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Abstract. The data science of networks is a rapidly developing field with myriad applications. In neuroscience, the brain is
commonly modeled as a connectome, a network of nodes connected by edges. While there have been thousands
of papers on connectomics, the statistics of networks remains limited and poorly understood. Here, we provide an
overview from the perspective of statistical network science of the kinds of models, assumptions, problems, and
applications that are theoretically and empirically justified for analysis of connectome data. We hope this review
spurs further development and application of statistically grounded methods in connectomics.
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1 Introduction The idea of the brain as a network of interconnected neuronal elements has existed
since the late 19th century. These neuronal elements (e.g. long-range fibers, synapses, subcellu-
lar processes) are anatomically organized in multiple scales of space to allow communications over
multiple scales of time enabling perception, cognition and action [79, 85, 90]. Recent advances in neu-
roimaging [14, 24, 47] along with large-scale projects opened new frameworks for studying the brain by
modeling brain connectivity as networks, or connectomes [4, 103, 123]. One of the main challenges in
connectomics is to understand the network structures that link individual histories, such as the genome,
developmental stage, or experience, to cognitive phenotypes, such as personality traits, behaviors, or
disorders, which has been dubbed “connectal coding” [107].

A connectome is defined as an abstract mathematical model of brain structure as a network, com-
posed of two sets: vertices (or nodes) that represents a biophysical entity of the brain, and edges that
represent connections, or communication, between pairs of vertices [47, 93, 107]. Connectomes can
have additional structures. For example, edges can have weights that describe the strength of connec-
tion, and have other attributes, such as physical location of the edge. Similarly, nodes can also have
attributes, such as anatomical labels, shape and size. This capacity of connectomes as a brain model
comes with challenges in their analysis.

The first challenge is the choice of the representation of a connectome. Figure 1(A) and (B) shows
two valid, but different representations of a human connectome. In Figure 1(A), the connectome is
shown as a collection of vertices and edges in the classical graph theory perspective. The vertices
are organized by their location in the human brain, but this is only one choice of layout. There are
infinitely many layouts that are equally valid, and, potentially, useful. In Figure 1(B), the connectome
is shown as a collection of numbers laid out in rows and columns as an “adjacency matrix” in the
computer science perspective. In this view, a row/column pair is a vertex, and edges between vertices
u and v are depicted by a non-zero entry in the corresponding element of the matrix. Consequently,
the row identities are linked to column identities. Permuting both rows and columns together results in
a “different” matrix, but they represent the same connectome. Nonetheless, the adjacency matrix is a
useful representation of connectomes.

The second challenge is that connectomics data are different from typical Euclidean data in many
ways. Some operations, such as addition and multiplication, are not well defined. What would it mean
to add two connectomes together? Distance metrics are also not well defined, making comparisons
between connectomes difficult. In the view of adjacency matrices, each entry is potentially related and
dependent on other entries.

The third challenge is that connectomics data can be highly variable. For a graph with n vertices,
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there are (’;) possible edges so the number of unique graphs is 2(3). Figure 1(C) shows the exponential
growth in the number of unique graphs as the number of vertices increase. The large number of
possible graphs makes characterizing and describing the graphs is difficult without statistical analysis
of connectomics data.

Current connectomics analysis frameworks can be organized into four categories, each of which
address the above challenges to various extents. The first approach, and by far the most popular, is
dubbed the bag of features. In this approach, a set of graph-wise or vertex-wise statistics that capture
the structural aspects of networks are computed and compared [17, 69]. One major drawback to this
method is that features are not independent of one another, making results from subsequent inference
using these features difficult to interpret. In the second approach, the bag of edges, each edge is
studied individually. As a consequence, edges are treated independently, ignoring the other potential
interactions [26, 106]. In the third approach, the bag of vertices, the vertices are studied while leveraging
some structural information of the connectomes. In the fourth approach, the bag of communities, the
vertices are first organized into (typically) disjoint groups to form communities, and then edges within
and across communities are studied. The last approach, the bag of networks, studies the connectomes
as a whole to test for differences across groups or to classify connectomes.

While each of the frameworks provide complementary and meaningful insights into the connec-
tomes, the underlying methodologies, and, thus, the interpretation of results can vary significantly.
Statistical modeling of connectomes bridges the gap by providing a unified framework for studying con-
nectomes. Conceptually, statistical models capture important differences within or among networks
while considering the built-in structures and heterogeneity in networks [7, 11, 119, 121]. These dif-
ferences are summarized by model parameters that can be used in a variety of subsequent inference
tasks.

This article is intended as a quantitative review of current connectomics analysis methods, and
how statistical models can be incorporated to improve current analysis methods. We perform empirical
investigations to demonstrate to what extent conclusions can be trusted as a function of the analysis
method and the hypothesis in consideration. We vary parameters for the data, such as the generative
model, sample size, and effect size, and hypothesis testing frameworks. Ultimately, the statistical mod-
eling of networks uniquely provides a framework for meaningful and accurate testing and estimation for
connectomics.

2 Representations Due to the flexibility of networks, different representations of the connectomes
can be studied, which we organize into four categories. In the following sections, we first formally
define a network and then describe the four different frameworks of studying connectomics data. All
frameworks provide complementary insights and understanding of the connectomes.

2.1 Graph/Network A graph, or network, G, is defined as an ordered set of vertices and edges (V, E)
where V is the vertex set, and E, the set of edges, is a subset of the Cartesian product of V' x V. That
is, a graph has at most a single edge for each pair of unique vertices. A vertex set is represented as
V ={1,2,...,n} where [V| = n, and an edge exists between vertices i and j if (i, j) € E. An unweighted
graph is a graph in which we are only concerned with the presence (or absence) of an edge. Each graph
has an associated adjacency matrix A € {0,1}""" where A;; represents the presence (or absence)
of the edge between nodes ¢ and j. Note that A provides a unique representation of G; that is, there
exists a 1-to-1 relationship between a graph and its adjacency matrix.
The above definition can be further extended in two ways:

1. Weighted graphs - the edges can take on arbitrary values, typically a real number. For example,
the edge weight in human structural connectomes are non-negative integers that represent the
number of estimated neuronal fibers that traverse from one region of the brain to another. Thus,
each weighted graph has an adjacency matrix A € R"*" where A;; represents the edge weight.

2. Directed graphs - E is now an ordered set of edges. Each edge has an associated direction,
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Figure 1: Different Representations of a Connectome. Human structural connectome estimated from aver-
aging 1059 human connectomes from the Human Connectome Project [103]. Vertices represent regions of the
brain, and are assigned into right (R) and left (L) hemispheres and then further assigned into frontal (F), occipital
(O), parietal (P), and temporal (T), and subcortical structures (S). (A) Connectivity shown in the coronal and
axial views. Dots corresponds to the center-of-mass of the a region, lines correspond to connections, and line
thickness corresponds to magnitude of the connection. Only the largest 5% of edges are shown for visualization
purposes. Note that infinitely many spatial arrangement of the vertices exist, and only one particular arrangement
is being shown. (B) Connectivity of the average structural connectome shown as an adjacency matrix, A. The
rows and columns are organized by hemisphere then further organized by sub-structures. However, given any
permutation matrix P, the permuted adjacency matrix P A P is still a valid matrix of original connectome. For
a graph with n vertices, there are n? permutations. (C) The number of unique graphs grows exponentially as
the number of vertices increases. The large number of graphs motivate statistical analysis to characterize and
describe connectomes.

and a directed edge exists between vertices i and j if (i,j) € E. In undirected graphs, the asso-

ciated adjacency matrix A is symmetric, but in directed graphs, A is not necessarily symmetric,
that is, it is possible that A;; # Aj;, forany i,j € V.

For the remainder of the paper, graphs are considered undirected and unweighted and with no
self-loops, that is diag(A) = 0, unless specified otherwise.

2.2 Bag of Features Network statistics, or features, are abstract representations that capture either
global or local structures of a network [69, 75]. This method computes a set of network statistics for
each network, and analyzes differences between, or among, populations. For example, when com-
paring populations of networks from healthy and individuals with depression, the difference in global
clustering coefficient, which measures how likely vertices tend to cluster together, can be computed
[19]. These network statistics have enjoyed applications in many connectomics studies that compare
different populations of networks [18, 41]. However, there are infinitely number of such statistics, and
we lack general guidance in which statistics to compute. Furthermore, no set of network statistics can
adequately characterize a network [22, 67]. These considerable shortcomings further motivates the use
of other representations of networks, and below examples demonstrate the shortcomings of studying
bags of features.

2.2.1 Non-identifiability of graph features Summary statistics, such as the mean, variance, and
correlation, are often used to describe real valued datasets, which can be insightful in understanding
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Figure 2: Four Networks with Same Network Statistics. Each network has |V| = 10, |E| = 15, number of
triangles is 9, and the global clustering coefficient is 0.6. However these graphs have distinctive topologies. For
example, the left-most network is disconnected, while others are connected. This suggest that given a small set
of network statistics, one cannot identify from which network the features are computed.

the data. However, the Anscombe’s quartet illustrates four drastically different distributions of eleven
points that have the same summary statistics [6]. This suggest that any small number of summary
statistics can fail to meaningfully characterize the data.

In network analysis, variety of network level statistics can be computed to summarize networks.
Similar to the Anscombe’s quartet, networks with different topologies can have the same network fea-
tures as shown in Figure 2. These four networks have the same number of vertices, edges, triangles,
and global clustering coefficient, but have different properties such as connectedness and symmetry.
Other works have also explored the distributions of network statistics [22, 67].

2.2.2 Network features are correlated and relatively uninformative We consider all non-isomorphic,l
undirected, binary networks with 10 vertices, which results in ~ 12 million networks. Formally, G and H
are isomorphic networks when there exists a vertex permutation function f : V(G) - V() such that
if edge (u,v) € E(G), then (f(u), f(v)) € E(H). Only non-isomorphic networks are considered since
isomorphic networks have identical network features.

For each network, the following six graph network statistics are computed: 1) average path length
(APL), 2) global clustering coefficient (GCC), 3) average clustering coefficient (ACC), 4) global efficiency
(GE), 5) local efficiency (LE), and 6) modularity. These statistics are some of the most commonly
computed statistics [19, 93]. The distribution of network statistics are plotted against modularity. The
top row of Figure 3 shows that all of the network features are highly correlated with modularity. We then
constrain the networks in two different ways. First, we consider all networks with 20 + 2 edges. Second,
we choose a “base” network at random with 20 edges, and then identify all networks with no more than
3 edges different from the base network. The distribution of each of the above network statistics on this
subset of networks are computed for both constraints. The middle and bottom rows of Figure 3 show
that constraining the networks in these ways hardly constrains the network features at all. Changing
only a few edges on a network can yield a network with almost any possible configuration according
to these statistics, and therefore are inadequate to characterize these populations. Thus, when any
given metric is correlated with a covariate of interest, so are many other metrics. Thus, claiming that a
particular property of the brain “explains” a given phenotypic property of a person is spurious reasoning.

