
Multiscale Electrophysiology File
Format Version 3.0

(MEF3)

Feature Overview:
Feature Characteristics

Format

• One directory per channel

• Channel are segmented in time (single segment is channels are supported)

• Extensible channel types (currently, time series & video)

• Time series channel:

• 32 bit resolution (integer)

• Independent channel sampling frequencies

• Any time series data can be encoded (e.g. transforms of original data)

Time Series
Compression

• Decreased data storage

• Increased network transfer, read/write speeds

• Variable block sizes

• Channel-specific sampling rates supported reduce data volume

• Adaptive lossless or lossy compression

• Improved compression ratio with decreased signal variance (e.g. filtering)

• Independent blocks allow parallel compression / decompression

Encryption

• AES 128-bit

• HIPAA compliant

• Sharing of human data does not require de-identification procedures

• Dual-tiered, single-password encryption scheme allowing differential access to
the same file

• Unauthorized copies have no access to creator-determined file regions:
technical metadata, subject-identifying metadata, specific records, time series
data

• Times are optionally offset, preserving true time of day, but obscuring actual
recording date and time zone.

• No encryption level is required

Access
• Rapid random access via indices files

• Field alignment facilitates direct variable access after data read

MEF Data Hierarchy (See Figure 1)
• Each collection of recorded channels is called a “Session”. A session is a directory at the top

level of the hierarchy.
• A session directory is not required, MEF channels or segments can be acquired and used

independently.

Analysis

• Separate directory for each channel to facilitate parallel processing

• Independence of time series blocks support asynchronous and parallel
processing

• Multiple precalculated fields facilitate various analyses

Real-time
• The structure of MEF files allows real-time reading and writing.

• Catastrophic failure during an acquisition will leave an intact valid MEF
structure

Redundancy &
Damage
mitigation

• 32-bit CRC checksums for detection of file, individual record, & time series
block corruption

• Time Series Channels:

• Block independence limits extent of data loss if damage occurs

• Block alignment facilitates file recovery

• Multiple fields duplicated in block header and indices file

• Entire indices file can be reconstructed from data file

Time

• Time discontinuities supported and indexed

• µUTC time provides globally accurate date & time of day to microsecond
resolution

• µUTC time is easily converted to UTC time for use with standard Unix / Posix
time functions

Events
• Stored in binary records file

• User-defined event types readily accommodated by records format

Video • Video channels are explicitly supported

Support
• Open source (Apache software license)

• Freely available C, Matlab, & Java functions and software

Feature Characteristics

• Channel Directories: Channels are any data stream. Currently time-series and video data
are supported, but other channel types may be incorporated in the future.

• All channels are divided into segments. All channels are required to have at least one
segment.

• Every level of the hierarchy may have records associated with that level.
• Each Session Directory (if present) contains:

• Record Data File (if present, a session Record Indices file must be present)

• Record Indices File (if present, a session Record Data file must be present)

• Time Series Directories containing:
• Record Data File (if present, a channel Record Indices file must be present)

• Record Indices File (if present, a channel Record Data file must be present)

• Segment directories containing:
• (Time Series) Metadata File
• (Time Series) Data File
• (Time Series) Indices File
• Record Data File (if present, a segment Record Indices file must be present)

• Record Indices File (if present, a segment Record Data file must be present)
• Video Channel directories containing:

• Record Data File (if present, a channel Record Indices file must be present)

• Record Indices File (if present, a channel Record Data file must be present)

• Segment directories containing:
• (Video) Metadata File
• (Video) Indices File
• (Video) Data File (native video format file)
• Record Data File (if present, a segment Record Indices file must be present)

• Record Indices File (if present, a segment Record Data file must be present)

MEF Naming Conventions (See Figure 1)

• Session Directories are named according to user preference and carry the “.mefd”
extension.

• Record Data Files are named as the level (session, channel, segment) name
appended by “.rdat”.

• Record Indices Files are named as the level name appended by “.ridx”.

• Time Series Channel Directories are named as the channel name appended by
“.timd”.

• Video Channel Directories are named according to user preference appended by
“.vidd”.

• Segment Directories are named with the channel name, hyphenated with
sequential fixed-width (6 digit) numbers starting from 0 (e.g. 000000, 000001, ...)
appended by “.segd”. (e.g. “Chan_01-000000.segd”).

• Time Series Metadata Files are named as the segment name appended by “.tmet”.

• Time Series Indices Files are named as the segment name appended by “.tidx”.

• Time Series Data Files are named as the segment name appended by “.tdat”.

• Video Metadata Files are named as the segment name appended by “.vmet”.

• Video Indices Files are named with the video directory name appended by “.vidx”.

• The Video Data Files are named with the Video Segment Directory name appended
by their standard extensions (e.g. “Video_1-000000.mpeg”). There is one video data
file per video channel segment.

Figure 1: MEF Data Hierarchy & Naming Conventions  

Sess_01.mefd

Video_1.vidd

Session Directory

Video Channel Directory

Video_1-
000000.mpeg

Video Data File (any native video format)

Video_1-
000000.vmet

Video Metadata File
Universal Header
Video Metadata

Chan_01.timd Time Series Channel Directory

Chan_01
-000000.tmet

Chan_01
-000000.tdat

Chan_01
-000000.tidx

Chan_01
-000000.segd

Time Series Segment Directory

Time Series Metadata File
Universal Header
Metadata

Time Series Data File
Universal Header
RED Data Blocks

Time Series Indices File
Universal Header
RED Block index entries

Video_1-
000000.vidx

Video Indices File
Universal Header
Video Index Data

Segment Record Indices File (if present)
Universal Header
Record Indices

Chan_01
-000000.ridx

Segment Record Data File (if present)
Universal Header
Records

Chan_01
-000000.rdat

Channel Record Indices File (if present)
Universal Header
Record Indices

Chan_01.ridx

Channel Record Data File (if present)
Universal Header
Records

Chan_01.rdat

Segment Record Indices File (if present)
Universal Header
Record Indices

Video_1
-000000.ridx

Segment Record Data File (if present)
Universal Header
Records

Video_1
-000000.rdat

Session Record Indices File (if present)
Universal Header
Record Indices

Sess_01.ridx

Session Record Data File (if present)
Universal Header
Records

Sess_01.rdat

Video_1
-000000.segd

Video Segment Directory

Channel Record Indices File (if present)
Universal Header
Record Indices

Video_1.ridx

Channel Record Data File (if present)
Universal Header
Records

Video_1.rdat

MEF Time Series Data Format

• Data are stored in compressed blocks, compressed with the RED (range
encoded differences) algorithm.

• RED can encode signed integer data with 32-bit resolution, giving a full range of
-(231) to +(231 - 1). [decimal -2,147,483,648 to +2,147,483,647] [hex 0x80000000 to
0x7FFFFFFF]

• -231 is reserved to represent NaN (not a number). [decimal -2,147,483,648] [hex
0x80000000]

• +(231 - 1) is reserved to represent positive infinity. [decimal 2,147,483,647] [hex
0x7FFFFFFF]

• -(231 - 1) is reserved to represent negative infinity. [decimal -2,147,483,647] [hex
0x80000001]

• The unreserved range is therefore -(231 - 2) to +(231 - 2). [decimal -2,147,483,646 to
+2,147,483,646] [hex 0x80000002 to 0x7FFFFFFE]

• Data blocks are indexed in the Time Series Indices File for random access.

MEF Data Type Definitions:

Type Name Description

ui1 1 byte unsigned integer

si1 1 byte signed integer

ui4 4 byte unsigned integer

si4 4 byte signed integer

sf4 4 byte signed floating point number

ui8 8 byte unsigned integer

si8 8 byte signed integer

sf8 8 byte signed floating point number

utf8[n] zero-terminated UTF-8 encoded string of maximum length “n” characters (not
including terminal zero)

ascii[n] zero-terminated ascii encoded string of maximum length “n” characters (not
including terminal zero)

MEF Data Alignment

• All fields in all files in the format are aligned such that their values align to a multiple
of their size from the beginning of the file. This allows for data read to be cast
directly into data structures and for memory mapping of files.

• This alignment also facilitates recovery in the event of file damage.

• Pad bytes are added, if necessary, to maintain alignment, at the end of RED Blocks,
and Record Bodies. The value of the the pad byte is specified to be 0x7E, the ascii
tilde (“~”). Specification of this value is done to facilitate reproducible CRCs and may
be useful in the case of data recovery if file damage were to occur.

MEF Strings

• All strings related to naming and descriptive data use UTF-8 encoding to allow for
international character sets.

• UTF-8 encoding:

• variable length characters

• up to 4 bytes per character

• not endian-sensitive

• strings are null-terminated

• Unused bytes in MEF string fields are set to zero to promote reproducibility of CRC
values.

Micro-UTC (µUTC) Time

• All times in MEF are represented as µUTC times.

• A µUTC time is an si8 containing the elapsed microseconds since January 1, 1970
at 00:00:00 in the GMT (Greenwich Mean Time) time zone.

• µUTC is simply converted to UTC (Coordinated Universal Time: seconds since
1/1/1970 at 00:00:00 GMT. Referred to as “The Epoch”, defined by the International
Telecommunications Union) by dividing by 1,000,000.

• In MEF library functions, µUTC times that have had the recording time offset applied
to them are made negative to indicate this status. Recording times prior to The
Epoch (negative µUTC times) remain possible in MEF 3 by avoiding use of library
functions that use negative status as an indicator of being offset (realistically a need
for recording times prior to 1970 is unlikely).

Tiered Encryption

• Level 1 and Level 2 encryption can be selected in various places:

• Sections 2 and 3 of Metadata Files

• Individual records of Record Data Files

• Individual RED blocks of the Time Series Data Files

• Level 2 decryption ability guarantees Level 1 decryption ability, but not the converse.

• Level 1 encryption is typically used for technical data, and Level 2 encryption for
potentially subject identifying data. This way technical data can be shared with
collaborators with out violating subject privacy. The encryption levels can be chosen
in any way desired by the file creator, however.

• Level 2 encryption requires specification of a Level 1 password, even if Level 1
encryption is not used anywhere in the file.

• The encryption / decryption algorithm is the 128-bit Advanced Encryption
Standard (AES). [http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf],
which satisfies the Health Insurance Portability and Accountability Act (HIPAA)
112-bit requirement for symmetric encryption of human data.

UTF-8 passwords

• AES-128 requires a 16 byte key. Therefore multibyte UTF-8 password characters
are used internally in MEF by taking the last (most unique) byte in each character of
the UTF-8 encoding.

• The password length limit is 15 (UTF-8) characters because MEF passwords are
required to be null terminated strings.

Recording Time Offsets

• The Recording Time Offset is included in Section 3 of the Metadata files, and if times
are not offset this field is set to zero.

• The GMT (Greenwich Meantime) offset should be set to the actual value at the
recording site at the start of recording, regardless of whether Recording Time Offsets
are used. This is because µUTC times are always relative to GMT, so local time
calculation requires this information. The GMT offset is stored as the integer number
seconds ahead (positive) or behind GMT (negative). The valid range, in MEF, is
-86400 to +86400 (-24 to +24 hours).

http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf

• The format does accommodate the possibility of a change in GMT offset during the
recording due to the beginning or end of Daylight Saving Time (DST), but does not
accommodate more than one start and one stop of DST (i.e. recordings exceeding
one year in duration). Recording time offsets are not applied, to these numbers.

• Times that have been offset are made negative to indicate this status.

• As recording time offsets are stored in section 3 of the Metadata files, in. To remove
offsets, Metadata files should be read first when reading a segment.

Time Series Compression

• Compression is done by differencing the data, and then range encoding the
differences. The algorithm is referred to as RED, for range-encoded differences.
RED is a lossless compression.

• Data can optionally be detrended prior to applying RED compression. This
operation is lossless, but is generally more useful in lossy compression routines.

• Lossy compression is permitted in time series data by scaling data prior to
compression with the RED algorithm. Scaling is adaptive and may vary from block to
block. The scaled values must be rounded to the nearest integer, introducing the
loss. Lossy compression is not required, but can produce substantial storage
savings with negligible data differences in data streams whose sample-value
specificities exceed their information content. Compression can also be useful in
speeding transmission and viewing of data.

• Four compression modes are currently supported:

1. Lossless (default)

2. Fixed Scale Factor: a user-specified scale factor is applied to the block (1.0
results in lossless compression)

3. Fixed Compression Ratio: the scale factor is adjusted until the block compression
ratio (block_bytes / input_array_size [as si4s]) is this number plus or minus a
tolerance. e.g. 20% of the original si4 size with a 1% tolerance is 0.19 to 0.21. If
lossless compression can achieve or exceed the desired ratio (plus the
tolerance), lossless compression will be applied. This option may add noticeable
processing time to compression, but once done, adds negligible time to
decompression.

4. Mean Res idua l Ra t i o : t he sca le f ac to r i s ad jus ted un t i l t he
mean(abs((scaled_data - original_data) / original_data)) for the values in the
block, is this number plus or minus a tolerance. e.g. 0.5% difference with a 0.1%
tolerance is 0.004-0.006. This option may add noticeable processing time to
compression, but once done, adds negligible time to decompression.

Protected and Discretionary File Regions

• The protected region is reserved for possible future additions to the MEF format and
should not be used by end users.

• The discretionary region is reserved for end user use so that custom data can be
conveniently added to the files without interfering with the specified format fields.

• Protected and discretionary regions can be found in the universal header, each
section of the metadata files, RED block header, and indices files.

Encryption Level Schema

• The following table contains codes for encryption that are useful in processing as
well as in file encoding.

Universal Header

• Each file in the MEF structure begins with a universal header

• The only current exception is video data files whose format is determined by their
specific video format (e.g. MPEG).

• The universal header is not encrypted.

Encryption Level Schema:
Value Meaning

0 No encryption

1 Level 1 encrypted

-1 Level 1 encryption specified, currently decrypted

2 Level 2 encrypted

-2 Level 2 encryption specified, currently decrypted

-128 No entry

• Design concepts:

• Contain the minimum information required to read a file in the absence of any
other files (e.g. indices or metadata). Appropriate interpretation of the data may
still require metadata and passwords. In some file types universal header
information may be duplicated in the metadata for convenience.

• Contain the minimum information to uniquely identify a file and it’s place in a MEF
hierarchy.

• Contain the minimum information required to detect file corruption.

• Contain no potentially subject identifying information.

