Vapor−Liquid Interface of the Lennard-Jones Truncated and Shifted Fluid: Comparison of Molecular Simulation, Density Gradient Theory, and Density Functional Theory

Contributors:
  1. Simon Stephan
  2. Jinlu Liu
  3. Kai Langenbach
  4. Walter G. Chapman
  5. Hans Hasse

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: The vapor-liquid interface of the Lennard-Jones truncated and shifted (LTJS) fluid with a cut-off radius of 2.5 σ is investigated for temperatures covering the range between the triple point and the critical point. Three different approaches to model the vapor-liquid interface are used: molecular dynamics (MD) simulations, density gradient theory (DGT) and density functional theory (DFT). The surface tension, pressure and density profiles, including the oscillatory layering structure of the fluid at the interface, are investigated. The PeTS (Perturbed truncated and shifted) equation of state and PeTS-i functional, based on perturbation theory, are used to calculate the Helmholtz free energy in the DGT and DFT approach. They are consistent with the LJTS force field model. Overall, both DGT and DFT describe the results from computer experiments well. An oscillatory layering structure is found in MD and DFT.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.