The experiment is repeated using the binarized structural connectomes from HCP dataset. For
all 1059 connectomes, which have 70 vertices, the network features are computed. Figure 4 top row
shows the distributions for all connectomes, and middle row and bottom row show the distributions
after constraining by considering all connectomes with number of edges between 1010 and 1210, and
then by choosing a network with 1100edges at random and choosing all networks with at most 300
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Figure 3: Density Plots of Network Statistics. (Top Row) The distributions of networks statistics for all possible
10-node networks are shown. (Middle Row) Networks are constrained by only considering all networks with 20+ 2
edges. (Bottom Row) A base graph with 20 edges is chosen at random, and only networks that have differences
up to 3 edges are considered. In both constrained set of networks, the distribution of these network statistics
remains essentially unchanged. In other words, changing only a few edges on a network can yield a network with
almost any possible configuration according to these statistics.

edge differences. Even in real data, constraining the networks produce similar distributions of network
statistics.

2.3 Bag of Edges In this approach, the edges of connectomes are studied. Most commonly, each
edge is studied independently, while ignoring any interactions between edges [26, 105, 120]. Univariate
edge-wise testing can reveal easily interpretable relationships between specific edges and covariates
through hypothesis testing. However, edge-wise testing requires performing multiple hypothesis tests,
and multiple comparisons must be corrected to control the false positive rate [31, 40]. While certain
methods, such as Benjamini—-Hochberg corrections, have strong theoretical guarantees, they require
assumptions about the data, such as independence, that connectomics data do not satisfy [13, 91, 118].
On the other hand, Bonferroni corrections are considered too conservative, and, therefore, lack the
sensitivity for connectomics [91].

More intricate methods represent each connectome as a long vector containing all of its edges
[5, 78]. Vector representations can allow for correlation of edges and direct application of common
machine learning algorithms, but still discards the structural information in networks.

2.4 Bag of Vertices In this approach, the vertices of connectomes are analyzed while leveraging
structural information, typically global structures, of the graphs. A common approach embeds the
connectomes to learn a low-dimensional and Euclidean representation of the vertices [7, 11, 45]. Al-
gorithms that operate on Euclidean data (e.g. Gaussian Mixture Model (GMM) for clustering vertices,
random forests for classifying vertices, multivariate hypothesis tests for testing for differences between
vertices) can be employed for subsequent analysis [76, 101].

2.5 Bag of Communities Networks often contain structural information such as communities, which
are subsets of vertices that behave similarly. For example, similar vertices can be defined by those
that are more likely to be connected with each other than to other vertices. The set of communities
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Figure 4: Density plots of network statistics on HCP connectomes. All connectomes (N = 1059) have
70 vertices defined by the Deskian parcellation. (Top row) The distributions of networks statistics for all HCP
connectomes are shown. (Middle Row) connectomes are constrained by only considering all networks with
1100 + 100 edges. and (Bottom Row) A base graph with 1100 edges is chosen at random, and only networks
that have differences up to 300 edges are considered. Similar to the simulated examples, the distributions are
qualitatively similar.

that comprise a network, called community structure, can describe both the local and global patterns
of the network. At local-scale, we can examine the properties of vertices that are within the same com-
munity. At global-scale, we can measure associations between connectivity patterns of communities
across groups or other covariates [8, 34, 54]. Furthermore, the community structure in spatial resolution
connectomes from human MRI can be used to delineate regions of the brain, called parcellations [102].

Community detection in networks have been studied extensively [37, 70]. Typically, the community
structure is identified by modularity optimization methods [15, 25]. In this paper, we present spectral
methods that rely on statistical models for community detection, which have strong statistical guaran-
tees for recovering true communities [7, 11, 64, 94]. It is important to note that analysis of communities
depends on the performance of the community detection algorithms.

2.6 Bag of Networks In this approach, one or more groups of networks are studied in various set-
tings, such as one- and two-sample hypothesis testing, and classification, using some representation
of networks. For example, bag of vertices representation can be used to test whether two networks
are different [97, 98]. For studying more than two networks, geometry in the space of the networks is
defined and are represented in that geometry, which are then used for finding differences across groups
[7, 42, 116].

Another group of methods finds subsets of vertices, or a subgraph, that contain the most information
about certain covariates [9, 46, 109, 110, 113]. Estimating signal subgraphs is useful since networks
can be extremely large (i.e. millions of vertices), which present computational challenges, and can
potentially improve the performance of subsequent inference tasks, such as classification. Different
approaches for finding the subgraph have been proposed, but all approaches leverage the network
topologies inherent in connectomics data.



Table 1: Notations and symbols used in this paper

Symbols Description Symbols Description

[n] {1,2,...,n} P Edge connectivity probability matrix
G Graph B Block connectivity probability matrix
mn Number of nodes T Vertex community assignment vector
A Adjacency matrix M Edge community assignment matrix
A; i-th row of A X Latent position matrix

Aij (i,7) entry of A X Estimated latent position matrix
AD I-th element in sequence of A

Asymmetric Heterogeneous

IER = SBM (K=n) = GRDPG (d=n) = SIEM (K=n?)

Symmetric Heterogeneous

GRDPG (d<
(d<n) Planted Partition

Kidney-Egg

Erd&s-Renyi

Figure 5: Hierarchical Relationships of Statistical Models (A) Relationships among all the single-graph sta-
tistical models. ER is a SBM with one community. SBM with a positive semidefinite block probability matrix B is
also a RDPG. Any SBM, RDPG, and some SIEM can be represented as d-dimensional GRDPG with d less than
number of vertices n. IER graphs are equivalent to a n-block SBM, n-dimensional GRDPG, and n?-group SIEM.
(B) Relationships among the two-block SBM models. The most complex model is the asymmetric heterogeneous
SBM, and the simplest model is the Erdds — Rényi (ER), which is a degenerate case of 2-block SBM.

3 Statistical Models Connectomes can be modelled using statistical models designed for network
data [43, 56]. Statistical models consider the entire network as a random variable, including the inherent
structure, dependencies within networks, and the noise in observed data. Thus, statistical models
can formalize detecting similarities or differences for each of the representations in Section 2. This
section provides an overview of many statistical models for network data, including those designed for
representing single and multiple networks.

Section 3.1 provides an overview of single graph models that have been extensively studied as
well as recently introduced models in the order of least to greatest complexity. Figure 5 shows the
relationship between all the single graph models presented in this paper. Section 3.2 provides an
overview of some models for multiple networks. While other statistical models for multiple network
data exist [30, 72, 112, 119], we focus on some recent models that are used in spectral inference for
connectomics data.

3.1 Single Graph Models

3.1.1 Erdos-Rényi Random Graphs (ER) The simplest random graph model is the Erdos — Rényi (ER)l
model [33]. For a given set of n vertices, each distinct pair of vertices are connected independently with
probability p € [0, 1]. Specifically, A ~ ER,,(p) if A has entries A;; ~ Bernoulli(p) for i, j € [n]. While the
ER model is not representative of real data, it has been studied extensively since many of its properties
can be solved exactly [71, 84].



3.1.2 Stochastic Block Model (SBM) First introduced in [49], SBM is a model that can produce
graphs with vertices grouped into K communities [81, 94, 114]. There are two simple variations of the
SBM in which the vertex assignment vector 7 € {1,---, K}" is known a priori, and where 7 is not known.
In both cases, a symmetric K x K block connectivity probability matrix B with entries in [0, 1]%*%
governs the probability of an edge between vertices given their block memberships.

If 7€ {1,--, K}" is known a priori, the a priori SBM is parametrized only by the block connectivity
matrix B, and the model is A ~ SBM,,(7,B) if A has entries A;; ~ Bernoulli(By;) where 7; = k, 7 = [,
for i,j € [n], and k,l € [K]. In the case where 7 is not known, the a posteriori SBM is addition-
ally parameterized by a block membership probability vector 7 = [71,...,7x]" on the probability sim-
plex. The model is A ~ SBM,,(7,B) if A has entries A;; |k = 7,0 = 7j ~ Bernoulli(By;), where
7i~ Multinomial(7) fori = 1,---, n.

Throughout the context of this paper, we will focus particularly on a few variations of the two-block

SBM (K = 2) with block connectivity matrix B = [Z d

b], abbreviated as B = [a, b; ¢, d]. The common
variants include:
1. Kidney — Egg: b = ¢ = d. In this model, one of the blocks has edges with a different probability
than the others, but the remaining blocks are homogeneous, where a # b. Furthermore, when
b > a, the model is referred to as core-periphery SBM.
2. Planted Partition: a = d and b = c¢. In this model, the within-block edges share a common
probability a, and the between-block edges share a common probability b, where a + b.
3. Symmetric Heterogeneous: b = c. In this model, the between-block edges share a common
probability b, but the within-block edges have a disparate probabilities, where a # b # d.
4. Asymmetric Heterogeneous: a # b # ¢ # d. In this directed model, every block has a unique
probability.
5. Erdos — Rényi: a = b = ¢ = d. In this degenerate model, all blocks have a common probability,
and the partitioning is irrelevant.
6. Homophilic/Assortative/Affinity: a,d > b,c. In this model, the within-block probabilities are
greater than cross-block probabilities.
7. Disassortative: b, ¢ > a, d. In this model, the cross-block probabilities are greater than the within-
block probabilities.
Figure 5(B) summarizes the relationships of SBM models.

3.1.3 Structured Independent Edge Model (SIEM) SIEM is a generalization of SBM that produces
graphs in which edges are grouped into one of K clusters. Analogous to the vertex assignment vector
of the a priori SBM, the SIEM features an edge community assignment matrix M € {1,---, K}"*"
which is known a priori. Given the community assignment matrix M, the SIEM is A ~ SIEM,,(M, p) if
Aij~Bernou||i(pk) where Mz’j =k, fori,j e [TL] and k € [K] p = [pl,---,pK]T € [0,1]K is the edge
probability vector which governs the probability of an edge between vertices.

The a priori SBM is a special case of SIEM in which edges are assigned to blocks M which respect
the vertex assignment vector 7. For the purposes of this paper, we will consider a case that frequently
comes up in neuroimaging, the Homotopic SIEM, in which each vertex has a matched “pair” amongst
other vertices. The edges corresponding to a pair M;; = 2 where (v;,v;) are a pair of vertices sharing
a property, and the edges corresponding to a non-pair are M;; = 1. A matched pair of vertices, for
instance, could be homotopic brain regions (two brain regions with similar function but in opposing
hemispheres of the brain).

3.1.4 Random Dot Product Graphs (RDPG) RDPG belongs to the class of latent position random
graphs [48]. In a latent position graph, every vertex has associated to it a (typically unobserved) latent
position in some space X, and the probability of connection between vertices i and j are given by a
link function. In RDPG, the space X is a constrained subspace of Euclidean space R? and the link



function is the dot product [87, 95, 117]. Thus, in a d—dimensional RDPG with n vertices, the matrix
X ¢ R™? whose rows are the latent positions, and the matrix of connection probabilities is given by
P = XX, which is positive semidefinite. The model is A ~ RDPG, (X) if the adjacency matrix A
has entries A;; ~ Bernoulli(X; XJT). Subsequent inference tasks include community detection [94],
vertex classification [100], or two-sample hypothesis testing for graphs with matched and non-matched
vertices for a pair of graphs [77, 97, 98].