Universal Header:
Field Offset Bytes Type Contents

Header CRC 0 4 ui4
• CRC of the universal header after this

field

• 0 indicates no entry

Body CRC 4 4 ui4
• CRC of the body of the file after the

universal header

• 0 indicates no entry

File Type 8 5 ascii[4] or
ui4

• 4 ascii characters of file name
extension, null terminated or used as
ui4 value

• 0 (all zeros = zero-length string)
indicates no entry

MEF Version Major 13 1 ui1

• numeric value: 3, currently

• 0 indicates no entry

• 0xFF indicates no entry

MEF Version Minor 14 1 ui1

• numeric value: 0, currently

• 0 indicates no entry

• 0xFF indicates no entry

Byte Order Code 15 1 ui1

• 0 ==> big-endian

• 1 ==> little-endian

• 0xFF indicates no entry

Start Time 16 8 si8

• File start time in µUTC format

• If recording time offset is used, it is
applied here

• 0x8000000000000000 indicates no
entry

End Time 24 8 si8

• File end time in µUTC format

• If recording time offset is used, it is
applied here

• 0x8000000000000000 indicates no
entry

Number of Entries 32 8 si8

• Number of entries in the file

• See Universal Header Number of
Entries table (below) for the specific
meaning for each file type

• -1 indicates no entry

Maximum Entry
Size 40 8 si8

• Maximum size of an entry in the file

• See Universal Header Number of
Entries table (below) for the specific
meaning for each file type

• -1 indicates no entry

Segment Number 48 4 si4

• Number of the segment (if applicable)

• -1 indicates no entry

• -2 indicates channel level

• -3 indicates session level

Channel Name 52 256 utf8[63]
• Channel name without path or

extension

• Zero-length string indicates no entry

Session Name 308 256 utf8[63]
• Session name without path or

extension

• Zero-length string indicates no entry

Anonymized Name 564 256 utf8[63]
• Anonymized subject name

• Zero-length string indicates no entry

Level UUID 820 16 ui1
• 16 random bytes shared by all files in

the current level

• zeros indicate no entry

File UUID 836 16 ui1
• 16 random bytes unique to the current

file

• zeros indicate no entry

Field Offset Bytes Type Contents

Provenance UUID 852 16 ui1

• File UUID of the file from which the
current file was derived

• zeros indicate no entry

• Identity with File UUID indicates that
this is the originating file.

Level 1 Encryption
Password Validation
Field

868 16 ui1
• First 16 binary bytes of a SHA-256

hash of the Level 1 password

• zeros indicate no entry

Level 2 Encryption
Password Validation
Field

884 16 ui1

• Exclusive-or of first 16 bytes of a
SHA-256 hash of the Level 2
password with the unhashed Level 1
password

• zeros indicate no entry

Protected Region 900 60
• Filled with zeros

• Reserved for potential future use

Discretionary
Region 960 64

• Filled with zeros if unused

• Discretionary end-user use

Field Offset Bytes Type Contents

Universal Header: Number of Entries
File Type Extension(s) Number of Entries Contents Maximum Entry Size Contents

Record Data File rdat
• Number of records in the

file

• -1 indicates no entry

• Number of bytes (including
record header and pad bytes)
in the largest record in the file

• -1 indicates no entry

Record Indices
File ridx

• Number of records indices
in the file (= number of
records)

• -1 indicates no entry

• Number of bytes in a record
index (a constant)

• -1 indicates no entry

Metadata Files
tmet

vmet
1

• Number of bytes in a
metadata file (a constant)

• -1 indicates no entry

Time Series Data
File tdat

• Number of RED blocks in
the file

• -1 indicates no entry

• Number of samples in the
largest RED block in the file

• -1 indicates no entry

Time Series
Indices File tidx

• Number of time series
indices in the file (= the
number of RED blocks)

• -1 indicates no entry

• Number of bytes in a time
series index (a constant)

• -1 indicates no entry

Video Indices File vidx
• Number of video indices

(= clips) in the file

• -1 indicates no entry

• Maximum number of bytes in
a clip in the video file.

• -1 indicates no entry

Metadata Files

• One for each channel segment in the MEF hierarchy

• The metadata files share an identical format, but section 2 fields are specific to the
channel data type.

• Currently there are 2 types of metadata files specified: time-series and video. The
first three fields of section 2 are common to all section 2 types: Channel Description,
Session Description, and Recording Duration.

• Each type of metadata file has it’s own file type, which also serves as it’s file name
extension.

Metadata Files:
Field Offset Bytes Type Contents Encryption

Universal
Header 0 1024 See “Universal Header”

description None

Section 1

Section 2
Encryption 1024 1 si1

see Encryption Level
Schema table None

Section 3
Encryption 1025 1 si1

see Encryption Level
Schema table None

Protected
Region 1026 766

• Filled with zeros

• Reserved for potential
future use

None

Discretionary
Region 1792 768

• Filled with zeros if
unused

• Discretionary end-user
use

None

Section 2 (technical data)

Metadata
Section 2
Channel Type
Specific Fields

2560 10752 See channel type specific
tables below

As specified in
Section 1

Section 3 (subject specific data)

Recording Time
Offset 13312 8 si8

• value to add to all µUTC
times to adjust them to
true UTC time

• 0x8000000000000000
indicates no entry

As specified in
Section 1

DST Start Time 13320 8 si8

• µUTC of Daylight
Saving Time start, if
occurred during
recording

• 0 indicates DST did not
begin during recording

• 0x8000000000000000
indicates no entry

As specified in
Section 1

DST End Time 13328 8 si8

• µUTC of Daylight
Saving Time end, if
occurred during
recording

• 0 indicates DST did not
end during recording

• 0x8000000000000000
indicates no entry

As specified in
Section 1

GMT offset (at
start of
recording)

13336 4 si4

• File recording time zone
expressed in seconds
ahead or behind GMT.
Must be added to
uUTCs to get local time
of day. (e.g. example, 0
indicates GMT, -18000
indicates US Eastern
Standard Time)

• --86401 indicates no
entry (24 hours and 1
second behind GMT)

As specified in
Section 1

Subject Name
1 13340 128 utf8[31]

• typically subject first
name

• Zero-length string
indicates no entry

As specified in
Section 1

Subject Name
2 13468 128 utf8[31]

• typically subject last
name

• Zero-length string
indicates no entry

As specified in
Section 1

Subject ID 13596 128 utf8[31]
• subject ID

• Zero-length string
indicates no entry

As specified in
Section 1

Recording
Location 13724 512 utf8[127]

• Typically: Originating
Institution, City, Country

• Zero-length string
indicates no entry

As specified in
Section 1

Protected
Region 14236 1124

• Filled with zeros

• Reserved for potential
future use

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Discretionary
Region 15360 1024

• Filled with zeros if
unused

• Discretionary end-user
use

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Time Series Metadata Section 2
Field Offset Bytes Type Contents Encryption

Universal
Header 0 1024 See “Universal Header”

description None

Section 1 (see Metadata Section 1)

Section 2 (technical data)

Channel
Description 2560 2048 utf8[511]

• Description of recording
channel

• Zero-length string
indicates no entry

• Present in all section 2
metadata types

As specified in
Section 1

Session
Description 4608 2048 utf8[511]

• Description of recording
session

• Zero-length string
indicates no entry

• Present in all section 2
metadata types

As specified in
Section 1

Recording
Duration 6656 8 si8

• Pecording duration in
microseconds

• -1 indicates no entry

• Present in all section 2
metadata types

As specified in
Section 1

Reference
Description 6664 2048 utf8[511]

• Description of recording
reference channel

• Zero-length string
indicates no entry

As specified in
Section 1

Acquisition
Channel
Number

8712 8 si8
• Number of the channel

in the original recording

• -1 indicates no entry

As specified in
Section 1

Sampling
Frequency 8720 8 sf8

• Sampling frequency

• -1.0 indicates no entry
As specified in
Section 1

Low Frequency
Filter Setting 8728 8 sf8

• High-pass filter setting
(Hz)

• -1.0 indicates no entry

As specified in
Section 1

High
Frequency
Filter Setting

8736 8 sf8
• Low-pass filter setting

(Hz)

• -1.0 indicates no entry

As specified in
Section 1

Notch Filter
Frequency
Setting

8744 8 sf8
• Notch filter setting (Hz)

• -1.0 indicates no notch
filter or no entry

As specified in
Section 1

AC Line
Frequency 8752 8 sf8

• AC line frequency (Hz)

• -1.0 indicates no entry
As specified in
Section 1

Units
Conversion
Factor

8760 8 sf8

• Value to multiply sample
values by to get native
units (“Units
Description” field)

• 0.0 indicates no entry

• Negative values
indicate values are
inverted (Note: negative
values affect Minimum
& Maximum Native
Sample Value
calculation)

As specified in
Section 1

Units
Description 8768 128 utf8[31]

• String describing units
(e.g. “microvolts”)

• Zero-length string
indicates no entry

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Maximum
Native Sample
Value

8896 8 sf8

• The highest native
sample value

• Units Conversion Factor
is applied to this
number

• If the Units Conversion
Factor is positive, this is
the maximum RED
sample value times the
Units Conversion
Factor. If the Units
Conversion Factor is
negative, this is the
minimum RED sample
value times the Units
Conversion Factor

• If lossy compression is
used the Scale Factor
and offset are also
applied to this number

• NaN indicates no entry.
Note that this means
that the contents of this
field cannot be directly
compared to the
NO_ENTRY value, but
must be evaluated with
a system function such
as isnan(). This can fail
in principle under
different representations
of NaN on different
systems.

• If Units Conversion
Factor has no entry, it is
presumed to be 1.0 for
calculation of this value

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Minimum
Native Sample
Value

8904 8 sf8

• The lowest native
sample value

• Units Conversion Factor
is applied to this
number

• If the Units Conversion
Factor is positive, this is
the minimum RED
sample value times the
Units Conversion
Factor. If the Units
Conversion Factor is
negative, this is the
maximum RED sample
value times the Units
Conversion Factor.

• If lossy compression is
used the Scale Factor
and offset are also
applied to this number

• NaN indicates no entry.
Note that this means
that the contents of this
field cannot be directly
compared to the
NO_ENTRY value, but
must be evaluated with
a system function such
as isnan(). This can fail
in principle under
different representations
of NaN on different
systems.

• If Units Conversion
Factor has no entry, it is
presumed to be 1.0 for
calculation of this value

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Start Sample 8912 8 si8

• Number of the first
sample in the RED
block data relative to all
samples in the channel
(not the segment)

• The first sample
number in first segment
is zero

• -1 indicates no entry

As specified in
Section 1

Number of
Samples 8920 8 si8

• Total recorded samples
in the segment

• -1 indicates no entry

As specified in
Section 1

Number of
Blocks 8928 8 si8

• Total recorded RED
blocks in the file

• -1 indicates no entry

• Duplicated in Universal
Header of Time Series
Indices and Data Files

As specified in
Section 1

Maximum
Block Bytes 8936 8 si8

• Maximum bytes,
including header & pad
bytes, in any RED block
in the file

• -1 indicates no entry

As specified in
Section 1

Maximum
Block Samples 8944 4 ui4

• Maximum number of
samples in a RED block

• 0xFFFFFFFF indicates
no entry

• Duplicated (as an si8) in
Universal Header of
Time Series Data Files

As specified in
Section 1

Maximum
Difference
Bytes

8948 4 ui4

• Maximum bytes
required for the
difference data in the
compressed blocks

• 0xFFFFFFFF indicates
no entry

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Block Interval 8952 8 si8

• Microseconds between
RED blocks

• -1 indicates no entry, or
that the intervals vary

As specified in
Section 1

Number of
Discontinuities 8960 8 si8

• Number of
discontinuities in the
segment

• First sample is a
discontinuity

• -1 indicates no entry

As specified in
Section 1

Maximum
Contiguous
Blocks

8968 8 si8

• Maximum number of
contiguous RED blocks
between discontinuities
in the segment

• -1 indicates no entry

As specified in
Section 1

Maximum
Contiguous
Block Bytes

8976 8 si8

• Maximum number of
contiguous compressed
bytes between
discontinuities in the
segment (including
block headers and pad
bytes)

• -1 indicates no entry

As specified in
Section 1

Maximum
Contiguous
Samples

8984 8 si8

• Maximum number of
contiguous samples
between discontinuities

• -1 indicates no entry

As specified in
Section 1

Protected
Region 8992 2160

• Filled with zeros

• Reserved for potential
future use

As specified in
Section 1

Discretionary
Region 11152 2160

• Filled with zeros if
unused

• Discretionary end-user
use

As specified in
Section 1

Field Offset Bytes Type Contents Encryption

Section 3 (see Metadata Section 3)

Field Offset Bytes Type Contents Encryption

Video Metadata Section 2
Field Offset Bytes Type Contents Encryption

Universal
Header 0 1024 See “Universal Header”

description None

Section 1 (see Metadata Section 1)

Section 2 (technical video data)

Channel
Description 2560 2048 utf8[511]

• Description of the video
stream

• Zero-length string
indicates no entry

• Present in all section 2
types

As specified
in Section 1

Session
Description 4608 2048 utf8[511]

• Description of recording
session

• Zero-length string
indicates no entry

• Present in all section 2
types

As specified
in Section 1

Recording
Duration 6656 8 si8

• recording duration in
microseconds

• -1 indicates no entry

• Present in all section 2
types

As specified
in Section 1

Horizontal
Resolution 6664 8 si8

• Horizontal pixels

• -1 indicates no entry
As specified
in Section 1

Vertical
Resolution 6672 8 si8

• Vertical pixels

• -1 indicates no entry
As specified
in Section 1

Frame Rate 6680 8 sf8
• frames per second

• -1.0 indicates no entry or
variable frame rate

As specified
in Section 1

Records Data File

• Binary format described below

• Can be present at any level of the MEF hierarchy, but is never required.

• If a Records Data File is present, a Records Index File must also be present, and
vice versa.

• Each record begins with a record header

• Example record types include:

• Electrode & probe descriptions

Number of Clips 6688 8 si8

• Number of clips (= video
indices) in the video index
file

• -1 indicates no entry

• Duplicated in Universal
Header of Video Indices
Files

As specified
in Section 1

Maximum Clip
Bytes 6696 8 si8

• Maximum bytes in a clip in
the video file

• -1 indicates no entry

As specified
in Section 1

Video Format 6704 128 utf8[31]
• e.g. “MPEG-4”

• Zero-length string
indicates no entry

As specified
in Section 1

Video File CRC 6832 4 ui4
• CRC of the video file.

