Main content

A gradual effects model for single-case designs  /

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Single-case designs are a class of repeated measures experiments used to evaluate the effects of interventions for specialized populations, such as individuals with low-incidence disabilities. There has been growing interest in systematic reviews and syntheses of evidence from single-case designs, but there remains a need to further develop appropriate statistical models and effect sizes for data from the designs. We propose a novel model for single-case data that exhibit non-linear time trends created by an intervention that produces gradual effects, which build up and dissipate over time. The model expresses a structural relationship between a pattern of treatment assignment and an outcome variable, making it appropriate for both treatment reversal and multiple baseline designs. It is formulated as a generalized linear model so that it can be applied to outcomes measured as frequency counts or proportions, both of which are commonly used in single-case research, while providing readily interpretable effect size estimates such as log response ratios or log odds ratios. We demonstrate the gradual effects model by applying it to data from a single-case study and examine the performance of proposed estimation methods in a Monte Carlo simulation of frequency count data.

Has supplemental materials for A gradual effects model for single-case designs on PsyArXiv

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.