The RDPG is a flexible model, and other models of interest can be seen as special cases of the
RDPG. A SBM whose block connectivity matrix B is positive semi-definite is a RDPG with K distinct
latent positions. Thus, a SBM with K blocks can be represented with a latent position matrix X e R™*¢,
with d < K, where there are only K different rows of X, and letting X;; ¢ R%*? be the matrix with the
subset of the rows U/ where each row is the latent position for a block, then the block connectivity matrix
is B =XyX], e RE*K_ More generally, the RDPG can represent other models with more complex
structures, such as mixed memberships [2] or hierarchical communities [65].

3.1.5 Generalized Random Dot Product Graphs (GRDPG) Unlike RDPG model, GRDPG does not
assume that P is a positive semidefinite probability matrix [83]. In this model, the edge probability
matrix is given by P = X1I,,X", and A ~ GRDPG,(X,p,q) if A;; ~ Bernoulli(X;I,, X}) where
I,, = diag(1,...,1,-1,...,-1) with p ones followed by ¢ minus ones on its diagonal, and where p > 1
and g > 0 are two integers satisfying p + ¢ = d.

The GRDPG generalizes all of the previous models. When ¢ = 0, GRDPG reduces to a RDPG model.
To represent any SBM as GRDPG, let p > 1,4 > 0 be the number of positive and negative eigenvalues
of the block connectivity matrix B ¢ R¥*X respectively. The block matrix can be represented as
B =Xy 1, X],.

3.1.6 Inhomogenous Erd6s-Rényi Random Graphs (IER) The Inhomogenous Erdos — Rényi (IER)
is a model where each pair of nodes has a unique probability of an edge existing between the two,
and is therefore the most general independent edge model. For a given set of n vertices, the IER is
parametrized by a matrix P € [0,1]™", where P;; is the probability of an edge connecting vertices
v;,vj Where i,j € [n]. Thatis, A ~ IER,(P) if A has entries A;; ~ Bernoulli(P;;) for i,j € [n]. IER
cannot be estimated from a single graph, as there are (%) unknowns (the probabilities) with (7) total
observations (the edges).

Note that all single graph models are special cases of IER. Additionally, SBM with K = n, SIEM
with K = n?, and GRDPG with d = n are equivalent to an IER model.

3.2 Multiple Graph Models A common idea in statistical models for multiple graphs is a shared
latent space that contain structural information common to all graphs. The two models presented in
this section constrain the shared latent space in different ways to describe the heterogeneity in graphs,
which results in sensitivity to different kinds of heterogeneity. The advantages and disadvantages of
each model are highlighted in Section 9.

In the following models, consider a sample of m observed graphs G, G ... g™ and their
associated adjacency matrices, A, AP . A(™ ¢ R with n vertices that are identical and
shared across all graphs.

3.2.1 Joint Random Dot Product Graphs (JRDPG) In this model, we consider a collection of m
RDPGs all with the same generating latent positions. Similar to a RDPG, given an appropriately con-
strained Euclidean subspace R?, the model is parameterized by a latent positions matrix X e R™*¢
where d < n. The model is (A1), A . A(™) ~ JRDPG(X) where A" ~ Bernoulli(X; X]) for
all i,j € [n] and [ € [m]. Each graph has marginal distribution A() ~ RDPG(X) for all I € [m], mean-
ing that the matrices A(l), e ,A(m) are conditionally independent given X [11, 58]. While the model
assumes that the latent positions for the graphs are the same, we note that this assumption is likely
violated in heterogeneous networks, but still remains a very useful model as shown in Section 9.



3.2.2 Common Subspace Independent-Edge Model (COSIE) In this model, the heterogeneous
networks are described via a shared latent structure on the vertices, but also permits sufficient hetero-
geneity via individual matrices for each graph [7]. The model is parameterized by a matrix V e R™*¢
with orthonormal columns, where n is the number of vertices and d « n, and symmetric individual score
matrices R(Y) € R%?, The matrix V characterizes a low-rank common subspace, and is related to the
latent positions for the vertices, and the score matrices incorporate individual differences to model the
heterogeneity of the graphs. The model is denoted by (A(),..., A(™) ~ COSIE(V; R, ..., R(™)

where A ~ Bernoulli(P\})) for all i, € [n],i < j, and PO = VRO V. This factorization of the
expected adjacency matrices is related to other decompositions for multiple matrices into population
singular vectors or eigenvectors and individual parameters [1, 27, 59, 111].

3.2.3 Correlated Models Finally, we are interested in graph models for a pair of graphs, G; and Go,
where the two graphs are said to be correlated; that is, the edges adjoining incident vertices have a
non-zero correlation. Correlated graph models have numerous applications, such as when a graph is
estimated repeatedly for the same source at different points in time.

Correlated (P, Q) The R-correlated (P, Q) model [61] with parameters R, P, Q € [0, 1]™*", denoted
as CorrER(P, Q,R), produces two graphs G; and G, with adjacency matrices A A®) such that
each graph is marginally an inhomogeneous Erdés-Rényi with A ~ [ER(P), A ~ IER(Q), but the
pairs of corresponding edges have Pearson correlation encoded in the matrix R such that

1 2
P(Az(j) - Az(j) =1)-PyQy;

VPi(T-Pi)Q,;(1-Q,;)

When P and Q are different, there are restrictions in the values that the correlation matrix R can take.

i - [Q,;(1-Q;;
In particular, if P;; # Q;; and P > Q, then R;; < m [61].

We are interested particularly in two special cases of the CorrER(P,Q, R):
1. The p-correlated RDPG model arises when P = Q = X X' for some latent position matrix
X ¢ R™ as in Section 3.1.4, and R = pl,,., (that is, the matrix of edge correlations R has only
a single unique entry p > 0). We say that A1, Ay ~ pRDPG(X).
2. The p-correlated ER model arises in the case where P = Q = pl,,«,, (i.e., the probability matrix
has a single unique entry p > 0), and R = pl,, (as above, the matrix of correlations has a
single unique entry). We say that A1, Ay ~ pER(p).

R;; = Corr(A(M, A®)) =

4 Model Extensions

4.1 Weighted Models The single graph models in Section 3.1 can be extended to weighted graphs
trivially. For example, in the a priori SBM, each distinct community of edges within the graph, simply
take the corresponding entries of the adjacency matrix A;; to take distribution F;; with parameters 6;;.
Adding additional structure to F;; allows the parameters 6; ; to be estimable for a single graph. In
particular, we will be concerned with the Truncated-Normal SBM, where:

Aij;ﬁ‘ = k,%j =1,0k g TN(ak’l)

Where 0}, = (k1 0'1%,1, miny ;, maxy ;) are the parameters associated with the k, I block of edge weights.

4.2 Degree-Corrected Models In the standard SBM defined in Section 3.1.2, the degree of a vertex,
or the expected number of edges incident to a vertex, is constant within each block. Thus, vertices with
same block assignment are stochastically equivalent to each other, which can limit practical applications
[52]. In degree — corrected SBM (DCSBM), there is an additional “promiscuity” parameter that allows
vertices within blocks to have heterogeneous expected degree distributions.
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Similar to the standard SBM, the a priori DCSBM is parameterized by a vertex assignment vector
7e{l,-, K}", asymmetric K x K block connectivity probability matrix B with entries in [0, 1]%*¥ and
the degree correction (“promiscuity”) vector 6 ¢ R". The degree correction vector is constrained such
that Y7 6;1(7; = k) = 1 for k € [ K] where I is an indicator function. The model is A ~ DCSBM,,(7, B, 6)
if A has entries A;; ~ Bernoulli(6;,0; By;) where k = 7;,1 = 7;, for i,j € [n], and k,l € [K]. The a
posteriori DCSBM model is additionally parameterized by a block membership probability vector 7 =
[71,...,7k]". The modelis A ~ SBM,, (7, B, 0) if A has entries A;; |k = 7;,1 = 7; ~ Bernoulli(6;6; By),
where 7;~ Multinomial(7) for i € [n].

5 Algorithms In this section, we introduce algorithms for statistical analysis of networks. Section
5.1 provides an overview of algorithms for a single graph and Section 5.2 provides an overview of
algorithms designed for multiple graphs.

5.1 Single Graph Algorithms

5.1.1 Adjacency and Laplacian Spectral Embedding (ASE, LSE) Given an undirected graph with
adjacency matrix A, the adjacency spectral embedding (ASE) and Laplacian spectral embedding (LSE)
construct a representation of the vertices of the graphs into d dimensions via its eigendecomposition,
given by A = USUT where U ¢ R™" is the orthogonal matrix of eigenvectors and S ¢ R™" is a
diagonal matrix containing the eigenvalues of A ordered by magnitude, such that [S11| > [Sga| > ... >
|Snn|- The ASE of the graph into R is defined as ASE(A) = X = UJS|"/2, where U € R™*? contains
the first d columns of U, which correspond to the largest eigenvectors, and S ¢ R¥? is the submatrix
of S corresponding to the d largest eigenvalues in magnitude. The LSE, of A is defined in a similar
manner using the normalized Laplacian of the graph defined as L = D~'/2 AD~'/2 where D ¢ R™" is
a diagonal matrix with entries D;; = 3>; A;;. Then, the LSE of the graph is given by LSE(A) = ASE(L) =
X e R,

In the case of directed graphs, the eigendecomposition is not available since adjacency matrix is not
symmetric, so instead we use the singular value decomposition of the adjacency matrix as A = USV',
where U,V € R™*" are orthogonal matrices containing the left and right singular vectors, and S € R™*"
is a non-negative diagonal matrix with the singular values. The ASE of a directed graph results in
two different latent position matrices X = US'/2 and Y = VS!/2, denoted in and out latent positions,
respectively, where U,V e R™? contain the d columns of U and V corresponding to the d leading
singular vectors, and S is the submatrix of S containing the d leading singular values. While there
exists many definitions for directed normalized Laplacian, we define it as L = DY/2 A O~'/2 where
D;; = ¥; Aij and O;; = 3, Aj; are the in and out degree diagonal matrices [82]. The LSE of directed
graph processed similarly to that of directed ASE.

Spectral embedding is the first step in many subsequent inference tasks. For example, spectral
clustering for community detection (Section 5.1.4) can be achieved via Gaussian Mixture modeling on
X from either ASE or LSE. The resulting cluster assignments can further be used to estimate the
parameters for a posteriori SBM.

For real data, the true embedding dimension d is often not known and must be estimated. A general
methodology for choosing the embedding dimension d is to examine the scree plot of the singular values
of A and look for an “elbow” or a “big gap”. While many methods for choosing the threshold exist
[21, 50], we consider the method in [122] when applying any spectral embeddings in real data. Given
A =USUT for either ASE or LSE, the eigenvalues in |S| are used to estimate the embedding dimension
d by maximizing the profile likelihood function, which determines the magnitude of the “gap” after first
d largest eigenvalues. Multiple elbows can be found by discarding the d number of largest eigenvalues
and repeating the process with the remaining eigenvalues. For applications in connectomics, we only
consider [log n] largest eigenvalues as input to the profile likelihood function and take the second elbow
as the estimate of d.