• 0 indicates no entry
As specified
in Section 1

Protected
Region 6836 3236

• Filled with zeros

• Reserved for potential
future use

As specified
in Section 1

Discretionary
Region 10072 3240

• Filled with zeros if unused

• Discretionary end-user use
As specified
in Section 1

Section 3 (see Metadata Section 3)

Field Offset Bytes Type Contents Encryption

• Electrode coordinates

• Electrode diagrams

• Spike records

• Seizure marks

• Event related study data

• Sleep stage / behavioral state

• Miscellaneous notes

• Acquisition system log entries

• Acquisition system configuration

• End-user defined record types

• Records can also be compressed, but the specific compression algorithm (e.g. jpeg,
png, bzip) should be defined in the record body.

• The length of the body of each record must be padded to a multiple of 16 for
encryption. The pad-byte value is 0xFE (ascii tilde, “~”).

Records Data File:
Field Offset Bytes Contents

Universal Header 0 512 See “Universal Header” description

Records 512 See “Record Header Format”
description

…

Record Header Format:
Field Offset Bytes Type Contents Encryption

Record
CRC 0 4 ui4

• Cyclically redundant checksum for
record and remainder of Record
Header

• 0 indicates no entry

None

Type 4 5 ascii[4] or
ui4

• 4 byte integer, typically
representing 4 ascii characters,
designating record type, null
terminated, or used as ui4 value

• 0 (all zeros = zero-length string)
indicates no entry

None

Record
Version
Major

9 1 ui1
• Record type’s major version

• 0xFF indicates no entry
None

Record
Version
Minor

10 1 ui1
• Record type’s minor version

• 0xFF indicates no entry
None

Encryption 11 1 si1 see “Encryption Level Schema” table None

Bytes 12 4 ui4

• Record size in bytes, excluding
record header, including pad bytes
if any.

• 0 indicates no entry

None

Time 16 8 si8

• Record time in µUTC time format.

• If recording time offset is used for
the session it is applied here also.

• 0x8000000000000000 indicates
no entry

None

Record Indices File Format

• Universal header

• Sequential record index data

• 8-byte boundary aligned

Record Indices File:
Field Offset Bytes Contents

Universal Header 0 512 See “Universal Header” description

Record Index 512 24 See “Record Index Format”
description

…

Time Series Indices File Format

• Universal header

• Sequential time series index data

• 8-byte boundary aligned

Record Index Format:
Field Offset Bytes Type Contents

Type 0 5 ascii[4] or ui4

• 4 byte integer, typically representing
4 or used as ui4 value, designating
record type, null terminated, or used
as ui4 value

• 0 (all zeros = zero-length string)
indicates no entry

Major Version 5 1 ui1
• Record type’s major version

• 0xFF indicates no entry

Minor Version 6 1 ui1
• Record type’s minor version

• 0xFF indicates no entry

Encryption 7 1 si1 see “Encryption Level Schema” table

File Offset 8 8 si8
• Record start file offset in bytes.

• -1 indicates no entry

Time 16 8 si8

• Record time in µUTC time format.

• If recording time offset is used for
the session it is applied here also.

• 0x8000000000000000 indicates no
entry

Time Series Indices File:
Field Offset Bytes Contents

Universal Header 0 512 See “Universal Header” description

Time Series
Index… 512 32 See “Time Series Index Format” description

...

Time Series Index Format:
Field Offset Bytes Type Contents

File Offset 0 8 si8
• RED block file offset in bytes.

• -1 indicates no entry

Start Time 8 8 si8

• µUTC time

• If recording time offset is used for the
session it is applied here also.

• 0x8000000000000000 indicates no entry

Start Sample 16 8 si8

• Number of the first sample in the RED
block data relative to all samples in the
segment (not the channel).

• The first sample number in every segment
is zero.

• -1 indicates no entry

Number of
Samples 24 4 ui4

• Number of samples in the RED block

• 0xFFFFFFFF indicates no entry

Block Bytes 28 4 ui4
• Bytes in RED block including header &

pad bytes

• 0xFFFFFFFF indicates no entry

Maximum
Sample Value 32 4 si4

• Maximum sample value in the block

• Units Conversion Factor is not applied to
this number

• If lossy compression is used the Scale
Factor is applied to this number

• If a block offset is used, it is applied to this
number

• RED NaN (0x80000000) indicates no entry

Minimum
Sample Value 36 4 si4

• Minimum sample value in the block

• Units Conversion Factor is not applied to
this number

• If lossy compression is used the Scale
Factor is applied to this number

• If a block offset is used, it is applied to this
number

• RED NaN (0x80000000) indicates no entry

Video Indices File Format

• Universal header

• Sequential video index data

• 8-byte boundary aligned

Protected
Region 40 4

• Filled with zeros

• Reserved for potential future use

RED Block Flags 44 1 ui1
• From RED block header

• See RED Block Flags table below.

RED Block
Protected
Region

45 3 From RED block header

RED Block
Discretionary
Region

48 8 From RED block header

Field Offset Bytes Type Contents

Video Indices File:
Field Offset Bytes Type Contents

Universal
Header 0 512 See “Universal Header” description

Block Indices Data

Video Index 512 40 See “Video Index Format” description

...

Time Series Data File Format

• Universal header

• Sequential RED blocks

Video Index Format:
Field Offset Bytes Type Contents

Start Time 0 8 si8

• µUTC time of first frame in clip.

• If recording time offset is used for the session
it is applied here also.

• 0x8000000000000000 indicates no entry

End Time 8 8 si8

• µUTC time of last frame in clip.

• If recording time offset is used for the session
it is applied here also.

• 0x8000000000000000 indicates no entry

Start Frame 16 4 ui4

• Number of the first frame in the clip in the
video file.

• Numbering starts at zero.

• 0xFFFFFFFF indicates no entry

End Frame 20 4 ui4

• Number of the last frame in the clip in the
video file.

• Numbering starts at zero.

• 0xFFFFFFFF indicates no entry

File Offset 24 8 si8
• File offset to frame, typically a keyframe,

depending on format

• -1 indicates no entry

Clip Bytes 32 8 si8
• Number of bytes in the clip.

• -1 indicates no entry

Protected
Region 40 16

• Filled with zeros

• Reserved for potential future use

Discretionary
Region 56 8

• Filled with zeros if unused

• Discretionary end-user use

• Each block is 8-byte boundary aligned

Time Series Data Encryption

• Optionally the time series data can be encrypted with either Level 1 or 2 encryption

• The encryption uses AES-128 to encrypt the first 16 (typically most significant) bytes
of the statistical model in each RED compressed block.

• Encryption / decryption adds negligible time to data processing.

RED Blocks

• Data are stored in compressed independent blocks

• Raw data are differenced. Differences are encoded in a single signed byte. If there is
overflow, i.e > +127 or < -127, then a keysample is introduced flagged by the
reserved value -128. The 4 bytes following the keysample flag contain the full
undifferenced value of the (second) data point generating the overflow difference, as
an si4.

• The differenced data are statistically modeled, the model is stored in the RED block
header.

• Range encoding is used to compress the differences, using the statistical model.

• Blocks are required to be 8-byte boundary aligned, and are terminally padded to an
8-byte boundary with the value 0x7E (tilde, “~”) as necessary. Pad bytes are
included in the block bytes value, and in the block CRC.

• In compression, if the RED_PROCESSING_DIRECTIVE detrend_data is set, each
sample will be dtretended prior to scaling and compressing. The slope and intercept
will be stored in the block header. This is a lossless operation, but has more utility in
lossy compression.

Time Series Data File:
Field Offset Bytes Type Contents

Universal
Header 0 512 See “Universal Header” description

RED Block 512 varies See “RED Block Format” description

...

• In compression, if the value of the scale_factor is greater than 1.0, the (possibly
offset) values will be divided by this value and rounded, prior to differencing. This is
a lossy operation.

• In decompression, if the value of the scale_factor is greater than 1.0, the values of
the samples will be multiplied by this value and rounded after un-differencing.

• In decompression, if the block offset is non-zero, this value will be added to each of
the samples after un-differencing and possibly scaling.

RED Block Format:
Field Offset Bytes Type Contents

Block CRC 0 4 ui4
• CRC of the remainder of block

• 0 indicates no entry

Flags 4 1 ui1 See RED Block Flags table below.

Protected Region 5 3 reserved for future use

Discretionary
Region 8 8 discretionary end-user use

Detrend Slope 16 4 sf4

• Combined with Detrend Intercept to
detrend the data in a block

• This is a lossless procedure, but adds time
to compression & decompression.

• 0.0 in BOTH Detrend Slope and Detrend
Intercept indicates no entry

Detrend Intercept 20 4 sf4

• Combined with Detrend Slope to detrend
the data in a block

• This is a lossless procedure, but adds time
to compression & decompression.

• 0.0 in BOTH Detrend Slope and Detrend
Intercept indicates no entry

Scale Factor 24 4 sf4

• Values in block are divided by this value
and rounded for lossy compression.

• Values in block are multiplied by this value
and rounded for decompression.

• 1.0 indicates lossless compression

• Values < 1.0 are invalid

Difference Bytes 28 4 ui4 Number of difference bytes in the encoded
block

Number of Samples 32 4 ui4 Number of data samples encoded in the
block

Block Bytes 36 4 ui4
Number of bytes in the compressed block
including header and pad (boundary
alignment) bytes.

Start Time 40 8 si8
• µUTC time.

• If recording time offset is used for the
session it is applied here also.

Statistics 48 256 ui1

• Statistical model of difference values for
the block.

• The first 16 bytes in the model are be
encrypted if data encryption is used.

Compressed Data 304 varies RED-encoded data

Pad bytes varies pad byte value (0x7E) repeated as
necessary to maintain 8-byte alignment

Field Offset Bytes Type Contents

RED Block Flags:
Field Name Contents

Bit 0 Discontinuity Bit

• 0 indicates no discontinuity

• 1 indicates that this block began after a discontinuity in
recording.

• The first block in a file is always considered a discontinuity.

Bit 1 Level 1 Encrypted
Block Bit

• 0 indicates the block is not currently level 1 encrypted.

• 1 indicates the block is currently level 1 encrypted.

• The encryption level desired is set by the “encryption” field in the
RED_PROCESSING_DIRECTIVES.

• This bit is mutually exclusive with “Level 2 Encrypted Block
Bit” (bit 2)

Bit 2 Level 2 Encrypted
Block Bit

• 0 indicates the block is not currently level 2 encrypted.

• 1 indicates the block is currently level 2 encrypted.

• The encryption level desired is set by the “encryption” field in the
RED_PROCESSING_DIRECTIVES.

• This bit is mutually exclusive with “Level 1 Encrypted Block
Bit” (bit 1)

Bits 3 -
7 reserved for future use

Meflib API
The meflib API functions and headers are contained in the files “meflib.c” & “meflib.h”.
While this is open source, the general idea is that user-defined code not be added to
these files. User defined records are defined and coded in “mefrec.c” and “mefrec.h”.
The functions required for adding a new record type are described in “MEF 3 Records
Specification”

/**/
/******************************** Elemental Typedefs ********************************/
/**/

typedef char si1;
typedef unsigned char ui1;
typedef short si2;
typedef unsigned short ui2;
typedef int si4;
typedef unsigned int ui4;
typedef long int si8;
typedef long unsigned int ui8;
typedef float sf4;
typedef double sf8;
typedef long double sf16; // NOTE: it often requires an explicit compiler instruction

// to implement true long floating point math.
// In icc and gcc the instruction is:
// “-Qoption,cpp,—extended_float_type"

These typedefs are used throughout the library to facilitate compilation on systems with
different word sizes.

The first character indicates signedness, “s” for signed, “u” for unsigned.

The second character indicates format: “i” for integer type, “f” for floating point type.

The final number indicates the number of bytes in the type, 1, 2, 4, 8, or 16

example: “si4” indicates a signed integer of 4 byte length

/**/
/************************************ MEF Booleans **********************************/
/**/

#define MEF_TRUE 1
#define MEF_UNKNOWN 0
#define MEF_FALSE -1

A balanced ternary schema including true, unknown, & false states. This is used
throughout the library, and is typically represented in an si1 type.

/**/
/************************************ MEF Globals *********************************/
/**/

// Structures
typedef struct {
 // time constants

si8 recording_time_offset;
ui4 recording_time_offset_mode;
si4 GMT_offset;

 si8 DST_start_time;
 si8 DST_end_time;

// alignment fields
si4 universal_header_aligned;
si4 metadata_section_1_aligned;
si4 time_series_metadata_section_2_aligned;
si4 video_metadata_section_2_aligned;
si4 metadata_section_3_aligned;
si4 all_metadata_structures_aligned;
si4 time_series_indices_aligned;
si4 video_indices_aligned;
si4 RED_block_header_aligned;
si4 record_header_aligned;
si4 record_indices_aligned;
si4 all_record_structures_aligned;
si4 all_structures_aligned;

// RED
sf8 *RED_normal_CDF_table;

// CRC
ui4 *CRC_table;

 ui4 CRC_mode;

// AES tables
si4 *AES_sbox_table;
si4 *AES_rcon_table;
si4 *AES_rsbox_table;

// SHA256 tables
ui4 *SHA256_h0_table;
ui4 *SHA256_k_table;

// UTF8 tables
ui4 *UTF8_offsets_from_UTF8_table;
si1 *UTF8_trailing_bytes_for_UTF8_table;

 // miscellaneous
 si4 verbose;
 ui4 behavior_on_fail;
 ui4 file_creation_umask;

} MEF_GLOBALS;

/ Global Defaults
#define MEF_GLOBALS_VERBOSE_DEFAULT MEF_FALSE
#define MEF_GLOBALS_RECORDING_TIME_OFFSET_DEFAULT 0
#define MEF_GLOBALS_RECORDING_TIME_OFFSET_MODE_DEFAULT (RTO_APPLY_ON_OUTPUT |

RTO_REMOVE_ON_INPUT)
#define MEF_GLOBALS_GMT_OFFSET_DEFAULT 0
#define MEF_GLOBALS_DST_START_TIME_DEFAULT UUTC_NO_ENTRY
#define MEF_GLOBALS_DST_END_TIME_DEFAULT UUTC_NO_ENTRY
#define MEF_GLOBALS_FILE_CREATION_UMASK_DEFAULT S_IWOTH // defined in <sys/stat.h>
#define MEF_GLOBALS_BEHAVIOR_ON_FAIL_DEFAULT EXIT_ON_FAIL
#define MEF_GLOBALS_CRC_MODE_DEFAULT CRC_CALCULATE_ON_OUTPUT

These values are used throughout the library in a thread-safe manner. They are
initialized to the application heap via the function initialize_MEF_globals(), which is in
turn called by initialize_meflib(). These two functions are described below.

