1186/1471-2105-14-125 27) Gerber, M., Lang, C., Lemola, S., Colledge, F., Kalak, N., Holsboer-Trachsler, E., … Brand, S. (2016). Validation of the German version of the insomnia severity index in adolescents, young adults and adult workers: Results from three cross-sectional studies. BMC Psychiatry. https://doi.org/10.1186/s12888-016-0876-8 28) Greenberg, P. E., Fournier, A. A., Sisitsky, T., Pike, C. T., & Kessler, R. C. (2015). The economic burden of adults with major depressive disorder in the United States (2005 and 2010). Journal of Clinical Psychiatry. https://doi.org/10.4088/JCP.14m09298 29) Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple Imputation of Multilevel Missing Data. SAGE Open, 6(4), 215824401666822. https://doi.org/10.1177/2158244016668220 30) Gutiérrez-Rojas, L., Porras-Segovia, A., Dunne, H., Andrade-González, N., & Cervilla, J. A. (2020). Prevalence and correlates of major depressive disorder: A systematic review. Brazilian Journal of Psychiatry, 42(6), 657–672. https://doi.org/10.1590/1516-4446-2020-0650 31) Harrer, M., Apolinário-Hagen, J., Fritsche, L., Salewski, C., Zarski, A. C., Lehr, D., … Ebert, D. D. (2021). Effect of an internet- and app-based stress intervention compared to online psychoeducation in university students with depressive symptoms: Results of a randomized controlled trial. Internet Interventions, 24.https://doi.org/10.1016/j.invent.2021.100374 32) Hedges, L. V., & Olkin, I. (1986). Statistical Methods for Meta-Analysis. Biometrics. https://doi.org/10.2307/2531069 33) Hertenstein, E., Feige, B., Gmeiner, T., Kienzler, C., Spiegelhalder, K., Johann, A., … Baglioni, C. (2019). Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Medicine Reviews, 43, 96–105. https://doi.org/10.1016/j.smrv.2018.10.006 34) Hertenstein, E., Trinca, E., Wunderlin, M., Schneider, C. L., Züst, M. A., Fehér, K. D., … Nissen, C. (2022). Cognitive behavioral therapy for insomnia in patients with mental disorders and comorbid insomnia: A systematic review and meta-analysis. Sleep Medicine Reviews, 101597. https://doi.org/10.1016/j.smrv.2022.101597 35) Jacobson, N. S., & Truax, P. (1991). Clinical Significance: A Statistical Approach to Defining Meaningful Change in Psychotherapy Research. Journal of Consulting and Clinical Psychology. https://doi.org/10.1037/0022-006X.59.1.12 36) Jahn, R., Baumgartner, J., van den Nest, M., Friedrich, F., Alexandrowicz, R., & Wancata, J. (2018). Kriteriumsvalidität der deutschsprachigen Version der CES-D in der Allgemeinbevölkerung. Psychiatrische Praxis, 45(08), 434–442. https://doi.org/10.1055/a-0584-9803 37) Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B. W., Berry, J. T., & Mokdad, A. H. (2009). The PHQ-8 as a measure of current depression in the general population. Journal of Affective Disorders, 114(1–3), 163–173. https://doi.org/10.1016/j.jad.2008.06.026 38) Leerssen, J., Lakbila-Kamal, O., Dekkers, L. M. S., Ikelaar, S. L. C., Albers, A. C. W., Blanken, T. F., … Van Someren, E. J. W. (2021). Treating Insomnia with High Risk of Depression Using Therapist-Guided Digital Cognitive, Behavioral, and Circadian Rhythm Support Interventions to Prevent Worsening of Depressive Symptoms: A Randomized Controlled Trial. Psychotherapy and Psychosomatics. https://doi.org/10.1159/000520282 39) Lépine, J. P., & Briley, M. (2011). The increasing burden of depression. Neuropsychiatric Disease and Treatment, 7(SUPPL.), 3–7. https://doi.org/10.2147/NDT.S19617 40) Li, L., Wu, C., Gan, Y., Qu, X., & Lu, Z. (2016). Insomnia and the risk of depression: A meta-analysis of prospective cohort studies. BMC Psychiatry, 16(1). https://doi.org/10.1186/s12888-016-1075-3 41) Mojtabai, R., Olfson, M., Sampson, N. a, Druss, B., Wang, P. S., Wells, K. B., … Kessler, R. C. (2011). Barriers to mental health treatment: results from the WHO World Mental Health surveys. Psychological Medicine, 41(8), 1751–1761. https://doi.org/10.1017/S0033291710002291.Barriers 