11



5.1.2 Diagonal Augmentation Many connectomes have no self-loops, resulting in all zero in the
diagonal entries of the adjacency matrices. When computing spectral embeddings of graphs, the zero
diagonal results in increased errors in estimation [101]. Furthermore, the sum of eigenvalues of the
adjacency matrices is zero, leading to an indefinite matrix, which violate assumptions of the statistical
models such as RDPG.

Diagonal augmentation (diag—aug) is a method for imputing the diagonals of adjacency matrices
from graphs with no self-loops [66, 87, 101]. The diagonals are imputed with with the average of the
non-diagonal entries of each row, which corresponds to the degree of each vertex divided by n — 1.
In the case of directed graphs, the average of in and out degree is used. Specifically, the diagonal
augmented adjacency matrix is defined as A = A +D where A € R, D ¢ R™™" is a diagonal matrix
with entries (A1 + 1A)/2(n - 1) where 1 ¢ R™ is a row vector of ones. To achieve best embedding
estimation, the diagonal entries of adjacency matrices should be imputed prior to ASE (in LSE, the
diagonals are imputed via the normalized Laplacian).

5.1.3 Pass-To-Ranks (PTR) Connectomes have often weighted edges, which can take on arbitrary
values. Rescaling and normalizing the edge weights has been shown to increase reliability and can
improve estimation of spectral embeddings [53]. Pass-to-ranks (PTR) is a method for rescaling the
positive edge weights such that all edge weights are between 0 and 1, inclusive.

Given an adjacency matrix A € R™*", let R(A;;) be the “rank” of A;;, thatis, R(A;;) = kif A is
the k' smallest number in A. The rescaled adjacency matrix, A, is defined as follows:

R(Aij) . -
Aij={ m A >0,

0 otherwise,

where | E| is the number of non-zero edges. Ties in rank are broken by averaging the ranks. For spectral
embedding of weighted connectomes, they are first normalized via PTR, then the diagonals are imputed
via diag-aug prior to ASE (diag—aug is skipped for LSE).

5.1.4 Spectral Clustering for Community Detection One of the most common uses of spectral
clustering is for community detection, in which the vertices with similar connectivity patterns are grouped
together. Given the embeddings of a graph from either ASE or LSE, classical Euclidean clustering of
X results in community structure. Central limit theorems for spectral embeddings of many statistical
models (e.g. SBM, RDPG) suggest Gaussian Mixture modeling (GMM) for clustering (see Section 6.1).

The true number of clusters, K, is often not known in real data, but can be estimated by maxi-
mizing likelihood functions penalized by model complexity. Commonly used functions include Bayesian
Information Criterion (BIC), Akaike Information Criterion (AIC), and Minimum Description Length (MDL)
[3, 80, 88]. By default, we use penalized likelihood via BIC to estimate K [77]. In practice, various
covariance types and initialization methods for GMM, and number of clusters are swept over to compute
best estimated number of cluster, & [10, 89].

5.2 Multiple Graph Algorithms

5.2.1 Omnibus Embedding Consider a sample of m observed graphs (), G ... G(™) and their
associated adjacency matrices, A(l),A(Q),...,A(m) e R™"™ with n vertices that are identical and
shared across all graphs. Under the JRDPG model, OMNT is a consistent method (see Section 6.2.1)
for simultaneously estimating the latent position matrices for each graph by computing the spectral
embedding into d-dimensions on the omnibus matrix, O € R as defined below

A %(A(l) +A(2)) %(A(l) +A(m))
o- %(A(Q) +A(2)) A2 (A(2) +A(m))
%(A<m>'+A(1>) %(A<m>'+A<2)) A(m)
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The embeddings gives the matrix

X(l)
) - (2)
Z=ASE(0) = | X " [ermne

X(m)

where the first n rows are the latent positions corresponding to A so on and so forth.

5.2.2 Multiple Adjacency Spectral Embedding (MASE) MASE is a consistent method for estimation
(see Section 6.2.1) of underlying parameters for each graph under the COSIE model [7]. MASE is a is a
three step process:

1. Each adjacency matrix, A® is embedded into d dimensions via ASE, and the matrix U =
[ASE(A(M),ASE(A™®), ..., ASE(A(™))] ¢ R™*¥™ s the concatenated matrix of spectral em-
beddings.

2. Calculate the singular value decomposition of U = VSW, and let V € R be the matrix
containing the d singular vectors corresponding to d largest singular values. V is the estimated
shared common subspace matrix.

3. Individual matrices are estimated via R® = V' A®) V where R(?) ¢ R4,

5.2.3 Spectral Clustering for Community Detection Similar to the procedure described in Section
5.1.4, one can also perform spectral clustering in the multi-graph setting. Clustering is performed on the

the average latent position matrix, X := % > X(Z , in JRDPG model and the vertex subspace matrix,
V in COSIE model. The clustering procedure proceeds identically as described in Section 5.1.4.

5.2.4 Seeded Graph Matching (SGM) Consider two graphs G(1) and G(?) with n vertices and their
associated adjacency matrices A and B, respectively. The graph matching problem seeks to find
an alignment of nodes between these two graphs that minimizes the number of edge disagreements.
Formally, it is defined as the following optimization problem:

(5.1) min |[AP-PB|3%
st. PeP

where P is the set of permutation matrices in R™*". Seeded graph matching (SGM) is a modification of
the graph matching algorithm, allowing for the specification of seed sets Wy, W5 with seeding ¢ : W; —
Ws, and solved via fast approximate quadratic assignment (FAQ) [108]. As the seeded graph matching
problem is computationally intractable, SGM provides an approximate solution by relaxing the feasible
region from P to D, the set of doubly stochastic matrices. The algorithm is provided below:
1. Initialize at some P(?) € D, where D is the set of doubly stochastic matrices. Typically, initial-
ization is chosen as P(?) = 117 /n, where 1 denotes the n-vector of all ones.
2. while stopping criteria not met do
(a) Compute the gradient Af (P(*))
(b) Compute the search direction Q) ¢ argmax (tr(Q” Af(P(?))) via Hungarian Algo-
rithm
(c) Compute step size a® ¢ argmax(f(a(® P® +(1 - a(D) Q™))
(d) Update PU*D) := o) PO (1 - o(D) QW
3. Compute P ¢ argmax (tr(PTP(/™"4D)) via Hungarian Algorithm

6 Theory for Statistical Models In this section, we provide general outlines of the theorems and
proofs for statistical models in Section 3 and algorithms in Section 5.
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6.1 Theory for Single Graph Models Graph features, such as the ones described in Section 2.2, are
popularly used to test hypothesis about a graph. However, the distribution of such features is usually
unknown, and even in cases where the asymptotic distribution is available, one needs to proceed with
caution as some of the asymptotic results might be misleading [74]. [84] studies the behavior of two
simple graph features, namely, the number of edges and the maximum degree, for testing a simple
hypothesis question about the distribution of a graph. While the statistic based on the number of edges
achieves a higher power in the limit as the number of vertices grows, a comparative power analysis
shows that even for large graphs with n < 10%*, the statistic based on the maximum degree dominates
under certain cases.

A body of existing results in statistical inference for spectral embeddings is reviewed more deeply in
[11]. We summarize next some of the main results related to the exposition in this paper. In this section,
we assume that a sequence of random adjacency matrices {A,,,n > 1} generated from a sequence of
latent positions {X,,,n > 1}, where A,, ~ RDPG(X,,), n > 1 is the adjacency matrix of a graph with n
vertices, and X,, € R™*¢ are d-dimensional latent positions. We write (X,,); to represent the i-th row of
X, and we assume that the rows of X,,, which correspond to the latent positions, are an i.i.d. sample

(X1),...,(X)n & F, where F is a distribution with support X c R%. We also assume that the second
moment matrix A = E[(X,,)1(X,)]] € R¥¢, has non-zero eigenvalues. We use X,, = ASE(A,,) € R™*¢
to denote the d-dimensional adjacency spectral embedding of A,,, and X, = LSE(A,,) to denote its
d-dimensional Laplacian spectral embedding.

The adjacency spectral embedding (ASE) method described in Section 5.1.1 is a consistent and
asymptotically normal estimator for the latent positions of a random dot product graph. In [94], it is
shown that clustering rows of the ASE of A,, can consistently recover the communities of an SBM.
Consistency of the latent positions for an RDPG is studied in [63, 65, 95]. In particular, Theorem 5 of
[65] shows that with probability tending to one, there exists some orthogonal rotation W,, € R%*¢ such
that

Cd'?log?n
VO

where C' > 0 is a constant, and hence, the rows of of X, converge to the rows of X,,, up to some
orthogonal rotation, as the number of vertices n grows.

Distributional results on the rows of the adjacency spectral embedding show that the error in esti-
mating the true latent positions is asymptotically normally distributed. In particular [12] showed a central
limit theorem for the rows of the ASE of A, in which the latent positions are shown to converge to a
mixture of standard multivariate normal distributions, that is, for any z € RY,

(6.1) JEEOP(\/H(XRWH—X)Z.SZ):Lé(z,E(x))dF(x),

max [(Xn)i = W (Xan)i <

where ®(z,3(x)) is the cumulative distribution function of a multivariate normal distribution with mean
zero and a covariance matrix X(x) € R% that is a function of x ¢ X (see [12], Theorem 1, for an
expression of this covariance matrix).

Similar results to the ones presented above are also available for the Laplacian spectral embedding
(LSE). In particular, Theorem 3.1 of [99] provides an an asymptotic result on the estimation error of the
rows of X,, with respect to its population version, and Theorem 3.2 shows an analogous result to the
one presented in Equation (6.1) to establish the asymptotic normality of the rows of this estimator, that
is,

lim P \/ﬁ Wn(in)z_ (Xn)l

<zy= | ®(z,3(x)) dF(x),
e \/Z](XTL)Z(XTL)_] '[X
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for some covariance matrix 3(x) which its exact form is presented in [99].
The consistency and asymptotic normality of ASE and LSE considered in this section have been
recently extended to the GRDPG model (see Theorems 5-8 in [83]).

6.2 Theory for Multiple Graph Models

6.2.1 Spectral Embeddings The results discussed before have been used to develop valid statistical
tests for two-graph hypothesis testing questions. The work of [97] studies a semiparametric graph
hypothesis testing for the equivalence between the latent positions of the vertices of a pair of graphs.
Formally, for each fixed n let X,,,Y,, ¢ R™? be a sequence of latent positions matrices, and define
A, ~ RDPG(X,), B,, ~ RDPG(Y;,) as independent random adjacency matrices. The problem of
testing the equality of the distributions of A,, and B, is defined as

Hg : X, =W Y, VS. HZ : X, W Yn,

where X,, =w Y, denotes that X,, and Y ,, are equivalent up to an orthogonal transformation W € Oy,
and Oy is the set of d x d orthogonal matrices. To define the test statistic, denote X,, = ASE(A,,),

Y,, = ASE(B,,), and for a matrix A € R™" with singular values o1(A) > ... > 0,(A) > 0 and largest
observed degree §(A) = maX;e[,] 2 7-1 Aij, define

0d(A) —04+1(A)
3(A) '

Y(A) :=
Define T}, as the test statistic

. minWeOd Hxnw_?nHF
Ay (AL A (B,)

It is shown in Theorem 3.1 of [97] that T}, is a consistent test for the hypothesis testing problem de-
scribed above, in the sense that for any significance level « and C' > 1, then P(T,, > C) < a forn
sufficiently large under H{ (type | error control), and if lim,, . minweo, [ X, W =Y, |r = oo, then
P(T,, > C) - 1 under H] (i.e., the type Il error vanishes). For specific assumptions and some exten-
sions to other hypothesis testing problems, the reader is referred to [97] and [11].