The recording_time_offset and GMT_offset constants will be described with the
recording time offset functions. The alignment fields will be discussed with the alignment
checking functions. The CRC_mode constants and CRC_table will be described with
the CRC functions. Likewise, the AES, UTF-8 and, SHA lookup tables will be discussed
in their respective sections below.

/**/
/************************ Error Checking Standard Functions *************************/
/**/

// Constants
#define USE_GLOBAL_BEHAVIOR 0
#define RESTORE_BEHAVIOR 1
#define EXIT_ON_FAIL 2
#define RETURN_ON_FAIL 4
#define SUPPRESS_ERROR_OUTPUT 8

// Function Prototypes

void *e_calloc(size_t n_members, size_t size, const si1 *function, si4 line,
ui4 behavior_on_fail);

FILE *e_fopen(si1 *path, si1 *mode, const si1 *function, si4 line, ui4 behavior_on_fail);

size_t e_fread(void *ptr, size_t size, size_t n_members, FILE *stream, si1 *path,
const si1 *function, si4 line, ui4 behavior_on_fail);

si4 e_fseek(FILE *stream, size_t offset, si4 whence, si1 *path, const si1 *function, si4
line, ui4 behavior_on_fail);

long e_ftell(FILE *stream, const si1 *function, si4 line, ui4 behavior_on_fail);

size_t e_fwrite(void *ptr, size_t size, size_t n_members, FILE *stream, si1 *path,
const si1 *function, si4 line, ui4 behavior_on_fail);

void *e_malloc(size_t n_bytes, const si1 *function, si4 line, ui4 behavior_on_fail);

void *e_realloc(void *ptr, size_t n_bytes, const si1 *function, si4 line,
ui4 behavior_on_fail);

These functions are provided for convenience. They call their corresponding standard c
functions (e.g. e_calloc() calls calloc()), but have built in error messaging. The
behavior_on_fail parameter defines what the function does on failure.

example:

ui4 behavior;
si4 *data;

behavior = (RETURN_ON_FAIL | SUPPRESS_ERROR_OUTPUT);
data = (si4 *) e_calloc((size_t) buffer_size, sizeof(si4), __FUNCTION__, __LINE__, behavior);

__FUNCTION__ and __LINE__ are compiler macros replaced with the function name
and line of the function in which they occur; these can contain any string and number,
however, for more complex failure tracking. Because of the way in which the behavior
parameter is defined, on failure, this call to e_calloc() will return NULL, as would
calloc(), and no error messages will be displayed. If USE_GLOBAL_BEHAVIOR is
passed into this parameter, the MEF_global value of behavior_on_fail will be used. This
is the most common usage in the library. At the time of this writing the default global
behavior_on_fail value is EXIT_ON_FAIL, which will produce error messages and then
exit the program.

/**/
/**************************** Alignment Checking Functions **************************/
/**/

// Prototypes
si4 check_all_alignments(const si1 *function, si4 line);

si4 check_metadata_alignment(ui1 *bytes);

si4 check_metadata_section_1_alignment(ui1 *bytes);

si4 check_metadata_section_3_alignment(ui1 *bytes);

si4 check_record_header_alignment(ui1 *bytes);

si4 check_record_indices_alignment(ui1 *bytes);

si1 check_record_structure_alignments(ui1 *bytes);

si4 check_RED_block_header_alignment(ui1 *bytes);

si4 check_time_series_indices_alignment(ui1 *bytes);

si4 check_time_series_metadata_section_2_alignment(ui1 *bytes);

si4 check_universal_header_alignment(ui1 *bytes);

si4 check_video_indices_alignment(ui1 *bytes);

si4 check_video_metadata_section_2_alignment(ui1 *bytes);

The structures in the MEF library are designed such that they can be read in directly
from disk to the structure without explicit assignment operations for each of the fields.
Because compilers can rearrange fields within structures, this can fail in principle, but
the fields are laid out such that this would be quite unlikely.

For example, on a 64 bit CPU structures are generally laid out on 8 byte boundaries. If
they are not inherently 8 byte aligned, the compiler will often pad the structure.
Explicitly padding the structure to create 8 byte alignment will alleviate this problem.
Likewise an 8 byte data type should fall on a natural 8 byte boundary within the
structure, if it does not the compiler may try to rearrange or pad the structure. In practice
designing a structure such that the compiler will leave it intact is usually quite easy. In
the case of alignment failure, the library would need to be updated to perform explicit
assignment.

The alignment checking functions simply compare compiler generated offsets to
expected offsets from the layout on disk. If all the field offsets match, the functions
return MEF_TRUE, if they do not they return MEF_FALSE. Prior to checking, the global
alignment flags are each set to MEF_UNKNOWN. In addition to a return value, each of
these functions also sets its corresponding MEF_GLOBAL field to MEF_TRUE or
MEF_FALSE.

The function check_all_alignments() calls all of the other alignment checking functions
and returns MEF_TRUE if all of those functions return MEF_TRUE. This function also
takes a function and line argument similar to the error checking functions. This function
is called from initialize_meflib(), and so need not be called explicitly if initialize_meflib()
is called.

If a buffer (the “bytes” field) is passed the function will not allocate any memory for the
testing. If NULL is passed in the “bytes” field the function will allocate memory for the
testing and then free it once the check is complete.

example 1 (adapted from check_all_alignments()):
…
bytes = (ui1 *) e_malloc(METADATA_FILE_BYTES, __FUNCTION__, __LINE__, USE_GLOBAL_BEHAVIOR);
// METADATA is largest fixed file structure, so this will be enough memory to check all
// the library structures

// check all structures
return_value = MEF_TRUE;
if ((check_universal_header_alignment(bytes)) == MEF_FALSE)

return_value = MEF_FALSE;
if ((check_metadata_alignment(bytes)) == MEF_FALSE)

return_value = MEF_FALSE;
if ((check_RED_block_header_alignment(bytes)) == MEF_FALSE)

return_value = MEF_FALSE;
if ((check_time_series_indices_alignment(bytes)) == MEF_FALSE)

return_value = MEF_FALSE;

if ((check_video_indices_alignment(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

if ((check_record_indices_alignment(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

if ((check_record_header_alignment(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

if ((check_record_structure_alignments(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

free(bytes);

return(return_value);

example 2 (the most common use):

return_value = check_all_alignments(__FUNCTION__, __LINE__);

/**/
/**************************** General Purpose MEF Functions *************************/
/**/

As a group, these functions facilitate working with various aspects of the MEF format.
Each will be described separately below.

FUNCTION: all_zeros()

// Prototype
si1 all_zeros(ui1 *bytes, si4 field_length);

all_zeros() returns MEF_TRUE if field pointed to by “bytes” contains all zeros,
MEF_FALSE if not. The expected length of the field is passed in “field_length”. It is
useful in checking fields whose “no entry” value is defined to be all zeros.

example (from show_universal_header()):

if (all_zeros(uh->level_1_password_validation_field, PASSWORD_VALIDATION_FIELD_BYTES) ==
MEF_TRUE)

printf("Level 1 Password Validation_Field: no entry\n");

FUNCTION: allocate_file_processing_struct()

// Prototype
FILE_PROCESSING_STRUCT *allocate_file_processing_struct(si8 raw_data_bytes, ui4 file_type_code,

FILE_PROCESSING_DIRECTIVES *directives, FILE_PROCESSING_STRUCT *proto_fps, si8
bytes_to_copy);

This function allocates a FILE_PROCESSING_STRUCT and returns a pointer to it.

// Structures
typedef struct {

si1 full_file_name[MEF_FULL_FILE_NAME_BYTES]; // full path
// including extension

FILE *fp;
 si4 fd; // file descriptor

si8 file_length;
ui4 file_type_code;
UNIVERSAL_HEADER *universal_header;

 FILE_PROCESSING_DIRECTIVES directives;
PASSWORD_DATA *password_data; // this will often be the same for all

 // files
METADATA metadata;
TIME_SERIES_INDEX *time_series_indices;
VIDEO_INDEX *video_indices;
ui1 *records;

 RECORD_INDEX *record_indices;
ui1 *RED_blocks;
si8 raw_data_bytes;
ui1 *raw_data;

} FILE_PROCESSING_STRUCT;

typedef struct {
si1 close_file;
si1 free_password_data; // when freeing FPS

 si8 io_bytes; // bytes to read or write
 ui4 lock_mode;

ui4 open_mode;
} FILE_PROCESSING_DIRECTIVES;

// Constants

// File Processing constants
#define FPS_FILE_LENGTH_UNKNOWN -1
#define FPS_FULL_FILE -1
#define FPS_NO_LOCK_TYPE ~(F_RDLCK | F_WRLCK | F_UNLCK)
#define FPS_NO_LOCK_MODE 0
#define FPS_READ_LOCK_ON_READ_OPEN 1
#define FPS_WRITE_LOCK_ON_READ_OPEN 2
#define FPS_WRITE_LOCK_ON_WRITE_OPEN 4
#define FPS_WRITE_LOCK_ON_READ_WRITE_OPEN 8
#define FPS_READ_LOCK_ON_READ 16
#define FPS_WRITE_LOCK_ON_WRITE 32
#define FPS_NO_OPEN_MODE 0
#define FPS_R_OPEN_MODE 1
#define FPS_R_PLUS_OPEN_MODE 2
#define FPS_W_OPEN_MODE 4
#define FPS_W_PLUS_OPEN_MODE 8
#define FPS_A_OPEN_MODE 16
#define FPS_A_PLUS_OPEN_MODE 32
#define FPS_GENERIC_READ_OPEN_MODE (FPS_R_OPEN_MODE | FPS_R_PLUS_OPEN_MODE |

FPS_W_PLUS_OPEN_MODE | FPS_A_PLUS_OPEN_MODE)
#define FPS_GENERIC_WRITE_OPEN_MODE (FPS_R_PLUS_OPEN_MODE | FPS_W_OPEN_MODE |

FPS_W_PLUS_OPEN_MODE | FPS_A_OPEN_MODE |
FPS_A_PLUS_OPEN_MODE)

// File Processing Directives defaults
#define FPS_DIRECTIVE_CLOSE_FILE_DEFAULT MEF_TRUE
#define FPS_DIRECTIVE_FREE_PASSWORD_DATA_DEFAULT MEF_FALSE
#define FPS_DIRECTIVE_LOCK_MODE_DEFAULT (FPS_READ_LOCK_ON_READ_OPEN |

FPS_WRITE_LOCK_ON_WRITE_OPEN |
FPS_WRITE_LOCK_ON_READ_WRITE_OPEN)

#define FPS_DIRECTIVE_OPEN_MODE_DEFAULT FPS_NO_OPEN_MODE
#define FPS_DIRECTIVE_IO_BYTES_DEFAULT FPS_FULL_FILE // bytes to read or

// write

The FILE_PROCESSING_STRUCT (FPS) is the fundamental file handling unit of the
MEF library. The raw_data field contains the data as it is arranged in the MEF
structures, and on disk. The universal_header pointer within the FPS will be assigned
the value of the start of the raw_data array. Depending on file type, one of the other
pointers within the structure will be assigned to the raw_data array after the universal
header region.

The passed parameter raw_data_bytes determines the amount of memory allocated to
the raw_da ta f i e ld . I f t h i s pa ramete r i s g rea te r than o r equa l t o
UNIVERSAL_HEADER_BYTES, the universal_header pointer is assigned to the
raw_data field.

T h e F I L E _ P R O C E S S I N G _ S T R U C T ’ s f i l e _ l e n g t h f i e l d i s s e t t o
FPS_FILE_LENGTH_UNKNOWN upon allocation. This value is updated to reflect the
current length of the file on disk (in bytes) during read and write operations.

If a prototype FILE_PROCESSING_STRUCT is passed in proto_fps, its directives,
password data, and raw data are copied to the new FILE_PROCESSING_STRUCT
(unless bytes_to_copy is greater than raw_data_bytes). The amount of raw_data copied
is specified in the bytes_to_copy field. If proto_fps is NULL, no copying is performed. If
copying is performed, the universal header’s CRC will be not be calculated, and may be
inaccurate. This is updated in write_MEF_file() before write out, and so is not usually an
issue. It could be explicitly calculated with calculate_CRC().

If a pointer to a FILE_PROCESSING_DIRECTIVES structure is passed, These values
are copied into the new FPS’s directives. These supersede any directives passed in the
prototype FPS’s directives. If this pointer is NULL and the prototype FPS pointer is
NULL, the directives are set to their default values.

The FILE_PROCESSING_DIRECTIVES are used by the reading and writing functions.
Specifically, close_file tells reading & writing functions to to close the file when they are
finished. free_password_data tells functions freeing a FILE_PROCESSING_STRUCT
to free this also. This is often undesirable as the pointer to a single PASSWORD_DATA
structure is often shared between many FILE_PROCESSING_STRUCTs. At this writing
the default value of the free_password_data directive is MEF_FALSE. io_bytes tells
reading & writing functions how much of the file to read or write. By default this is the
whole file, but this is an impractical choice for very large files that should be processed
piecemeal such as the time series data files, or some record data files. lock_mode

specifies advisory locking on the file. All the MEF library functions observe the advisory
locking mechanism, to facilitate parallel processing of files. Note that, as this is advisory
only, external functions may choose to ignore these locks. open_mode specifies how a
file should be opened, and corresponds to standard Unix / Posix opening modes. This
parameter interacts with the lock_mode parameter. read_time_series_data specifies
that time series segment data should be read when reading in a segment data file. At
this writing, the default value of this directive is MEF_FALSE. Likewise
read_records_data species that all the records data should be read in when reading a
records data file. At this writing, the default value of this directive is MEF_FALSE also.
Records and time series data files can be very large and so reading the whole file is
often undesirable, hence the default value of MEF_FALSE for these directives. These
directives are used by the functions read_MEF_session(), read_MEF_channel(), and
read_MEF_segment(). They are not used by read_MEF_file() which uses the io_bytes
parameter to determine how much of a file to read.