42) Norell-Clarke, A., Tillfors, M., Jansson-Fröjmark, M., Holländare, F., & Engström, I. (2018). Does midtreatment insomnia severity mediate between cognitive behavioural therapy for insomnia and post-treatment depression? an investigation in a sample with comorbid insomnia and depressive symptomatology. Behavioural and Cognitive Psychotherapy, 46(6), 726–737. https://doi.org/10.1017/S1352465818000395 43) Quartagno, M., Grund, S., & Carpenter, J. (2019). jomo: A Flexible Package for Two-level Joint Modelling Multiple Imputation. The R Journal, 11(2), 205. https://doi.org/10.32614/RJ-2019-028 44) Reins, J. A., Buntrock, C., Zimmermann, J., Grund, S., Harrer, M., Lehr, D., … Ebert, D. D. (2021). Efficacy and Moderators of Internet-Based Interventions in Adults with Subthreshold Depression: An Individual Participant Data Meta-Analysis of Randomized Controlled Trials. Psychotherapy and Psychosomatics, 90(2), 94–106. https://doi.org/10.1159/000507819 45) Riley, R. D., & Fisher, D. J. (2021). Using IPD meta–analysis to examine interactions between treatment effect and participant–level covariates. In R. D. Riley, J. F. Tierney, & L. A. Stewart (Eds.), Individual participant data meta–analysis (pp. 163–198). Wiley. https://doi.org/10.1159/000507819 46) Robitzsch, A., & Grund, S. (2021). Miceadds: Some additional multiple imputation functions, especially for ’mice’ [R package version 3.11-6]. https://CRAN.R-project.org/package=miceadds 47) Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons.https://doi.org/10.1002/9780470316696 48) Schafer, J., & Yucel, R. (2012). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11. https://doi.org/10.1198/106186002760180608 49) Scott, K. M., de Jonge, P., Stein, D. J., & Kessler, R. C. (2018). Mental disorders around the world: Facts and figures from the WHO World Mental Health surveys. Mental Disorders Around the World: Facts and Figures from the WHO World Mental Health Surveys. Cambridge University Press. https://doi.org/10.1017/9781316336168 50) Staner, L. (2010). Comorbidity of insomnia and depression. Sleep Medicine Reviews, 14(1), 35–46. https://doi.org/10.1016/j.smrv.2009.09.003 51) van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03 52) van der Zweerde, T., van Straten, A., Effting, M., Kyle, S. D., & Lancee, J. (2019). Does online insomnia treatment reduce depressive symptoms? A randomized controlled trial in individuals with both insomnia and depressive symptoms. Psychological Medicine, 49(3), 501–509. https://doi.org/10.1017/S0033291718001149 53) Vargas, I., & Perlis, M. L. (2020). Insomnia and depression: clinical associations and possible mechanistic links. Current Opinion in Psychology, 34, 95–99. https://doi.org/10.1016/j.copsyc.2019.11.004 54) Vos, T., Haby, M. M., Barendregt, J. J., Kruijshaar, M., Corry, J., & Andrews, G. (2004). The burden of major depression avoidable by longer-term treatment strategies. Archives of General Psychiatry. https://doi.org/10.1001/archpsyc.61.11.1097 55) Wahl, I., Löwe, B., Bjorner, J. B., Fischer, F., Langs, G., Voderholzer, U., … Rose, M. (2014). Standardization of depression measurement: a common metric was developed for 11 self-report depression measures. Journal of Clinical Epidemiology, 67(1), 73–86. https://doi.org/10.1016/j.jclinepi.2013.04.019 56) Weisel, K. K., Lehr, D., Heber, E., Zarski, A. C., Berking, M., Riper, H., & Ebert, D. D. (2018). Severely burdened individuals do not need to be excluded from internet-based and mobile-based stress management: Effect modifiers of treatment outcomes from three randomized controlled trials. Journal of Medical Internet Research, 20(6). https://doi.org/10.2196/jmir.9387 57) White, I. R., Daniel, R., & Royston, P. (2010). Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. Comput Stat Data Anal, 54(10), 2267–2275. https://doi.org/10.1016/j.csda.2010.04.005 58) Zeileis, A., Hothorn, T., & Hornik, K. (2008). Model-based recursive partitioning. Journal of Computational and Graphical Statistics, 17(2), 492–514. https://doi.org/10.1198/106186008X319331