When the vertices of the graphs are not necessarily aligned (including cases in which the graphs
do not have the same number of vertices), testing equality of latent positions is inappropriate. The work
of [98] proposes a nonparametric test to determine whether the distribution of the latent positions of
the graphs is the same. For a pair of matrices X,, ¢ R™? and Y,, €™*¢ with their rows distributed
as (X,,): "9 F and (Yom)i " G and a pair of independent adjacency matrices A,, ~ RDPG(X,,),
B,, ~ RDPG(Y,) , the nonparametric graph hypothesis testing problem is given by

Ho:F LG VS. Hy: F <G,
where F' L G indicates equality of the distributions up to an orthogonal transformation. To test such

hypothesis, [98] proposes to use the following test statistic

U (X, Y) =ﬁ S R(XL X)) - — 3 S k(X1 V)

(n-1) 5% i=1 k=1

1
+—— ) k(Y V1),
m(m—1) ;c

where k : X x X - R is a positive definite kernel. In [98], Theorem 1, it is shown that U,, ,,,(X,Y) is
a consistent and unbiased estimate of the maximum mean discrepancy [44] between the distributions
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F and G. Furthermore, under the null hypothesis, the quantity (m + n)U, (X,Y) converges in
distribution to an infinite weighted sum of independent chi-squared random variables as n,m — oo,
provided that —— — p € (0, 1). Moreover, when the latent positions are used in place of the true latent
positions, then Theorem 4 of [98] shows that the difference between U, ,,,(X,Y) and U, .(X,Y)
converges to zero sufficiently fast to yield a consistent test procedure.

The work of [58] studies the omnibus embedding described in Section 5.2.1 under the joint random
dot product graph (JRDPG) model, where (A ... A(™) «~ JRDPG(X,), and the rows of X,, ¢
R™? are an i.i.d. sample from some distribution F. Let O € R"™*™" be the omnibus embedding of
AW A and Z = ASE(O) € R™?. Under this setting, it is shown in Lemma 1 of [58] that the
rows of Z, are a consistent estimator of the latent positions of each individual graph as n — oo, and
that

Cy/ml
62 e 1) o = Wa(Xa)i H_W

Furthermore, a central limit theorem for the rows of the omnibus embedding asserts that
(6.3) T}g{}op {\/E(WTL(/Z\YL)(j—l)’nA-’L' - (Xﬂ)l) < Z} = L (I)(Z7 i\)(X)) dF(X)v

for some covariance matrix ¥(x) (see Theorem 1 of [58] for an exact expression). In recent work,
[29] extended the study of the omnibus embedding and provided results analogous to the ones in
Equations (6.2) and (6.3) under a more general model that allows for differences in the latent positions
of each graph.

The COSIE model described in Section 3.2.2 describes multiple networks with expected probability
matrices that share the same common invariant subspace. It is shown in [7] that the MASE algo-
rithm (see Section 5.2.2) is a consistent estimator for this common invariant subspace, and produces
asymptotically normally distributed estimates for the individual symmetric matrices. Specifically, let
V,, € R™ be a sequence of orthonormal matrices and R(l) ...,R(m) e R™4 3 sequence of score
matrices such that P = V, R" VT ¢ [0,1]>", (AD, ... A(m)) COSIE(V,.;, RV, ..., R(™),

and V, R( ) R( ) be the estimators obtained by MASE. Under appropriate regularity condltlons

(see Theorem 3 of [7]), the estimate for V is consistent as n, m — oo, and there exists some constant
C > 0 such that

—~ 1 1
E[min \v-va]gc( —+—).
WeOd

mn n

In addition, the entries of f{g), [ € [m] are asymptotically normally distributed. Namely, there exists a
sequence of orthogonal matrices W such that

! (ﬁff) W ROW 4 Hfj}) S N(0,1),
Ol,4,k ik

as n — oo, where E[| HY ] = O(\%) and Ulz,j,k = O(1). For a precise statement about the joint
distribution of the entries of R(f), see Theorem 7 in [7].

6.2.2 Graph Matching for Correlated Networks Given a pair of graphs A,, and B,, with n vertices
each, the graph matching problem tries to find a correspondence between their vertices. A body of
literature has studied the feasibility of finding the correct matching under different random graph models,
including correlated Erd6s-Rényi [28, 62] and Bernoulli graphs [60]. In this section we review some of
the results for the correlated Erd6s-Rényi model described in Section 3.2.3.
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Formally, given parameters p,, € [0,1] and g, € (0,1-¢&;) for some small £; > 0, the n x n adjacency
matrices A,, and B,, are distributed as correlated Erdds-Rényi if their marginal distributions are A,, ~
ER,.(gn), Bn ~ ER,(¢y,), but the edge pairs satisfy Corr((A,,)i;, (Q), Brn Qn)ij) = pn, Where Q, € P,
is a permutation matrix that gives the correct alignment between the vertices (here P, denotes the
set of n x n permutation matrices). The work of [62] studies the feasibility of finding Q,, by solving
the optimization problem defined in Equation (5.1). In particular, it is shown that there exists positive

constants ¢y, ¢ such that if p, > cn/lo% and ¢, > c2

probability 1 for n sufficiently large (Theorem 1 of [62]).

While the solution of the quadratic assignment problem (5.1) can correctly recover the vertex align-
ment in theory, it is computationally challenging to solve the optimization problem. In the presence of s,
seed vertices with known correspondence between the graphs, [62] introduced an efficient polynomial
algorithm to recover the alignment of the remaining n — s,, vertices. Theorem 2 of [62] shows that this
method can correctly recover Q,, in the setting where & < p, <1-£& <1 and & < p, < & for some
& > 0 in the presence of a logarithmic number of seeds (i.e. s, > c3logn for some c3 > 0).

logn
n

, then Q,, can be correctly recovered with

7 Data Descriptions The following two datasets are analyzed using the algorithms and models de-
scribed Sections 3 and 5. Section 8 primarily focuses on the Drosphila connectome, while Section 9
primarily focuses on HCP connectomes.

7.1 Drosphila Larval Mushroom Body Data Description The connectome was estimated from
serial-section electron microscopy (EM) of an L1 Drosophila larva [32]. For the mushroom body (MB)
subcircuit, the graph was defined by manually identifying synapses in the EM volume, and tracing the
pre- and post-synaptic partners through the EM volume back to their cell bodies. Each node in this
graph represents an individual neuron, and each edge consists of one or more synapses between
those neurons. Thus, edge weights are the number of synapses between neurons.

Each node in the graph also has an associated cell type: Kenyon cell (KC), projection neuron (PN),
MB input neuron (MBIN), and MB output neuron (MBON). Additionally, we can categorize neurons
based on hemisphere (which side of the brain each neuron was on), and neuron pair (for most neurons,
a homologous pair neuron in the other hemisphere was identified by morphological comparison).

7.2 HCP Data Description We used publicly available diffusion MRI (dMRI) and structural MRI (sMRI)I
data from the S1200 (2017) release of the Human Connectome Project (HCP) Young Adult study, ac-
quired by the Washington University in St. Louis (WUSTL) and the University of Minnesota (Minn)
[103, 104]. Out of the 1206 participants released, 1059 had viable dMRI for processing.

Connectomes were estimated using the ndmg pipeline [53]. Briefly, the dMRI scans were pre-
processed for eddy currents using FSUs eddy-correct [92]. FSLs “standard" linear registration
pipeline was used to register the sMRI and dMRI images to the MNI152 atlas [51, 68, 92, 115].A
tensor model is fit using DiPy [38] to obtain an estimated tensor at each voxel. A deterministic tractog-
raphy algorithm is applied using DiPy’s EuDX [38, 39] to obtain streamlines, which indicate the voxels
connected by an axonal fiber tract. We used a modified version of Desikan—Killiany—Tourville (DKT)
parcellation [55] to define the ROls. Graphs are formed by counting the number of fibers between a
pair of ROls.

8 Applications for Single Graph Data In this section, we explore the applications of the single graph
models in Section 3.1 and the algorithms in Section 5.1. The Drosophila mushroom body connectome
and HCP data are analyzed (see Sections 7.1 and 7.2 for description) along with simulated examples.

8.1 Testing for Differences between Communities of Edges In Figure 6, we compare a number of
different strategies using Fisher’'s exact test [35] for testing whether there exists a difference between

K = 2 communities, or groups, of edges in a graph. Formally, let eg.“) ~ F} be a single edge in the
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graph, where k € {1,2} is a community of edges, for i, j € [n]. Our hypothesis test of interest is:
Hy:Fi=F,, H,:F|+F,

We simulate graphs from the homophilic planted partition SBM from Section 3.1.2 and symmetric ho-
motopic SIEM from Section 3.1.3 in Figure 61.(A). Under the given models, our hypotheses simplify to
testing whether p; = p2 against p; # pa; that is, whether or not there exists a different probability for
each edge community. Effect size, or the difference in probability between the two communities, for the
SBM and the SIEM are varied linearly from 0 to 0.1, and from 0 to 0.5, respectively. A relative effect
size of 0 corresponds to an ER graph, in which F} = F5; at all other relative effect sizes, the alternative
is true. We measure performance using the statistical power at o = 0.05 in Figure 61.(B). Across the
simulation settings, we see that Fisher’'s exact test provides an appropriate statistical test and provides
sufficiently high power with large enough effect size and graph. Importantly, Fisher’s test displays both
empirical validity (at an effect size of zero, the power is at most «) and empirical consistency (the test
power converges to 1 as the effect size increases) in both simulations.

We demonstrate our techniques developed above on the Drosophila mushroom body, with n = 319
vertices in the left or right hemisphere (2 vertices located along the center of the brain are excluded).
In Figure 611 we investigate the appropriateness of different unweighted independent edge models for
the Drosophila mushroom body. Our goal is to identify whether the unweighted Drosophila mushroom
body display homophilia (that is, the within hemisphere blocks have greater connectivity than between
hemisphere blocks) or homotopia (that is, edges incident bilateral vertices have a different distribution
from edges incident non-bilateral vertices). Figure 611.(A) shows the unweighted Drosophila mushroom
body. The within-hemisphere blocks appear to have a higher proportion of edges than the between-
hemisphere edge blocks, shown in Figure 611.(B). There is strong evidence that the within-hemisphere
connectivity exceeds the between-hemisphere connectivity (Fisher’'s exact test, p-value=0.0). Next, we
investigate whether the graph is homotopic; that is, whether bilateral (homotopic) connectivity exceeds
non-bilateral (heterotopic) connectivity, in Figure 6l1.(C). Strong evidence is present that homotopic
connectivity exceeds heterotopic connectivity (Fisher’s exact test, p-value=0.0).