The file_type_code specifies which of the FILE_PROCESSING_STRUCT pointers will
be assigned to the raw_data after the universal header. The file_type_string field of the
universal header is also set by the file_type_code. If the file_type_code is zero, these
assignments are not made.

The raw_data_bytes parameter specifies how much memory to allocate to the raw_data
array. This value is copied into the corresponding member of the new FPS.

example 1: allocate an empty FILE_PROCESSING_STRUCT

fps = allocate_file_processing_struct(0, 0, NULL, NULL, 0);

example 2: allocate an empty FILE_PROCESSING_STRUCT with space for just a
universal header

fps = allocate_file_processing_struct(UNIVERSAL_HEADER_BYTES, 0, NULL, NULL, 0);

example 3: allocate a metadata FILE_PROCESSING_STRUCT and copy its universal
header from the prototype FPS, “other_fps”

fps = allocate_file_processing_struct(METADATA_FILE_BYTES, TIME_SERIES_METADATA_FILE_TYPE_CODE,
NULL, other_fps, UNIVERSAL_HEADER_BYTES);

example 4: allocate a metadata FILE_PROCESSING_STRUCT and copy all of the
data, including the universal header from “other_metadata_fps”.

fps = allocate_file_processing_struct(METADATA_FILE_BYTES, TIME_SERIES_METADATA_FILE_TYPE_CODE,
NULL, other_metadata_fps, METADATA_FILE_BYTES);

FUNCTION: apply_recording_time_offset()

// Prototype

void apply_recording_time_offset(si8 *time);

The global recording time offset is applied to the passed µUTC time. If the value is
negative, it is presumed to already have had the recording time offset applied, and
nothing is done. The converse function is remove_recording_time_offset() described
below.

FUNCTION: check_password()

// Prototype
si4 check_password(si1 *password, const si1 *function, si4 line);

Checks that the password pointer is not NULL, and that the password length is less
than or equal to PASSWORD_BYTES. Returns 0 on success, 1 on failure. This function
does not validate the password against the password validation fields.
Process_password_data() does this. In fact, process_password_data() is the only
library function to call check_password().

example (from process_password_data()):

if (check_password(unspecified_password, __FUNCTION__, __LINE__) == 0)
// password is not NULL, and is of valid length

FUNCTION: count_directories()

// Prototype
si4 count_directories(si1 *enclosing_directory, si1 *extension);

Returns the number of directories with the specified extension in an enclosing directory.
This function can be useful for knowing how many channels or segments currently exist
in a parallel processing situation.

FUNCTION: cpu_endianness()

// Constants
#define MEF_BIG_ENDIAN 0
#define MEF_LITTLE_ENDIAN 1

// Prototype
ui1 cpu_endianness();

Returns MEF_BIG_ENDIAN on big-endian machines and MEF_LITTLE_ENDIAN on
little-endian machines. The current library only supports little-endian MEF files, but the
specification supports both. If there is a future demand for big-endian MEF, the library
can be updated.

example (from initialize_meflib()):

if (cpu_endianness() != MEF_LITTLE_ENDIAN)
fprintf(stderr, "Error: Library only coded for little-endian machines currently\n”);

FUNCTION: decrypt_metadata()

// Prototype
si4 decrypt_metadata(FILE_PROCESSING_STRUCT *fps);

Decrypts sections 2 and 3 of metadata file (passed in fps) if they are currently encrypted
and if access level is sufficient. It marks decrypted sections as decrypted (negative of
encryption level) in section 1 of the metadata.

It returns zero on success.

FUNCTION: decrypt_records()

// Prototype
si4 decrypt_records(FILE_PROCESSING_STRUCT *fps);

// Constant
#define UNKNOWN_NUMBER_OF_ENTRIES -1

Decrypts records if they are currently encrypted and the access level is sufficient as
specified in the record header. Marks decrypted records as decrypted (negative of
encryption level) in record header. If the number of records is known (stored in the
universal header number_of_entries field), this value is used, if that is set to
UNKNOWN_NUMBER_OF_ENTRIES the function will work, as long as the
FILE_PROCESSING_STRUCT’s raw_data_bytes field reflects an integral number of
records.

The function also applies or removes the recording time offset to the times in the record
headers according to the value of the the MEF_global recording_time_offset_mode.

It returns zero on success.

FUNCTION: encrypt_metadata()

// Prototype
si4 encrypt_metadata(FILE_PROCESSING_STRUCT *fps);

Encrypts sections 2 and 3 of metadata file (passed in fps), if they are currently
decrypted, to the encryption level specified in section 1 of the metadata. It marks
encrypted sections as encrypted (positive of encryption level) in section 1 of the
metadata.

It returns zero on success.

FUNCTION: encrypt_records()

// Constant
#define UNKNOWN_NUMBER_OF_ENTRIES -1

// Prototype
si4 encrypt_records(FILE_PROCESSING_STRUCT *fps);

Encrypts records if currently decrypted to the level specified in the record header. It
marks encrypted records as encrypted (positive of encryption level) in the record
header. If the number of records is known (stored in the universal header
n u m b e r _ o f _ e n t r i e s f i e l d) , t h i s v a l u e i s u s e d , i f t h i s i s s e t t o
UNKNOWN_NUMBER_OF_ENTRIES the function will work as long as the
FILE_PROCESSING_STRUCT’s raw_data_bytes field reflects an integral number of
records.

The function also applies or removes the recording time offset to the times in the record
headers according to the value of the the MEF_global recording_time_offset_mode.

It returns zero on success.

FUNCTION: extract_path_parts()

// Prototype
extract_path_parts(si1 *full_file_name, si1 *path, si1 *name, si1 *extension);

Non-destructively copies the path (full_file_name string up to enclosing directory) into
path (if not NULL), the name (last component in full_file_name) into name (if not
NULL), and the extension (last component in full_file_name after a “.”) into extension (if
not NULL). Pass NULL for any components that are not needed. Terminal forward

slashes (“/“) are removed. the path is prepended with the current working directory if the
full_file_name does not begin from root. The function returns zero on success.

example:

SESSION session;
si1 *passed_session_directory = “/Data/Session_1.mefd”

extract_path_and_name(passed_session_directory, session_path, session_name, session_extension);

On return, session_path contains “/Data”, session._name contains “Session_1”, and
extension contains “mefd”. if only the name was required the following call would
suffice:

extract_path_and_name(passed_session_directory, NULL, session_name, NULL);

FUNCTION: extract_terminal_password_bytes()

// Prototype
si4 extract_terminal_password_bytes(si1 *password, si1 *password_bytes);

UTF-8 passwords can contain up to 4 bytes per character. In UTF-8 encoding, the most
unique byte in each character is the terminal byte. This function extracts those bytes
from the UTF-8 password (passed in password) to password_bytes, which is used to
generate the encryption key for the AES algorithms. Unused bytes are zeroed. This
function is called by process_password_data().

FUNCTION: fill_empty_password_bytes()

// Prototype
void fill_empty_password_bytes(si1 *password_bytes);

Zero-value bytes at end of the password_bytes array are replaced with replicable
pseudo-random values generated by the included MEF library function random_byte().
This function is not currently used in the library, but can be used to strengthen weak
passwords, although as MEF is open source, the determined hacker could overcome
this measure.

(inspired by the password “x” :)

FUNCTION: find_discontinuity_indices()

// Prototype
si8 *find_discontinuity_indices(TIME_SERIES_INDEX *tsi, si8 num_disconts, si8

number_of_blocks);

Allocates and returns an array of indices into a TIME_SERIES_INDEX array where
discontinuities occur. This can be useful in processing data where crossing discontinuity
boundaries is not desirable. It is the calling function’s responsibility to free this array.

FUNCTION: find_discontinuity_samples()

// Prototype
si8 *find_discontinuity_samples(TIME_SERIES_INDEX *tsi, si8 num_disconts, si8

number_of_blocks, si1 add_tail);

Allocates and returns an array of sample numbers within a segment where
discontinuities occur. This can be useful in processing data where crossing discontinuity
boundaries is not desirable. It is the calling function’s responsibility to free this array. If
add_tail is set to MEF_TRUE, the final entry in the array will be the total number of
samples in the segment. This can be useful for developing clean loops needing to know
the number of samples in a contiguous segment.

FUNCTION: force_behavior()

// Constants
#define RESTORE_BEHAVIOR -1

// Prototype
void force_behavior(si4 behavior);

Changes MEF_globals value of behavior_on_fail and stores original value for
restoration in a subsequent call.

THIS ROUTINE IS NOT THREAD SAFE: USE ONLY IN SINGLE THREADED
APPLICATIONS.

example: force RETURN_ON_FAIL for a function call, and then restore original value

force_behavior(RETURN_ON_FAIL);
function_whose_failure_can_be_handled();
force_behavior(RESTORE_BEHAVIOR);

FUNCTION: fps_close()

// Prototype
void fps_close(FILE_PROCESSING_STRUCT *fps);

Closes the file associated with the FPS’s FILE pointer and sets it to NULL. It also sets
the FPS’s file descriptor to -1 (closed file).

FUNCTION: fps_lock()

// Constants
#define FPS_NO_LOCK_TYPE ~(F_RDLCK | F_WRLCK | F_UNLCK)

// from <fcntl.h>
#define FPS_NO_LOCK_MODE 0
#define FPS_READ_LOCK_ON_READ_OPEN 1
#define FPS_WRITE_LOCK_ON_READ_OPEN 2
#define FPS_WRITE_LOCK_ON_WRITE_OPEN 4
#define FPS_WRITE_LOCK_ON_READ_WRITE_OPEN 8
#define FPS_READ_LOCK_ON_READ 16
#define FPS_WRITE_LOCK_ON_WRITE 32

// Prototype
si4 fps_lock(FILE_PROCESSING_STRUCT *fps, si4 lock_type, const si1 *function, si4 line,

ui4 behavior_on_fail);

Sets an advisory lock on the file specified by the FPS directive’s lock_mode. The lock is
set in blocking mode (i.e. it waits until a lock can be obtained). lock_type specifies
either a read or write lock. The function & line arguments are provided to know where
the function was called from in the case of failure.

FUNCTION: fps_open()

// Constants
#define FPS_NO_OPEN_MODE 0
#define FPS_R_OPEN_MODE 1
#define FPS_R_PLUS_OPEN_MODE 2
#define FPS_W_OPEN_MODE 4
#define FPS_W_PLUS_OPEN_MODE 8
#define FPS_A_OPEN_MODE 16
#define FPS_A_PLUS_OPEN_MODE 32
#define FPS_GENERIC_READ_OPEN_MODE (FPS_R_OPEN_MODE |

FPS_R_PLUS_OPEN_MODE |
FPS_W_PLUS_OPEN_MODE |
FPS_A_PLUS_OPEN_MODE)

#define FPS_GENERIC_WRITE_OPEN_MODE (FPS_R_PLUS_OPEN_MODE |
FPS_W_OPEN_MODE |
FPS_W_PLUS_OPEN_MODE |

FPS_A_OPEN_MODE |
FPS_A_PLUS_OPEN_MODE)

// Prototype
si4 fps_open(FILE_PROCESSING_STRUCT *fps, const si1 *function, si4 line,

ui4 behavior_on_fail);

Opens the file specified by the FPS according to the FPS directive open_mode. If the
mode permits file creation, the file will be created. If higher level directories are needed
to open the file in the specified location, they too are created. Once open, the file is
optionally locked according to the FPS directive’s lock_mode. The file descriptor and file
length are also updated.

FUNCTION: fps_read()

// Prototype
si4 fps_read(FILE_PROCESSING_STRUCT *fps, const si1 *function, si4 line,

ui4 behavior_on_fail);

Reads bytes specified by the FPS directive’s io_bytes (or more commonly the full file if
this is set to FPS_FULL_FILE). If lock_on_read is specified in the FPS directive’s
lock_mode, the file will be locked prior to the read and unlocked after the read.

FUNCTION: fps_unlock()

// Prototype
si4 fps_unlock(FILE_PROCESSING_STRUCT *fps, const si1 *function, si4 line,

ui4 behavior_on_fail);

Releases the advisory lock on the file specified by the FPS. The function & line
arguments are provided to know where the function was called from in the case of
failure.

FUNCTION: fps_write()

// Prototype
si4 fps_write(FILE_PROCESSING_STRUCT *fps, const si1 *function, si4 line,

ui4 behavior_on_fail);

Writes bytes specified by the FPS directive’s io_bytes (or more commonly the full file if
this is set to FPS_FULL_FILE). If lock_on_write is the specified in the FPS directive’s
lock_mode, the file will be locked prior to the write and unlocked after the write. The file
descriptor and file length are also updated.

FUNCTION: free_channel()

// Prototype
void free_channel(CHANNEL *channel, si4 free_channel_structure);

Frees all the memory pointed to by a CHANNEL structure including all memory
associated with SEGMENT structures within it. if free_channel_structure is set to
MEF_TRUE, the passed CHANNEL structure will itself be freed also.

FUNCTION: free_file_processing_struct()

// Prototype
void free_file_processing_struct(FILE_PROCESSING_STRUCT *fps);

Frees a FILE_PROCESSING_STRUCT’s raw_data buffer if not NULL, and then frees
the FILE_PROCESSING_STRUCT. It also closes the FILE pointer, if it is open and the
close_file directive is set to MEF_TRUE. If the free_password_data directive is set to
MEF_TRUE, the FILE_PROCESSING_STRUCT’s password_data will be freed.

FUNCTION: free_segment()

// Prototype
void free_segment(SEGMENT *segment, si4 free_segment_structure);

Frees all the memory pointed to by a SEGMENT structure. if free_segment_structure is
set to MEF_TRUE, the passed SEGMENT structure will itself be freed also.

FUNCTION: free_session()

// Prototype
void free_session(SESSION *session, si4 free_session_structure);

Frees all the memory pointed to by a SESSION structure including all memory
associated with CHANNEL structures within it, and the SEGMENT structures within
them. If free_session_structure is set to MEF_TRUE, the passed SESSION structure
will itself be freed also.

FUNCTION: generate_file_list()

// Prototype
si1 **generate_file_list(si1 **file_list, si4 *num_files, si1 *enclosing_directory, si1

*extension)

Creates a list of files in the enclosing_directory with the specified extension. If file_list is
not NULL, it is presumed to be allocated, otherwise it will be allocated and it is the
calling function’s responsibility to free it. The function can also be used to generate a list
of directories with a specified extension. The number of files or directories in the list is
returned in num_files.