Finally, we explore the appropriateness of various independent edge models for diffusion connec-
tomes from the HCP Dataset. The diffusion connectomes are binarized according to whether an edge is
present (the edge weight is greater than zero) or absent (the edge weight is zero). Figure 6lIl.(A) shows
the average unweighted diffusion connectome over all participants in the study. Figure 6lIl.(B) shows
the distribution of edge-weights within-hemisphere versus between-hemisphere. The diffusion connec-
tomes appear to possess homophily; i.e., high within-hemisphere connectivity, with lower between-
hemisphere connectivity. This is demonstrated by the fact that in all N=1059, the within-hemisphere
connectivity exceeds the between-hemisphere connectivity. This effect can be observed by looking at
the difference between within-hemisphere connectivity and between-hemisphere connectivity for each
of the N = 1059 connectomes, shown in 6lI.(C). All 1059 diffusion connectomes have significantly
higher within-hemisphere connectivity than between-hemisphere connectivity at o = .05 after Bonfer-
roni correction (Fisher’s exact test, N = 1059, maximum p-value< 1072°).

8.2 Testing for Differences Between Communities of Weighted Edges In Figure 7, we investigate
the appropriateness of different SIEM for the weighted Drosophila connectome, similar to Figure 6. Our
goal is the same as previously; ie, to identify whether within-hemisphere connectivity exceeds between-
hemisphere connectivity. Figure 7(A) shows a comparison of the within and the between-hemisphere
edge blocks. The within-hemisphere edge blocks appear to have a higher proportion of non-zero edges
than the between-hemisphere edge blocks. This effect is significant, with the interpretation that within-
hemisphere connectivity exceeds between-hemisphere connectivity at o = .05 (Mann-Whitney Wilcoxon
Test, n = 103041, p-value= 0.0). Figure 7(B) shows a comparison of the homotopic and heterotopic edge
blocks. The homotopic edges appear to have a higher proportion of non-zero edges with smaller edge
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Figure 6: Comparing communities of edges in graphs. 1.(B) Fisher’s exact test shows reasonable statistical
power across both homophilic and homotopic block structures in I.(A), with power converging to 1 as effect size
and number of vertices grow. II.(B) and Il.(C) the Drosophila mushroom body in Il.(A) shows both homophilic
planted partition and homotopic structure (Fisher’s exact test, p-values= 0). lll.(B) and llI.(C) all N = 1059 HCP
diffusion connectomes show homophilic planted partition structure, with within-hemisphere connectivity exceed-
ing between-hemisphere connectivity (Fisher’'s exact test, N = 1059, Bonferroni corrected p-values< 10721).
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Figure 7: Goodness of fit of homophilic and homotopic SIEM for weighted Drosophila mushroom body.
(A) A comparison of the homophilic communities as determined by the hemispheres of incident vertices. The
relative heights of the bars are normalized by the square root of the proportion due to the fact that the substantial
majority of edges in both communities have a weight of 0. Within-hemisphere edges appear to have greater con-
nectivity than between-hemisphere edges. Within-hemisphere edges show significantly higher connectivity than
between-hemisphere edges (Mann-Whitney Wilcoxon Test, n = 103041, p-value= 0.0). (B) A comparison of the
homotopic edge communities, where homotopic edges are those that are incident a bilateral pair of vertices. Ho-
motopic edges appear to have greater connectivity than heterotopic edges. Homotopic connectivity significantly
exceeds heterotopic connectivity (Mann-Whitney Wilcoxon Test, n = 103041, p-value= 0.0).
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Figure 8: Goodness of fit of homophilic SIEM for diffusion connectomes. (A) The average diffusion con-
nectome over N = 1059 connectomes with n = 70 vertices from the HCP dataset shows that diffusion connec-
tomes appear to be homophilic, with higher within-hemisphere connectivity than between-hemisphere connectiv-
ity. Hemisphere annotations are provided for regions in the left and right hemispheres. Within-hemisphere edges
are edges whose vertices are both located in the same hemisphere of the brain (the on-diagonal blocks). (B)
Density estimates for the within-hemisphere and between-hemisphere edges for each of the N = 1059 connec-
tomes. Homophily is tested per-graph using the Mann-Whitney Wilcoxon Test to detect whether the on-diagonal
blocks have higher connectivity than the off-diagonal blocks. All N = 1059 diffusion connectomes have signif-
icantly higher within-hemisphere connectivity than between-hemisphere connectivity after Bonferroni correction
at o = .05, and the maximum corrected p-value is on the order of 1072*.

weights, and a similar proportion of non-zero edges with larger edge weights. Homotopic connectivity
significantly exceeds heterotopic connectivity at a = .05 (Mann-Whitney Wilcoxon Test, n = 103041,
p-value= 0.0).

In Figure 8 we explore the appropriateness of the SIEM for diffusion connectomes from the HCP
Dataset. Figure 8(A) shows the average diffusion connectome over all participants in the study. Figure
8(B) shows the distribution of edge-weights within-hemisphere versus between-hemisphere. The dif-
fusion connectomes appear to possess homophily; ie, high within-hemisphere connectivity, with lower
between-hemisphere connectivity. To test this observation, we employ the MWW test. All 1059 diffu-
sion connectomes have significantly higher within-hemisphere connectivity than between-hemisphere
connectivity at a = .05 after Bonferroni correction [16].
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8.3 Model Selection for Appropriate Block Structure Recall that in Section 3.1.2, that for the case
of a K = 2 SBM, the matrix B with entries B;,; defines the probability of an edge connecting a vertex
in community k£ with a vertex in community /. By the bias-variance trade-off, simply supposing a unique
entry for each block of B adds an additional level of complexity to the model, and may reduce the
quality of inference, so the ability to make a principled decision when faced with numerous potential
block structures is of importance. Formally, we are concerned with choosing one of the appropriate
block structures from a subset of candidate block structures given in Section3.1.2, presenting a problem
in model selection. Our hypotheses are the alternate candidate models, and our goal is to select the
hypothesis corresponding to the candidate model that is most supported by the data by using the model
with the lowest p-value.

In Figure 9l, we perform simulations where the true graph is either ER, Planted Partition, and
Symmetric Heterogeneous, as shown in Figure 9I.(A). Effect size corresponds to the magnitude of
the difference between disparate blocks in the model. We find that the x? test is an appropriate test
for identification of block structure in unweighted graphs, and successfully recovers the correct block
structure as the effect size and the number of vertices increases. Figure 91.(B) shows the test features
both empirical validity and empirical consistency, as in Figure 6.

In Figure 9ll, we investigate the appropriate block structure for the unweighted Drosophila mush-
room body, which is shown in shows the probability of an edge existing within each block of B, where
the n = 319 vertices in either the left or right hemisphere are partitioned according to hemisphere.
The on-diagonal (Left,Left) and (Right,Right) blocks share a similar distribution that is unique from the
(Left, Right) and (Right, Left) blocks. Because the Drosophila mushroom body is inherently a directed
graph, we investigate whether it is ER, Planted Partition, Asymmetric Homogeneous, Symmetric Het-
erogeneous, or Asymmetric Heterogeneous, using the x? test. Testing indicates that the Drosophila
mushroom body possesses a planted partition structure (y? test, p-value=0.0). This has the interpreta-
tion that the optimal SBM includes a shared probability for the on-diagonal (Left,Left) and (Right,Right)
blocks, and a different shared probability for the off-diagonal (Left,Right) and (Right,Left) blocks. An
important considerations is that while the optimal SBM is symmetric, the graph itself is directed. This
has the implication that while the SBM would posit that edges in the (Left,Right) and (Right,Left) blocks
have the same probability, realizations of the (Left,Right) and (Right,Left) block will not necessarily be
identical.

Figure 9lll investigates the optimal block structure for the N=1059 diffusion connectomes from the
HCP dataset. The figure shows the average connectivity for the 3 possible unique entries of the block
probability matrix B for an SBM where vertices are segmented into communities according to hemi-
sphere: Left-Hemisphere Connectivity, Right-Hemisphere Connectivity, and Contralateral (between-
hemisphere) connectivity. Because the diffusion connectomes are inherently symmetric, the graph is
directionless, and hence it is not possible for the Left, Right and Right, Left blocks to have different
values. We consider 3 possible block structures for the diffusion connectome: ER, Planted Partition,
and Symmetric Heterogeneous. On all N=1059 connectomes, the optimal block structures is Planted
Partition, using the x? test.

8.4 Model Selection for Appropriate Block Structure in Weighted Connectomes In Figure 10, we
investigate the appropriate block structure for the weighted Drosophila mushroom body. 10(l) shows
the distribution of edges associated with each block of B, where the n = 319 vertices in either the left or
right hemisphere are partitioned according to hemisphere. Again, the weighted Drosophila mushroom
body is directed, so assuming symmetry would not be sensible. We investigate whether the Drosophila
mushroom body is ER, planted partition, symmetric heterogeneous, or asymmetric heterogeneous
SBM, using Kruskal-Wallis (KW), Distance Correlation (DCorr), and Analysis of Variance (ANOVA).
Each method identifies the planted partition SBM as the most appropriate block model. This has the
interpretation that the best-fit SBM includes a shared distribution for the on-diagonal (Left,Left) and
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Figure 9: Estimating optimal block structure. 1.(B) x? test is effective for identifying the ideal block structure
across disparate candidate block structures from L.(A), as power improves as both effect size and graph size
increase. Il. The Drosophila mushroom body displays a planted partition structure (x? test, p-value=0.0), where
(Left, Left) and (Right, Right) blocks share a different probability from the (Left, Right) and (Right, Left) blocks. lll.
Similarly, all N = 1059 HCP diffusion connectomes show planted partition structure, with a similar interpretation
to the Drosophila result.

(Right,Right) blocks, and a different shared distribution for the off-diagonal (Left,Right) and (Right,Left)
blocks. An important considerations is that while the best-fit SBM is symmetric, the graph itself is di-
rected. This has the implication that while the best-fit SBM would posit that edges in the (Left,Right)
and (Right,Left) blocks have the same distribution, realizations of the (Left,Right) and (Right,Left) block
will not necessarily be identical.



Identification of Optimal Block Structure for Drosophila Connectome
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Figure 10: Identifying the appropriate block structure of the Drosophila mushroom body. We investigate the
appropriate block structure in the Drosophila mushroom body, with n = 319 vertices in the left or right hemisphere.
Each block corresponds to the proportion of edges with the listed edge weight. As in Figure 7, the proportion
of edges are shown on a scale in which bar height corresponds to the square root of the proportion, due to the
presence of a large number of zero-weight edges. We investigate whether the SBM is ER, planted partition,
symmetric heterogeneous, or asymmetric heterogeneous SBM, using Kruskal-Wallis (KW), Distance Correlation
(DCorr), and Analysis of Variance (ANOVA) for model selection. All approaches identify planted partition SBM as
the best-fit block structure.

In Figure 11, we investigate the appropriate block structure for diffusion connectomes, analogous
to the single graph investigations using the Drosophila mushroom body in Figure 10. Panel (A) demon-
strates the distribution of edges associated with each block of B. Panel (B) shows the fraction of
diffusion connectomes that accept each of the candidate hypotheses, using 3 different approaches for
weighted graph model selection: Kruskal-Wallace [57], Distance Correlation (Dcorr) [96], and Ananysis
of Variance (ANOVA) [36, 86]. Diffusion connectomes tend to display planted partition structure across
all model selection approaches.