FUNCTION: generate_hex_string()

// Prototype
si1 *generate_hex_string(ui1 *bytes, si4 num_bytes, si1 *string);

Creates a hexadecimal string from “num_bytes” of the bytes in “bytes” into the string
pointed to by “string”. If string is NULL, it will be allocated. The length of the string
required is: (num_bytes + 1) * 3. This is conveniently generated by the macro
HEX_STRING_BYTES().

example 1:
ui1 hex_str[HEX_STRING_BYTES(ENCRYPTION_KEY_BYTES)];

generate_hex_string(pwd->level_1_encryption_key, ENCRYPTION_KEY_BYTES, hex_str);
printf("Level 1 Encryption Key: %s\n", hex_str);

example 2:
ui1 *hex_str;

hex_str = generate_hex_string(pwd->level_1_encryption_key, ENCRYPTION_KEY_BYTES, NULL);
printf("Level 1 Encryption Key: %s\n", hex_str);
free(hex_str);

FUNCTION: generate_recording_time_offset()

// Constants
#define USE_SYSTEM_TIME -1
#define MAXIMUM_GMT_OFFSET 86400
#define MINIMUM_GMT_OFFSET -86400

// Prototype
si8 generate_recording_time_offset(si8 recording_start_time_uutc, si4 GMT_offset);

The funct ion ca lcu la tes the record ing t ime o ffse t f rom the passed
recording_start_time_uutc and GMT_offset. The result is stored in the MEF_globals
v a r i a b l e s r e c o r d i n g _ t i m e _ o f f s e t a n d G M T _ o f f s e t , r e s p e c t i v e l y. I f
recording_start_time_uutc equals USE_SYSTEM_TIME, the recording time offset and
GMT will be obtained from the system settings, and recording is assumed to start at the
time of the function call.

The GMT offset is the number of seconds (not hours) the recording time zone is offset
from GMT at the time of recording start. Its range is MINIMUM_GMT_OFFSET to
MAXIMUM_GMT_OFFSET. If GMT_offset is outside this range, it’s value will be set to
zero, and an error will be generated.

The function returns the recording time offset.

example:

#define CST_OFFSET_HOURS -6

generate_recording_time_offset(recording_start_time, CST_OFFSET_HOURS * 3600);

FUNCTION: generate_segment_name()

// Prototype
si1 *generate_segment_name(FILE_PROCESSING_STRUCT *fps, si1 *segment_name);

A simple convenience function to generate the segment name from the channel name
and segment number in the FPS’s universal header. The result is stored in
segment_name if it is not NULL. The result is allocated and returned otherwise. If
allocated, the calling function is responsible for freeing it.

FUNCTION: generate_UUID()

// Prototype
ui1 *generate_UUID(ui1 *uuid);

Assigns 16 random bytes to the passed uuid buffer. The possibility of 16 zero bytes is
excluded as this is the NO_ENTRY value for UUIDs. The result is stored in uuid if it is

not NULL. The result is allocated and returned otherwise. If allocated, the calling
function is responsible for freeing it.

example:

generate_UUID(universal_header->level_UUID);

FUNCTION: initialize_file_processing_directives()

// File Processing Directives defaults
#define FPS_DIRECTIVE_CLOSE_FILE_DEFAULT MEF_TRUE
#define FPS_DIRECTIVE_FREE_PASSWORD_DATA_DEFAULT MEF_FALSE
#define FPS_DIRECTIVE_LOCK_MODE_DEFAULT (FPS_READ_LOCK_ON_READ_OPEN |

FPS_WRITE_LOCK_ON_WRITE_OPEN |
FPS_WRITE_LOCK_ON_READ_WRITE_OPEN)

#define FPS_DIRECTIVE_OPEN_MODE_DEFAULT FPS_NO_OPEN_MODE
#define FPS_DIRECTIVE_IO_BYTES_DEFAULT FPS_FULL_FILE
#define FPS_DIRECTIVE_UPDATE_DEPENDENT_FILES_DEFAULT MEF_FALSE

// Prototype
FILE_PROCESSING_DIRECTIVES *initialize_file_processing_directives(

FILE_PROCESSING_DIRECTIVES *directives);

If NULL is passed a FILE_PROCESSING_DIRECTIVES structure is allocated and it’s
pointer returned. In either case, the fields of the structure are set to their default values.

FUNCTION: initialize_MEF_globals()

// Prototype
void initialize_MEF_globals();

The MEF_GLOBALS are allocated to the global heap and initialized to their default
values. A global pointer to the MEF_GLOBALS structure is set whose name is
“MEF_globals”. These globals are used by many functions in the library. It includes
boolean fields stating whether structure alignment has been confirmed, lookup tables for
CRC calculation, UTF8 printing, AES encryption, and SHA hash functions, the session
recording time offset and GMT offset, and a verbose flag which if set will cause many
library functions to show the output of their processing.

If the global pointer MEF_globals is NULL, a MEF_GLOBALS structure will be allocated
on the application heap and the MEF_globals pointer set to its address. If the
MEF_globals pointer is not NULL the function will simply reset all the global values to
their defaults. This function is called by initialize_meflib(), and so is rarely called
explicitly.

example:

extern MEF_GLOBALS *MEF_globals;

initialize_MEF_globals();

FUNCTION: initialize_meflib()

// Prototype
si4 initialize_meflib();

Initializes MEF_globals to default values (if the MEF_globals pointer is NULL, which it is
at the launch of the library), checks CPU endianness, checks MEF structure alignments,
seeds the random number generator with the current time, sets the file creation umask,
and a loads the CRC, UTF8, AES, and SHA lookup tables into the global heap (not
stack). Returns MEF_TRUE if all structures are aligned, MEF_FALSE if not. The
function currently exits if the cpu endianness is not little endian. This can be changed if
there is a demand for big endian processing going forward.

example 1:

if (initialize_meflib() == MEF_FALSE) {
fprintf(stderr, “error initializing meflib => exiting\n”)
exit(1);

}
MEF_globals->verbose = MEF_TRUE; // globals initialized by initialize_meflib(),

// default verbose setting is MEF_FALSE

example 2:

initialize_MEF_globals(); // globals will not be initialized by initialize_meflib()
MEF_globals->verbose = MEF_TRUE; // default verbose setting is MEF_FALSE
initialize_meflib();

This example initializes MEF_globals to their default values. It then sets verbose to
MEF_TRUE. Because MEF_globals is not NULL, initialize_meflib() will not call
initialize_MEF_globals(), allowing verbose output of initialization routines, and
preserving any other non-default global setting changes that were made.

FUNCTION: initialize_metadata()

// Prototype
METADATA *initialize_metadata(METADATA *md);

The function sets all fields in a METADATA structure to their NO_ENTRY values. No
encryption is performed. Section 2 fields are set according to the FPS/s file_type_code.

example:

(void) initialize_metadata(metadata_fps);

FUNCTION: initialize_universal_header()

// Prototype
si4 initialize_universal_header(FILE_PROCESSING_STRUCT *fps, si1 generate_level_UUID, si1

generate_file_UUID, si1 originating_file);

// Universal Header Structure
typedef struct {

ui4 header_CRC;
ui4 body_CRC;

 si1 file_type_string[TYPE_BYTES];
 ui1 mef_version_major;
 ui1 mef_version_minor;
 ui1 byte_order_code;

si8 start_time;
si8 end_time;
si8 number_of_entries;
si8 maximum_entry_size;

 si4 segment_number;
 si1 channel_name[MEF_BASE_FILE_NAME_BYTES]; // utf8[63], base name only, no extension
 si1 session_name[MEF_BASE_FILE_NAME_BYTES]; // utf8[63], base name only, no extension

si1 anonymized_name[UNIVERSAL_HEADER_ANONYMIZED_NAME_BYTES]; // utf8[63]
 ui1 level_UUID[UUID_BYTES];

ui1 file_UUID[UUID_BYTES];
 ui1 provenance_UUID[UUID_BYTES];

ui1 level_1_password_validation_field[PASSWORD_VALIDATION_FIELD_BYTES];
ui1 level_2_password_validation_field[PASSWORD_VALIDATION_FIELD_BYTES];

 ui1 protected_region[UNIVERSAL_HEADER_PROTECTED_REGION_BYTES];
ui1 discretionary_region[UNIVERSAL_HEADER_DISCRETIONARY_REGION_BYTES];

} UNIVERSAL_HEADER;

// Constants
#define NO_UUID 0

The function sets universal header fields to default values. It will generate the
appropriate UUIDs if generate_level_UUID or generate_file_UUID are set to
MEF_TRUE. If originating_file is set to MEF_TRUE, the provenance_UUID will be set
to the value of the file_UUID. It fills in the current library’s MEF version and endianness.

example:

initialize_universal_header(generic_uh, MEF_TRUE, MEF_FALSE, MEF_FALSE);

Initializes a generic universal header with a level UUID, but no file or provenance
UUIDs.

FUNCTION: local_date_time_string()

// Prototype
void local_date_time_string(si8 uutc_time, si1 *time_str);

Returns a string with local date and time from a UUTC time. 32 bytes are required for
this string. If NULL is passed for the string, it will be allocated and the pointer to the
string returned, it is the calling function’s responsibility to free this memory.

If the recording time offset is applied and the value is set in MEF_globals, this will be
added to the UUTC time. The GMT offset is also applied to obtain the local time. Note
that if a recording time offset is applied, but the reader has no access to these values,
the global values of both will be zero (set in initialize_MEF_globals()). And so the time
returned will be the true local time of day at the time of recording, but with recording
beginning on Jan 1, 1970 in GMT.

If recording time offset is not applied, its global value is zero, but the GMT offset is still
required to know the local time of day. Only if the global GMT offset is set correctly
can the function will return the correct local time of day.

example:

si1 time_str[32]; // all 32 bytes are required

local_date_time_string(universal_header->start_time, time_str);

FUNCTION: MEF_pad()

// Prototype
si8 MEF_pad(ui1 *buffer, si8 content_len, ui4 alignment);

Fills buffer beyond content_len (in bytes) with PAD_BYTE_VALUE, to next boundary
determined by alignment. Returns (content_len + pad_bytes).

FUNCTION: MEF_snprintf()

// Prototype
void MEF_snprintf(si1 *target, si4 target_field_bytes, si1 *format, …);

A version of snprintf() that zeros the unused bytes in the target field. Called as standard
sprintf() with the extra parameter target_field_bytes that specifies the length of the field

being written to. MEF strings are zeroed in unused bytes to facilitate identical CRCs in
files with identical information content.

example:

MEF_snprintf(full_file_name, MEF_FULL_FILE_NAME_BYTES, “%s/%s.%s”, session->path, session->name,
SESSION_DIRECTORY_TYPE_STRING);

Prints full path to session directory into full_file_name field. Zeros unused bytes.

FUNCTION: MEF_sprintf()

// Prototype
void MEF_sprintf(si1 *target, si4 target_field_bytes, si1 *format, …);

A version of sprintf() that returns the number of characters copied including the
terminating zero. Useful in calculating pad-bytes needed in record data fields. See
MEF_pad();

FUNCTION: MEF_strcat()

// Prototype
si4 MEF_strcat(si1 *target_string, si1 *source_string);

A version of strcat() that returns the number of characters in the concatenated string
including the terminating zero. Useful in calculating pad-bytes needed in record data
fields. See MEF_pad();

FUNCTION: MEF_strcpy()

// Prototype
si4 MEF_strcpy(si1 *target_string, si1 *source_string);

A version of strcpy() that returns the number of characters copied including the
terminating zero. Useful in calculating pad-bytes needed in record data fields. See
MEF_pad();

FUNCTION: MEF_strncat()

// Prototype
void MEF_strncat(si1 *target_string, si1 *source_string, si4 target_field_bytes);

A version of strcat() that zeros the unused bytes in the target field. Called as standard
strncat(). MEF strings are zeroed in unused bytes to facilitate identical CRCs in files
with identical information content.

FUNCTION: MEF_strncpy()

// Prototype
void MEF_strncpy(si1 *target_string, si1 *source_string, si4 target_field_bytes);

A version of strncpy() that zeros the unused bytes in the target field. Called as standard
strncpy(). MEF strings are zeroed in unused bytes to facilitate identical CRCs in files
with identical information content.

example:

MEF_strncpy(metadata_fps->universal_header->channel_name, channel_name,
MEF_BASE_FILE_NAME_BYTES);

Copy channel_name into universal header channel_name field, zeroing unused bytes.

FUNCTION: numerical_fixed_width_string()

// Prototype
si1 *numerical_fixed_width_string(si1 *string, si4 string_bytes, si4 number);

Writes into string, string_bytes total digits, including prepended zeroes, the value of
number. String must be able to accommodate (string_bytes + 1) bytes. If string is NULL,
it will be allocated and the pointer to it will be returned. The calling function is
responsible for freeing this memory.

example:

si4 seg_number = 2;
si1 seg_number_string[FILE_NUMBERING_DIGITS + 1];

(void) numerical_fixed_width_string(seg_number_string, FILE_NUMBERING_DIGITS, seg_number);
MEF_sprintf(segment.name, MEF_SEGMENT_BASE_FILE_NAME_BYTES, "%s-%s", channel.name,
seg_number_string);

This will print the segment name into the segment.name field. The segment name is
defined to be the channel name followed by a hyphen and a 6 digit (zero-prepended)
version of it’s segment number (in this case, 2).

FUNCTION: offset_time_series_index_times()

// Prototype
si4 offset_time_series_index_times(FILE_PROCESSING_STRUCT *fps, si4 action);

// Constants
#define RTO_INPUT_ACTION 1
#define RTO_OUTPUT_ACTION 2

This function applies the recording time offset to the array of time series indices
according to the global recording_time_offset_mode and whether the operation is being
done as input or output. This is specified in the passed action parameter, with either the
constant RTO_INPUT_ACTION or RTO_OUTPUT_ACTION. This function is called by
read_MEF_file() and write_MEF_file() and usually needn’t be called explicitly.

FUNCTION: offset_video_index_times()

// Prototype
si4 offset_video_index_times(FILE_PROCESSING_STRUCT *fps, si4 action);

// Constants
#define RTO_INPUT_ACTION 1
#define RTO_OUTPUT_ACTION 2

This function applies the recording time offset to the array of video indices according to
the global recording_time_offset_mode and whether the operation is being done as
input or output. This is specified in the passed action parameter, with either the
constant RTO_INPUT_ACTION or RTO_OUTPUT_ACTION. This function is called by
read_MEF_file() and write_MEF_file() and usually needn’t be called explicitly.

FUNCTION: process_password_data()

// Prototype
PASSWORD_DATA *process_password_data(si1 *unspecified_password, si1 *level_1_password, si1

*level_2_password, UNIVERSAL_HEADER *universal_header);

// Structures
typedef struct {
 ui1 level_1_encryption_key[ENCRYPTION_KEY_BYTES];
 ui1 level_2_encryption_key[ENCRYPTION_KEY_BYTES];

 ui1 access_level;
} PASSWORD_DATA;

Allocates a PASSWORD_DATA structure and fills it.

If an unspecified_password is passed, the function will determine whether the password
is a level 1 or level 2 password and set the access_level of the PASSWORD_DATA
structure accordingly via the password_validation_fields in the passed universal header.
Appropriate decryption keys are generated and put into the PASSWORD_DATA
structure. This is generally used for reading MEF files.

If a level_1_password or level_2_password is passed, the password validation fields will
be generated into the passed universal_header structure. The access_level of the
PASSWORD_DATA structure will be set according to whether a level_1 or level_2
password was passed. Appropriate encryption keys are generated and put into the
PASSWORD_DATA structure. This is generally used for writing new MEF files. Note that
for level 2 access, a level 1 password must be passed, even if level 1 encryption is
never used in the new MEF files.

example 1:

fps->password_data = process_password_data(password, NULL, NULL, fps->universal_header);

Processes an unspecified password for reading by validating against the password
validation fields in the universal_header. Depending on the access level, a level 1 or
both a level 1 and level 2 decryption keys are generated into their appropriate fields in
the PASSWORD_DATA structure. A PASSWORD_DATA structure pointer is returned.

example 2:

fps->password_data = process_password_data(NULL, level_1_password, level_2_password,
universal_header);

In writing a new MEF file, a level 1 and level 2 password are passed, and their
password validation fields are written into the universal header. Both level 1 and level 2
encryption keys are generated into their appropriate fields in the PASSWORD_DATA
structure.

FUNCTION: proportion_filt()

// Prototype
void proportion_filt(sf8 *x, sf8 *px, si8 len, sf8 prop, si4 span);

Performs a sliding widow proportion filter from input array x to output array px of length
len. if px is NULL it will be allocated, and responibility for freeing this memory falls to the
calling function. The span is the window width in points and will be made odd if it is not.

The prop parameter varies between 0.0 and 1.0. A value of 0.0 in a local minimum filter,
0.5 is a median filter, and 1.0 is a local maximum filter. All other values in the range are
valid, so a value of 0.75 would give a filter of the local 75th percentile value in the
window.

FUNCTION: random_byte()

// Prototype
ui1 random_byte(ui4 *m_w, ui4 *m_z);

Returns a pseudorandom byte. Used by fill_empty_password_bytes(). Pseudorandom
number generator code is contained within the function (i.e. system random number
generator is not used) so that values are replicable across systems. This function is
available, but not currently used in any of the other library functions.

FUNCTION: read_MEF_channel()

// Prototype
CHANNEL *read_MEF_channel(CHANNEL *channel, si1 *chan_path, si4 channel_type, si1 *password,

PASSWORD_DATA *password_data, si1 read_time_series_data, si1 read_record_data)

// Channel Types
#define UNKNOWN_CHANNEL_TYPE -1
#define TIME_SERIES_CHANNEL_TYPE 1
#define VIDEO_CHANNEL_TYPE 2

// Structures
typedef struct {
 si4 channel_type;

METADATA metadata;
 FILE_PROCESSING_STRUCT *record_data_fps;

FILE_PROCESSING_STRUCT *record_indices_fps;
 si8 number_of_segments;

SEGMENT *segments;
si1 path[MEF_FULL_FILE_NAME_BYTES]; // full path to enclosing

 // directory
si1 name[MEF_BASE_FILE_NAME_BYTES]; // just base name, no extension
si1 extension[TYPE_BYTES]; // channel directory extension
si1 session_name[MEF_BASE_FILE_NAME_BYTES]; // base name, no extension
ui1 level_UUID[UUID_BYTES];
si1 anonymized_name[UNIVERSAL_HEADER_ANONYMIZED_NAME_BYTES];
si8 maximum_number_of_records;
si8 maximum_record_bytes;
si8 earliest_start_time;
si8 latest_end_time;

} CHANNEL;

This function will read the channel pointed to by chan_path (full path to the channel
directory) and fill in the the fields in the CHANNEL structure. If a channel structure is not
passed (NULL passed), one will be allocated. Either a password, or PASSWORD_DATA

structure should be passed to read encrypted fields. In the case that no data is
encrypted or only unencrypted data is needed, NULL can be passed for both fields. If
the read_time_series_data flag is set to MEF_TRUE in the passed directives, each time
series segment’s data will be read into its SEGMENT structure’s time_series_data_fps
raw_data field after the segment data’s universal header; otherwise only the segment
data’s universal header will be read into this field. If directives are NULL, default
directives will be used.

The session_name and level_UUID fields are filled in, but are redundant with the
universal header information in the record data and record indices files, if present.
These fields are included in this structure because they are useful in functions that write
new channel files.

If read_record_data is set to MEF_TRUE, the all record data will be read into the
appropriate structure’s record_data_fps raw_data field after the record data’s universal
header and the file will be closed; otherwise only the record data’s universal header will
be read into this field and the file will be left open with the file pointer pointing to the next
byte after the universal header.

The metadata structure is the same as those contained in a segment FPS, but is not
part of an FPS. It contains summary information of the segment metadata files. Fields
whose values vary across segments and whose value cannot be expressed as a
maximum, etc. are filled with their NO_ENTRY values.

The passed channel_type parameter is used to determine the metadata type to expect.
If UNKNOWN_CHANNEL_TYPE is passed, the channel type is determined from the
channel path name by calling channel_type_from_path(). The channel_type is stored in
the CHANNEL structure.

The CHANNEL structure also keeps track of other metadata derived from universal
headers and processing.

Other CHANNEL structure fields
number_of_segments Number of segments in the channel
segments Pointer to an array of SEGMENT structures
path Full path to enclosing channel directory
name Base channel name, no extension
extension Channel directory extension
anonymized_name This value, zeros if varies across segments
maximum_number_of_records Maximum of this value across segments
maximum_record_bytes Maximum of this value across segments
earliest_start_time Minimum of the absolute value of this across segments
latest_end_time Maximum of the absolute value of this across segments

The function returns a pointer to the CHANNEL structure.

example:

(void) read_MEF_channel(&session->channels[i], full_file_name, TIME_SERIES_CHANNEL_TYPE, NULL,
password_data, MEF_FALSE, MEF_FALSE);

This call reads the channel specified by full_file_name into a preallocated CHANNEL
structure. A PASSWORD_DATA data structure is passed, so a password is not required.
The read_time_series_data and read_recod_data flags are set to MEF_FALSE, so only
the universal headers will be read in from these files.

FUNCTION: read_MEF_file()

// Prototype
FILE_PROCESSING_STRUCT *read_MEF_file(FILE_PROCESSING_STRUCT *fps, si1 *file_name, si1 *password,

PASSWORD_DATA *password_data, FILE_PROCESSING_DIRECTIVES *directives, ui4
behavior_on_fail)

// Structures
typedef struct {

si1 full_file_name[MEF_FULL_FILE_NAME_BYTES]; // full path
FILE *fp; // FILE pointer

 si4 fd; // FILE descriptor
si8 file_length;
ui4 file_type_code;
UNIVERSAL_HEADER *universal_header;

 FILE_PROCESSING_DIRECTIVES directives;
PASSWORD_DATA *password_data;
METADATA metadata;
TIME_SERIES_INDEX *time_series_indices;
VIDEO_INDEX *video_indices;
ui1 *records;

 RECORD_INDEX *record_indices;
 ui1 *RED_blocks;

si8 raw_data_bytes;
ui1 *raw_data;

} FILE_PROCESSING_STRUCT;

typedef struct {
si1 close_file;
si1 free_password_data; // when freeing FPS

 si8 io_bytes; // bytes to read or write
 ui4 lock_mode;

ui4 open_mode;
} FILE_PROCESSING_DIRECTIVES;

// Constants
#define FPS_FULL_FILE -1

The function reads any MEF file type, identified by its full path in file_name, into a
FILE_PROCESSING_STRUCT (FPS). If NULL is passed for the FPS one will be
allocated. If an FPS is allocated, and the passed directives are not NULL, they will be
used. If the FPS’s full_file_name field is NULL the passed file_name will be copied into
this field. The file will be opened if it is not already open. If the close_file directive is set

to MEF_FALSE, the file will be left open, otherwise it will be closed after reading. If the
io_bytes parameter is set to FPS_FULL_FILE the whole file will be read, otherwise only
io_bytes bytes will be read.

The data are read into the raw_data field of the FPS. The FPS’s universal_header
pointer is set to point to the beginning of the raw data. The appropriate file type’s
structure pointer in the FPS is set to point to the raw data after the universal header.

If password_data is NULL, the function will process the passed password as an
unspecified password and generate password_data. Otherwise password_data will be
assigned to that field in the FPS.

Read_MEF_file() validates file CRCs according to the global CRC_mode. It the decrypt
encrypted data to the access level allowed by the password data. It then offsets times
according to the global recording_time_offset_mode.

The function returns a pointer to a FILE_PROCESSING_STRUCT or NULL if
unsuccessful.

example 1:

segment->time_series_data_fps = read_MEF_file(NULL, full_file_name, NULL, password_data, NULL,
USE_GLOBAL_BEHAVIOR);

Reads the time series data file pointed to by full_file_name. Read_MEF_file() allocates
and returns a pointer to the FPS. A PASSWORD_DATA structure is supplied, so
password is not processed, and need not be passed. All data are read in as the
io_bytes default is FPS_FULL_FILE. The file is closed after reading as the close_file
directive’s default is MEF_TRUE.

example 2:

si1 *password = “password”;

segment->time_series_data_fps = allocate_file_processing_struct(0,
TIME_SERIES_DATA_FILE_TYPE_CODE, NULL, 0);

segment->time_series_data_fps->directives.io_bytes = UNIVERSAL_HEADER_BYTES
segment->time_series_data_fps->directives.close_file = MEF_FALSE; // default is MEF_TRUE
(void) read_MEF_file(segment->segment_data_fps, full_file_name, password, NULL, 0);

Reads the time series data file pointed to by full_file_name. Read_MEF_file() does not
allocate the FPS since one is passed. Preallocation was done to change the default
values of the directives; in this case to read just the universal header and leave the file
open with the file pointer pointing to the next byte after the universal header. A
PASSWORD_DATA structure was not supplied, so password is processed as an
unspecified password, and a PASSWORD_DATA structure is created for the FPS. If
passwords are preserved across MEF files - the returned PASSWORD_DATA can be
passed in future calls to read_MEF_file().

FUNCTION: read_MEF_segment()

// Prototype
SEGMENT *read_MEF_segment(SEGMENT *segment, si1 *seg_path, si4 channel_type, si1 *password,

PASSWORD_DATA *password_data, si1 read_time_series_data, si1 read_record_data)

// Structure
typedef struct {
 si4 channel_type;

FILE_PROCESSING_STRUCT *metadata_fps;
FILE_PROCESSING_STRUCT *time_series_data_fps;
FILE_PROCESSING_STRUCT *time_series_indices_fps;

 FILE_PROCESSING_STRUCT *video_indices_fps;
FILE_PROCESSING_STRUCT *record_data_fps;
FILE_PROCESSING_STRUCT *record_indices_fps;
si1 name[MEF_SEGMENT_BASE_FILE_NAME_BYTES]; // base name
si1 path[MEF_FULL_FILE_NAME_BYTES]; // full path to enclosing

 //directory (channel dir)
si1 channel_name[MEF_BASE_FILE_NAME_BYTES]; // base name
si1 session_name[MEF_BASE_FILE_NAME_BYTES]; // base name
ui1 level_UUID[UUID_BYTES];

} SEGMENT;

This function will read the segment pointed to by seg_path (full path to the segment
directory) and fill in the the fields in the SEGMENT structure. If a segment structure is
not passed (NULL passed), one will be allocated. Either an unspecified password, or
PASSWORD_DATA structure should be passed to read encrypted fields. In the case
that no data is encrypted or only unencrypted data is needed, NULL can be passed for
both fields.

The passed channel_type parameter is used to determine the metadata type to expect.
If UNKNOWN_CHANNEL_TYPE is passed, the channel type is determined from the
channel path name by calling channel_type_from_path(). The channel_type is stored in
the CHANNEL structure.

The channel_name, session_name, and level_UUID fields are filled in, but are
redundant with the universal header information in each of the files. These fields are
included in this structure because they are useful in functions that write new segment
files.

If read_time_series_data is set to MEF_TRUE (and it is a time series segment), the time
series data will be read into the SEGMENT structure’s data_fps raw_data field after the
segment data’s universal header and the file will be closed; otherwise only the segment
data’s universal header will be read into this field and the file will be left open with the
file pointer pointing to the next byte after the universal header.

If read_record_data is set to MEF_TRUE, the segment’s records data will be read into
the SEGMENT structure’s records_data_fps raw_data field after the records data’s

universal header and the file will be closed; otherwise only the records data’s universal
header will be read into this field and the file will be left open with the file pointer
pointing to the next byte after the universal header.

The function returns a pointer to the SEGMENT structure.

example:

SEGMENT *segment;

segment = read_MEF_segment(NULL, full_file_name, TIME_SERIES_CHANNEL_TYPE, NULL, pwd,
MEF_TRUE, MEF_TRUE);

This call will read the all the files of the segment pointed to by full_file_name and
allocate and populate a SEGMENT structure. The passed password_data is assigned in
the FILE_PROCESSING_STRUCTs. The time series data file is opened, read in full,
and closed. Likewise for the segment record data file, if present. This is an uncommon
use for large data files as reading all of the data into memory is frequently impractical.