8.5 Same Network, Different Communities In the case of 2-block SBMs with positive semi-definite
block probability matrix B = [a, b; b, ¢], there are two structures of interest: affinity and core-periphery.
In affinity structure, a, ¢ > b, that is the within-block connectivity is relatively higher than that of between-
block connectivity. In the core-periphery structure, a > b, ¢, that is one block has relatively higher within-
block connectivity than those of other block’s within-block probability and between-block connectivity.

In this section, we examine the two spectral embedding clustering approaches described in Section
5.1.1 which produce different clusterings depending on the SBM model [20, 77]. In short, ASE clustering
tends to favor core-periphery structure while LSE clustering tends to favor affinity structure.

We consider graphs generated from 4-block SBM with n = 4000 vertices, membership vector 7 =
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Figure 11: Identification of appropriate block structure in diffusion connectomes. We investigate the ap-
propriate block structure in the diffusion connectomes from the HCP Dataset, with n = 70 vertices, and N = 1059
graphs. (A) the empirical distribution of edges for each of the 4 blocks of edges for each between and within-
hemisphere pair for the left and right hemispheres respectively. As the diffision connectomes are inherently
symmetric, the off-diagonal blocks are inherently symmetric. The hypothesized models are that the graph is
ER, planted partition SBM (Plant Part.), or the symmetric heterogeneous SBM (Sym. Het.). (B) The number
of connectomes from the dataset for which the specified candidate model is selected. All methods for selection
of optimal block structure identify diffusion connectomes as planted partition SBM, which has the interpretation
that the optimal structure is to assume that the on-diagonal left and right blocks share a common distribution that
differs from the off-diagonal contralateral blocks. This conclusion holds across all diffusion connectomes within
the dataset.

[0.25,0.25,0.25,0.25], and the block probability matrix

A B C D
A 1r0.01 002 0.01 0.002
B ] 0.02 0.1 0.002 0.015
¢ 10.01 0.002 0.01 0.02
D 10.002 0.015 0.02 0.01

The above 4-block SBM exhibit both affinity and core-periphery structures when projected down to
2-blocks, which are shown below:

AB  CD AC BD
B.. . AB [0.04 0.007] B . AC [0.01 0.01]
affinity = ~p o007 0.04 ] " BD |0.01 0.06

Blocks AB and C'D form By finity, Which exhibit the affinity structure, while blocks AC' and BD form
Beore, Which exhibit the core-periphery structure. A network is sampled from the 4-block SBM model,
and spectral clustering is performed (see Section 5.1.4) with embedding dimension d=2and K =2
number of clusters. Figure 12 shows the spectral clustering results. On the left Figure, clustering
with LSE shows the blocks forming affinity structures are grouped together, and, on the right Figure,
clustering with ASE shows the blocks forming core-periphery structures grouped together. Thus, the
two different spectral clustering methods provide two different groups that are both meaningful.

8.6 Detecting Communities with Spectral Clustering Many of the techniques described above rely
on knowing an a priori grouping of nodes or edges, but in many real-world examples this information is
not available. Additionally, one may seek to discover communities in the network, either for modeling
the network as a block-model or to reveal groups of similar nodes.

As described in Section 5.1.4, one can embed a graph via ASE or LSE and then use GMM to re-
veal communities of nodes. Here, we separately embed both the left and right hemisphere induced
subgraphs of the Drosophila larva connectome using ASE (see [76] for an extensive investigation) with
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Figure 12: Different clustering results from ASE and LSE. For both ASE and LSE, the network was embedded
into d = 2 dimensions, and GMM with K = 2 clusters were fit. The dots represent vertices in the embedded
space and the colors correspond to block memberships. The dashed black ellipses define the vertices that
were clustered into same group. (Left) clustering the embeddings from LSE results in affinity clustering. (Right)
clustering the embeddings from ASE results in core-periphery clustering.

d = 3. GMM was performed independently on both hemispheres, with the clustering assignments and
embeddings shown in Figure 13. Note that while the embedding and clustering of both hemispheres
were performed separately, similar structures emerge for the left and right. In particular, each cluster
is mostly comprised of a single cell type. Thus, spectral clustering can provide neuroscientists to find
meaningful communities when the assignment is not known.

9 Applications for Multi-Graph Data In this section, we explore the applications of the multiple
graph models in Section 3.2 and the algorithms in Section 5.2 using simulated, Drosophila mushroom
body, and HCP connectomes.

9.1 Matching Vertices between Subgraphs For many statistical approaches on graphs, knowing
an alignment or matching between the vertices of one graph and another can be useful. For instance,
if each neuron on the left hemisphere of the brain has a corresponding neuron in the right hemisphere,
then both hemispheres could be jointly embedded and compared using techniques such as OMNT or
MASE. In the case of the mushroom body network, hemilateral neuron pairs were identified for 198 of
the neurons considered in Figure 13, yielding 99 neuron pairs.

Here, we test the ability of graph matching techniques to identify this structure in an unsupervised
manner, based only on the network topology (note that the neuron pairs considered here were based on
both topology and morphology). We perform unseeded graph matching between the subset of left and
right hemisphere neurons for which pairs are known. We restart the algorithm 256 times, and choose
the run with the best objective function value (not matching accuracy). Results are shown in Figure 14.
This matching correctly identified 78.8% (78/99) of neuron pairs, and all incorrectly matched neurons
were matched to a neuron of the correct cell type.

Given a new connectome, where the correspondence between neurons is not known, this method
can provide neuroscientists with a faster and statistically-grounded estimate of neuron pairing.

9.2 Testing for Significant Edges We consider two populations of networks generated from an ER
model and a 2-block Kidney — Egg SBM model. All networks have n = 20 vertices and 7 = [0.25,0.75].
The block probability matrices for each population is given by B(Y) = [p, p; p, p] and B®) = [p+6, p; p, p]
where p = 0.5. The difference between the two population is in the first block, B11, and ¢ is the
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Figure 13: Spectral clustering of the Drosophila mushroom body network. (A) First “in” embedding dimen-
sion is plotted against the first “out” embedding dimension for both the left and right hemisphere networks (note
that the clustering was performed in six dimensions, but only two are shown here for visualization). Each point
represents a neuron, colored by its corresponding cell type. Ellipses show the clusters predicted by Gaussian
mixture modeling, colored according to the cell type with the most neurons in that cluster. (B) Stacked barplots
showing each cluster’s composition in terms of neuron cell type, for both the left and the right hemisphere cluster-
ings. Each cluster is mostly comprised of a single cell type for both left and right hemisphere networks, meaning
that spectral clustering can recover true communities.

magnitude of the difference which ranges from 0 to (1 - p). In other words, § is the effect size. Total
of m networks are sampled (5 networks per population). For each edge, the t-test test statistics is
computed between the two populations, which are then ranked from largest to smallest in magnitude.
Ranking of the test statistics and a cutoff is utilized rather than p-value corrections (e.g. Bonferroni)
to control for false positive rate. In this case, the ten edges with largest magnitudes are considered
since we expect ten edges to be different. Non-parametric tests are not considered since many of them
are based on ranking the underlying data, which is not sensible for binary data. The performance is
evaluated with recall@10, which quantifies the fraction of the top ten ranked edges are indeed the truly
different edges, averaged over 100 repeated trials.

Figure 15(A) shows that when the effect size is small (§ < 0.05), significant edges cannot be de-
tected even at largest sample sizes (m = 1000). On the other hand, when effect size is large (6 > 0.45),
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Figure 14: Graph matching on the Drosophila mushroom body network. All panels show the first two di-
mensions of PCA on the ASE embedding of the mushroom body network (for visualization purposes). Each point
represents a neuron in the network which has a manually identified pair in the opposite hemisphere, and colors
represent the cell type of a given neuron. Lines show the neuron pair that was predicted by graph matching. (A)
All of the correctly matched neuron pairs. 78.8% of neuron pairs (78/99) were correctly matched. (B) All of the
incorrectly matched neuron pairs. Note that all of the incorrectly matched neurons are matched to neurons of the
same cell type.

significant edges can be perfectly detected at relatively small sample sizes (m > 30).

Connectivity in human brains was analyzed using the structural connectomes (Section 7.2). For
each edge, the class conditional mean, which is the estimated connectivity probability, is computed
for females (m = 572) and males (m = 488). The sample sizes and difference in conditional means,
which is the estimated effect size, are used to find the closest recall@10 values from the simulated
experiment, denoted empirical trustworthiness shown in Figure 15(B). Thus, empirical trustworthiness
is the confidence in which one can trust that a significant edge is truly significant. There are 2380
possible total edges in connectomes with 70 vertices, but only 49 edges have trustworthiness > 0.9,
meaning one can only trust significance for small set of edges.

9.3 Testing for Significant Edges in Weighted Networks We consider two populations of networks
generated from a 2 block SBM, except edges are now sampled from truncated normal distribution to
emulate correlation matrices. All networks have n = 20 vertices and 7 = [0.25,0.75]. The block edge
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Figure 15: Performance of finding significant edges in two different populations of networks. (A) Recall
for varying sample size and effect size when comparing two populations of binary networks using t-test. The
color bar represents recall@10 averaged over 100 trials. When effect size is small, significant edges cannot be
detected even at large sample size. When effect size is large, significant edges can be detected at small sample
sizes (m = 1000). (B) Analysis of structural connectomes from the HCP data, and the vertices are organized by
left (L) and right (R) hemispheres. Edge weights are binarized to parallel the simulations. Heatmap shows the
empirical trustworthiness of significant edges when comparing each edge between females and males.

distribution matrices for each population is given by

TN(0,0.25,-1,1) TN(0,0.25,-1,1)

B® _ TN(0+6,0.25 +¢,-1,1) TN(0,0.25,-1,1)
- TN(0,0.25,-1,1) TN(0,0.25,-1,1)

B [TN(0,0.25,—1, 1) TN(0,0.25,-1, 1)]

where TN(u, 02, a,b) denotes a truncated normal distribution with mean 1 and variance o such that
all values are in [a, b]. Total of m networks are sampled (m/2 networks per population). One population
has the same edge weight distribution for all edges, and the second population’s first block edges has
either a different mean, 9, or variance, 0.25 + ¢. For each edge, test statistics are computed with three
different tests: 1) t-test, 2) Mann-Whitney (MW) U test, which is a non-parametric test of medians, and
3) two-sample Kolomogrov-Smirnov (KS) test, which is test of two distributions. Similar to experiment
1, the test statistics are sorted to find the ten most significant edges, and the performance is evaluated
with recall.

Figure 16 shows the results by varying the sample size, mean, and variance. Figure 16 top row
shows that all three tests can identify edges that are different in means, and that no particular test is
superior than another. Figure 16 bottom row shows that only KS test can detect changes in variance
when the means are kept the same. This is because t-test and MW test ultimately test for differences
in centrality (e.g. mean or median), where as KS tests for any differences between a pair of observed
distributions.

Functional connectivity in human brains was analyzed using functional connectomes estimated
using fMRI data from the HCP dataset. In functional connectomes, the edges represent correlations
of changes in blood flow between a pair of ROIs, which is a proxy for correlations of brain activity. For
each edge, the class-conditional mean and the variance of truncated normal distribution are computed
for males (m = 330) and females (m = 407). Networks are then simulated as above using the 2-
block weighted SBM, but the parameters for first block, B11, is substituted with class-conditional means
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Figure 16: Performance of finding significant edges that have different weight distributions. Recall@10 for
each edge when comparing two populations of weighted networks using t-test, Mann-Whitney, and Kolmogorov-
Smirnov tests. The color bar represents recall averaged over 100 trials. (Top row) Results for varying the mean
0 and sample size wile keeping the variance is same (¢ = 0). All three tests perform equally, and can detect
significant edges when edge distributions differ in means. (Bottom row) Results for varying the variance ¢ and
sample size wile keeping the mean same (§ = 0). T-test and Mann-Whitney test cannot detect changes in variance
regardless of the sample and effect size. KS test is the only test that can detect changes in variance.

and variances. The performance is measured with recall@10, denoted empirical trustworthiness in
Figure 17, is measured using KS test. Again, the empirical trustworthiness shows how one can trust

that the edge is truly different. There are 70 vertices with 2380 total edges, but only 256 edges have
trustworthiness > 0.9.

9.4 Testing for Significant Edges Using Communities in Binary Networks In previous Section
9.2, the community structure was ignored even though the generative process produced two communi-
ties. In the following experiment, the community assignments are used to test whether all edges within

a community or across communities are significantly different. Formally, the following hypothesis test is
considered:

HO : P[BZ] ’Y = 0] = ]P)[BZ] ’Y = 1]

Hy: P[Bi; [Y = 0] #P[By; [Y =1]
where P[B;; |Y = y] denotes class-conditional distribution of edges that belong to community i and 7,
and i,j € [K] where K denotes the number of communities. When i = j, the edges are incident to

vertices that belong to the same community. When i + j, the edges are incident to vertices that do not
belong in the same community. In this setting, a total of w null hypothesis are tested.
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Figure 17: Functional connectomes are derived from the HCP data. Vertices are defined by Desikan parcellation
into 70 ROIs, and are organized by hemisphere, denoted left hemisphere (L) and right hemisphere (R). Edge
weights are correlations represent correlation of brain activity between a pair of ROIs. For each edge, the class-
conditional means and the variances for females (m = 407) and males (m = 330) are computed, which are used to
simulate weighted 2-block SBM. Recall@10, denoted empirical trustworthiness, is measured from test statistics
using KS test. Out of the 2380 total edges, only 256 edges have trustworthiness > 0.9.

We consider two populations of networks with the connectivity probability matrices as below,

g _|P P| g _|ptd P
p p|’ p p

with n = 50 vertices, and membership vector, 7 = [0.5,0.5]. Total of m networks are sampled (m/2
networks per population). Since K = 2, community assignment results in three sets of edges, two within
communities and one across communities. The t-test statistic was computed for each set of edges,
and significant edges are identified by the hypothesis test that resulted in largest test-statistic. The
performance is measured by precision, which measures false positive rate, and recall, which measures
true positive rate.

Figure 18 shows the results of using t-test as the effect size is changed using known and estimated
community assignments. When the community assignment is known a priori, significant edges can
be perfectly detected with no false positives at low sample sizes (m = 10) and effect size (6 > 0.05).
However, estimating community assignments results in large number of false positives edges as shown
in precision plots for both JRDPG and COSIE models since recovery of community assignments is
correlated with magnitude of the effect size. When effect size is small, communities cannot be reliably
recovered for both JRDPG and COSIE models, which results in false positive tests. As effect size
increases, community recovery improves and the number of false positive edges decrease at effect
size (6 > 0.2).

9.5 Testing for Significant Edges Using Communities in Weighted Networks We consider weightedl
2-block SBM similar to that of Section 9.3, but with n = 50 vertices, membership vector, 7 = [0.5,0.5],
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Figure 18: Performance of finding significant edges using either known or estimated community struc-
ture. Precision (top row) and recall (bottom row) for significant edges using t-test on sets of edges from within
community or across communities averaged over 50 trials. (Left column) shows the precision and recall when
using true community assignments. At low sample sizes (m = 10) and low effect size (§ > 0.05), community wise
testing results in perfect precision and recall. (Middle column) shows the results for using community assign-
ments estimated under the JRDPG model. (Right column) shows the results for using community assignments
estimated under the COSIE model. Since recovery of community assignment is related to the effect size, spec-
tral clustering results in misclassified vertices. As a result, precision is low at effect sizes < 0.2. As effect size
increases, the communities become more identifiable, and results in increased precision for JRDPG and COSIE
models. However, COSIE model requires larger effect size to reach precision > 0.95.

and block edge distribution is as below:

g _ [ TN(0,0.25,-1,1)  TN(0,0.25,~1,1)
~ | TN(0,0.25,-1,1) TN(0,0.25,-1,1)

B® _ TN(0+6,0.25+¢,-1,1) TN(0,0.25,-1,1)
- TN(0,0.25,-1,1) TN(0,0.25,-1,1)

We proceed with the same experiment as that of Section 9.4, while changing the means (9) or the
variances (¢). The community assignment is estimated using OMNI under JRDPG model and MASE
under COSIE model. The KS test statistic was computed for each set of edges, and significant edges
are identified by the hypothesis test that resulted in largest test-statistic. The performance is measured
with precision and recall.

Figure 19 shows the results when varying the mean (§) and Figure 20 shows the results when
varying the variance (¢). When the community assignment is known a priori, significant edges can be
perfectly detected with no false positives at low sample sizes (m = 10) and effect size (6 > 0.1, ¢ > 0.12).
When means are changed, communities can be perfectly recovered under JRDPG model, but commu-
nities cannot be reliably recovered under COSIE model. When the edge distributions are different by
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Figure 19: Precision (fop row) and recall (bottom row) for significant edges using K-S test averaged over 50 trials.
Effect size (x-axis) is the difference in means of the truncated normal distribution for By ;. (Left column) shows
the precision and recall when using known community assignments. At low sample sizes (m = 10) and low effect
size (§ > 0.1), community wise testing results in perfect precision and recall. (Middle column) shows the results for
using community assignments estimated under the JRDPG model. Even at low effect size (§ > 0.15), communities
can be perfectly recovered. All significant edges can be detected without false positives. (Right column) shows
the results for using community assignments estimated under the COSIE model. Under this model, communities
cannot be perfectly recovered, resulting in false positive edges and false negative edges.

variance, recovering communities is impossible regardless of the statistical model. This suggest that
both JRDPG and COSIE models are not appropriate when studying differences in variances.

9.6 Testing for Significant Vertices In this section, we test for significant vertices using different
representations of vertices. Simplest representation is a set of edges, where the corresponding row
(or column) of a vertex in the adjacency matrices are collected and tested for difference. Another is
the low-dimensional latent-space representation using the JRDPG and COSIE models, and the latent
positions of vertices are tested for difference. Since all representations are multivariate, hypothesis are
tested using Hotelling’s test, which is a multivariate generalization of t-test.

We consider a population of planted partition SBM and a symmetric heterogeneous SBM in two
different settings. In both settings, the planted partition SBM has B = [0.125,0.0625;0.0625,0.125]
block probability matrix. In setting 1, the symmetric heterogeneous SBM has B® = [0.125,0.088;0.088, 0.25]'
block probability matrix, and in setting 2, B(®) = [0.125,0.0625; 0.0625, 0.25]. The vertices that belong
to the second block, which has the different within-block probability, are considered significant vertices,
and we vary the number of vertices that belong to the second block. Total of m = 100 networks are
sampled per population, and the p-values are computed using Hotelling’s on each of the three vertex
representations for each vertex. Vertices with p-values less than a = 0.05 after Bonferroni correction
are considered significant. The performance is measured via true positive rate (TPR), false positive
rate (FPR), and recall@ K, where K is the number of significant vertices.
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Figure 20: Precision (top row) and recall (bottom row) for significant edges using K-S test sets on of edges
from within community or across communities averaged over 50 trials. Effect size (x-axis) is the difference in
variances of the truncated normal distribution for B, ;. (Left column) shows the precision and recall when using
known community assignments. At low sample sizes (m = 10) and low effect size (¢ > 0.12), community wise
testing results in perfect precision and recall. (Middle column) shows the results for using community assignments
estimated under the JRDPG model. (Right column) shows the results for using community assignments estimated
under the COSIE model. Communities cannot be recovered under both JRDPG and COSIE model regardless of
effect size and sample size. As a result, community-wise testing result in large number of false positive edges.

Figure 21 shows that the p-values cannot necessarily be trusted. That is, in some settings, the
significant vertices cannot be trusted due to uncontrolled FPR. However, the sorting of p-values can be
trusted in both settings. Thus, in situations when the underlying model is not known (i.e. in real data),
one should trust the sorting of the p-values (or test statistic), but not the magnitudes.

10 Summary

1. Don’t rely on network statistics to characterize populations of connectomes. In general, network
statistics don’t characterize the data that well, and are correlated with one another. Thus, any
claim that a specific statistic explains a phenotypic property of a person is based on spurious
reasoning.

2. Do use statistical models developed for networks. Statistical models allow for testing a vari-
ety of hypotheses, such as testing for appropriate models and finding significant vertices or
communities.

3. Do use spectral clustering methods for determining community structure. Theoretical and em-
pirical results show that spectral clustering methods can estimate meaningful and trustworthy
community structures. However, note that different methods can provide different, but comple-
mentary results.

4. Do use appropriate hypothesis tests. For example, t-test is appropriate for binary connectomes,
but typically invalid and/or under-powered for weighted connectomes.
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Figure 21: Performance for finding significant vertices using various representations of vertices. We
compare a population of graphs from a planted partition SBM and another from a symmetric heterogeneous
SBM in two different settings. The number of vertices for each graph is kept constant (n = 70), but the number of
significantly different vertices is varied (x-axis). (Top row) In this setting, all three representations are not valid as
the false positive rate increases with the number of significant vertices. (Bottom row) In this setting, row-wise and
JRDPG representations are valid while COSIE representation is not. In both settings, the sorting of the p-values
can be trusted as recall@ K increases as number of significant vertices increase.

5. Don't trust the p-values when performing multiple hypothesis tests. Multiple testing requires
corrections to control the false positive rate, all of which are inappropriate for connectomics
data.

6. Do trust the sorting of the p-values when performing multiple hypothesis tests. That is, consider
the tests with smallest p-values to reject the null hypothesis as the sorting can be trusted, but
not necessarily the magnitudes of p-values.

Connectomics is an exciting area and is full of interesting ideas, which has led to the emergence of a
variety of analysis frameworks. However, the use of statistical modeling in connectomics is still relatively
sparse, especially compared to other areas of science. The key conceptual hurdle in statistical modeling
of connectomes is to model the entire connectome rather than just edges or features while taking into
account the structures and interactions within a connectome. This article provides an overview of
current analysis frameworks of connectomics data, and how statistical models can be incorporated to
improve current analysis methods.

Code All graph related simulations and analysis were performed using GraSPy (https://neurodata.io/graspy/)ii
and all multivariate hypothesis testing was done using hyppo (https://neurodata.io/hyppo) [23, 73].
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