FUNCTION: read_MEF_session()

// Prototype
SESSION *read_MEF_session(SESSION *session, si1 *sess_path, si1 *password, PASSWORD_DATA

*password_data, si1 read_time_series_data, si1 read_record_data);

typedef struct {
METADATA time_series_metadata;

 si4 number_of_time_series_channels;
CHANNEL *time_series_channels;

 METADATA video_metadata;
 si4 number_of_video_channels;
 CHANNEL *video_channels;
 FILE_PROCESSING_STRUCT *record_data_fps;
 FILE_PROCESSING_STRUCT *record_indices_fps;

si1 name[MEF_BASE_FILE_NAME_BYTES]; // just base name, no extension
si1 path[MEF_FULL_FILE_NAME_BYTES]; // path to enclosing directory
si1 anonymized_name[UNIVERSAL_HEADER_ANONYMIZED_NAME_BYTES];
ui1 level_UUID[UUID_BYTES];
si8 maximum_number_of_records;
si8 maximum_record_bytes;
si8 earliest_start_time;
si8 latest_end_time;

} SESSION;

This function will read all the files associated with the session pointed to by sess_path
(full path to the session directory) and fill in the the fields in the SESSION structure. If a
SESSION structure is not passed (NULL passed), one will be allocated. Either an
unspecified password, or PASSWORD_DATA structure should be passed to read
encrypted fields. In the case that no data is encrypted or only unencrypted data is
needed, NULL can be passed for both fields.

The level_UUID field is filled in, but is redundant with the universal header information in
the record data and indices files, if present. This field is included in this structure
because it is useful in functions that write new session files.

If the directive’s read_time_series_data flag is set to MEF_TRUE, the segment data will
be read into the SEGMENT structure’s data_fps raw_data field after the segment data’s
universal header and the file will be closed; otherwise only the segment data’s universal
header will be read into this field and the file will be left open with the file pointer
pointing to the next byte after the universal header.

If the read_record_data directive is set to MEF_TRUE, the all records data files will be
read into the appropriate structure’s records_data_fps raw_data field after the records
data’s universal header and the file will be closed; otherwise only the records data’s
universal header will be read into this field and the file will be left open with the file
pointer pointing to the next byte after the universal header.

The metadata structures are the same as those contained in CHANNEL structures; they
are not part of an FPS. It contains summary information of the channel metadata files.
Fields whose values vary across channels and whose value cannot be expressed as a
maximum, etc. are filled with their NO_ENTRY values.

The SESSION structure also keeps track of other metadata derived from universal
headers and processing.

Other CHANNEL structure fields
number_of_time_series_channels Number of time series channels in the session
time_series_channels Pointer to an array of CHANNEL structures
number_of_video_channels Number of video channels in the session
video_channels Pointer to an array of CHANNEL structures
path Full path to enclosing session directory
name Base session name, no extension
extension Session directory extension
anonymized_name This value, zeros if varies across channels
maximum_number_of_records Maximum of this value across channels
maximum_record_bytes Maximum of this value across channels
earliest_start_time Minimum of the absolute value of this across channels
latest_end_time Maximum of the absolute value of this across channels

example:

SESSION *session;

session = read_MEF_session(NULL, session_directory, password, NULL, MEF_FALSE, MEF_FALSE);

This call will allocate a SESSION structure and read all files associated with a MEF
session and fill in the fields of at the SESSION structure and all of its substructures. It
will not read the segment data, or record data unless these flags are set in the passed
FILE_PROCESSING_DIRECTIVES. The universal headers of those files will be read,

and the files will be left open. Their file pointers will be left at the beginning of the data
after the universal header. All other files will be read completely into their
FILE_PROCESSING_STRUCTs and closed.

FUNCTION: reallocate_file_processing_struct()

// Prototype
si4 reallocate_file_processing_struct(FILE_PROCESSING_STRUCT *fps, si8 raw_data_bytes);

This function reallocates the raw_data array in a FILE_PROCESSING_STRUCT. The
array is increased (or decreased) to the passed raw_data_bytes value. Existing data are
preserved, extra bytes are zeroed. The raw_data_bytes field of the FPS is updated and
appropriate pointers in the FPS are updated.

FUNCTION: remove_line_noise()

// Prototype
si4 remove_line_noise(si4 *data, si8 n_samps, sf8 sampling_frequency, sf8 line_frequency, sf8
*template)

AC line noise is removed from the input data array via template subtraction. If *template
is not NULL the subtracted template will be returned in that array. If NULL is passed for
*template, it will be allocated and freed. The template does not adapt so the function is
best used on small chunks of data, such as individual RED blocks prior to compression.

The function remove_line_noise_adaptive() does adaptive filtering and does not return a
template. The noise suppression with that function is generally better, but it is slower
and does not return a template. The advantage of returning a template is that the
template can be stored for each block of data so that if needed the unmodified data can
be restored. There is a record type LNPT (line noise template) that was designed for
this purpose, and would be stored in segment-level record files.

FUNCTION: remove_line_noise_adaptive()

// Prototype
void remove_line_noise(si4 *data, si8 n_samps, sf8 sampling_frequency, sf8 line_frequency, si4
n_cycles)

AC line noise is removed from the input data array via template subtraction. The
template adapts at a rate specified by n_cycles.

FUNCTION: remove_recording_time_offset()

// Prototype
void remove_recording_time_offset(si8 *time);

The global recording time offset is removed from the passed µUTC time. If the value is
positive, it is presumed not to have had the recording time offset applied, and nothing is
done. The converse function is apply_recording_time_offset(), described above.

FUNCTION: show_file_processing_struct()

// Prototype
void show_file_processing_struct(FILE_PROCESSING_STRUCT *fps)

// Structures
typedef struct {

si1 full_file_name[MEF_FULL_FILE_NAME_BYTES]; // full path
FILE *fp;

 si4 fd;
si8 file_length;
ui4 file_type_code;
UNIVERSAL_HEADER *universal_header;

 FILE_PROCESSING_DIRECTIVES directives;
PASSWORD_DATA *password_data;
METADATA metadata;
TIME_SERIES_INDEX *time_series_indices;
VIDEO_INDEX *video_indices;
ui1 *records;

 RECORD_INDEX *record_indices;
 ui1 *RED_blocks;

si8 raw_data_bytes;
ui1 *raw_data;

} FILE_PROCESSING_STRUCT;

Displays all the elements of a FILE_PROCESSING_STRUCT structure.

FUNCTION: show_metadata()

// Prototype
void show_metadata(FILE_PROCESSING_STRUCT *fps)

// Structures
typedef struct {
 METADATA_SECTION_1 *section_1;
 TIME_SERIES_METADATA_SECTION_2 *time_series_section_2;

VIDEO_METADATA_SECTION_2 *video_section_2;
 METADATA_SECTION_3 *section_3;
} METADATA;

Displays all the elements of a METADATA structure of the type specified by the passed
FILE_PROCESSING_STRUCT.

FUNCTION: show_password_data()

// Prototype
void show_password_data(FILE_PROCESSING_STRUCT *fps);

// Structures
typedef struct {

ui1 level_1_encryption_key[ENCRYPTION_KEY_BYTES];
 ui1 level_2_encryption_key[ENCRYPTION_KEY_BYTES];
 ui1 access_level;
} PASSWORD_DATA;

Displays all the elements of a PASSWORD_DATA structure.

FUNCTION: show_record()

// Prototype
void show_record(RECORD_HEADER *record_header, ui4 record_number, PASSWORD_DATA *pwd);

This function displays the contents of the record pointed to by record_header. If the
record needs to be decrypted and the access level is sufficient, the record will be
decrypted. Show_record() resides in the mefrec.c file.

FUNCTION: show_records()

// Constant
#define UNKNOWN_NUMBER_OF_ENTRIES -1

// Prototype
void show_records(FILE_PROCESSING_STRUCT *fps);

This function displays the contents of the records data file. If the record needs to be
decrypted and the access level is sufficient, the record will be decrypted.
Show_records() calls show_record() for each record. Show_record() resides in the
mefrec.c file. If the number_of_records is known, this number will be used. Otherwise
(i.e. number_of_records == UNKNOWN_NUMBER_OF_ENTRIES) the function will still
work, but could fail in the case of an incomplete terminal record.

FUNCTION: show_universal_header()

// Prototype
void show_universal_header(FILE_PROCESSING_STRUCT *fps);

// Structure
typedef struct {

ui4 file_CRC;
 si1 file_type_string[TYPE_BYTES];
 ui1 mef_version_major;
 ui1 mef_version_minor;
 ui1 byte_order_code;

ui1 level_1_password_validation_field[PASSWORD_VALIDATION_FIELD_BYTES];
 ui1 level_2_password_validation_field[PASSWORD_VALIDATION_FIELD_BYTES];
 ui1 session_UUID[UUID_BYTES];
 ui1 channel_UUID[UUID_BYTES];
 ui1 segment_UUID[UUID_BYTES];
 ui1 protected_region[UNIVERSAL_HEADER_PROTECTED_REGION_BYTES];

ui1 discretionary_region[UNIVERSAL_HEADER_DISCRETIONARY_REGION_BYTES];
} UNIVERSAL_HEADER;

This function displays the contents of a FILE_PROCESSING_STRUCT’s
universal_header field.

FUNCTION: write_MEF_file()

// Prototype
si4 write_MEF_file(FILE_PROCESSING_STRUCT *fps);

The function will write out the file contained in the FILE_PROCESSING_STRUCT. If the
file is not yet open, it will be opened. If the file requires encryption it will be encrypted.
Times will be offset according to the global recording_time_offset_mode. The file CRCs
will be calculated according to the global CRC_mode and the entered into the universal
header.

If the io_bytes directive is set to FPS_FULL_FILE, the whole file will be written,
otherwise only this number of bytes will be written. If the close_file directive is set to
MEF_FALSE, the file will be left open.

/**/
/********************************** FILTER Functions ********************************/
/**/

// Constants
#define FILT_LOWPASS_TYPE 1
#define FILT_BANDPASS_TYPE 2
#define FILT_HIGHPASS_TYPE 3
#define FILT_BANDSTOP_TYPE 4
#define FILT_TYPE_DEFAULT FILT_LOWPASS_TYPE
#define FILT_ORDER_DEFAULT 5
#define FILT_MAX_ORDER 10

#define FILT_BAD_FILTER -1

// Typedefs & Structures
typedef struct {
 si4 order;
 si4 poles;
 si4 type;
 sf8 sampling_frequency;
 si8 data_length;
 sf8 cutoffs[2];
 sf8 *numerators;
 sf8 *denominators;
 sf8 *initial_conditions;
 si4 *orig_data;

si4 *filt_data;
 sf8 *sf8_filt_data;
 sf8 *sf8_buffer;
} FILT_PROCESSING_STRUCT;

typedef struct {
sf16 real;
sf16 imag;

} FILT_LONG_COMPLEX;

// Prototypes
void FILT_balance(sf16 **a, si4 poles);
si4 FILT_butter(FILT_PROCESSING_STRUCT *filtps);
void FILT_complex_divl(FILT_LONG_COMPLEX *a, FILT_LONG_COMPLEX *b,

FILT_LONG_COMPLEX *quotient);
void FILT_complex_expl(FILT_LONG_COMPLEX *exponent, FILT_LONG_COMPLEX *ans);
void FILT_complex_multl(FILT_LONG_COMPLEX *a, FILT_LONG_COMPLEX *b,

FILT_LONG_COMPLEX *product);
void FILT_elmhes(sf16 **a, si4 poles);
void FILT_filtfilt(FILT_PROCESSING_STRUCT *filtps);
void FILT_free_processing_struct(FILT_PROCESSING_STRUCT *filtps,

si1 free_orig_data, si1 free_filt_data);
FILT_PROCESSING_STRUCT *FILT_initialize_processing_struct(si4 order, si4 type, sf8 samp_freq,

si8 data_len, si1 alloc_orig_data, si1 alloc_filt_data,
sf8 cutoff_1, ...);

void FILT_generate_initial_conditions(FILT_PROCESSING_STRUCT *filtps);
void FILT_hqr(sf16 **a, si4 poles, FILT_LONG_COMPLEX *eigs);
void FILT_invert_matrix(sf16 **a, sf16 **inv_a, si4 order);
void FILT_mat_multl(void *a, void *b, void *product, si4 outer_dim1,

si4 inner_dim, si4 outer_dim2);
void FILT_unsymmeig(sf16 **a, si4 poles, FILT_LONG_COMPLEX *eigs);

The functions in the FILTER section of the library facilitate creation of Butterworth
infinite impulse response (IIR) filters and perform zero-phase digital filtering using them.
Many or the functions are purely internal to the filtering process, so only the gateway
functions will be described here.

FUNCTION: FILT_butter()

// Prototype
si4 FILT_butter(FILT_PROCESSING_STRUCT *filtps);

This function calculates coefficients for a Butterworth filter of the specified type and
returns the poles of the filter (which may be double of the order depending on filter type)
in the numerator and denominator fields of the FILT_PROCESSING_STRUCT. These
arrays are allocated in FILT_butter().

FUNCTION: FILT_filtfilt()

// Prototype
void FILT_filtfilt(FILT_PROCESSING_STRUCT *filtps)

This call non-destructively applies the specified filter to the orig_data (si4) array, and
returns the filtered data in the sf8_filt_data array. If the initial_conditions or sf8_buffer
arrays are NULL, they will be allocated and freed after use. The initial_conditions will be
calculated if they are not passed.

example:

FILT_PROCESSING_STRUCT *filtps;
RED_PROCESSING_STRUCT *rps;

// set up filter
filtps->order = 5;
filtps->type = FILT_BANDPASS_TYPE;
filtps->sampling_frequency = 32000.0;
filtps->cutoffs[0] = 100.0;
filtps->cutoffs[1] = 200.0;
FILT_butter(filtps);
FILT_generate_initial_conditions(filtps);

// apply the filter
filtps->orig_data = rps->original_data;
filtps->data_length = rps->block_header->number_of_samples;
FILT_filtfilt(filtps);

This code snippet applies a bandpass Butterworth filter (100 - 200 Hz band) to the
integer (si4) data in the FILT_PROCESSING_STRUCT’s orig_data array, returning the
results as floating point data (sf8) in the FILT_PROCESSING_STRUCT’s sf8_filt_data
array. See RED_apply_filter() for a function that does this and fills in the integer data
(si4) in the FILT_PROCESSING_STRUCT’s filt_data array.

FUNCTION: FILT_free_processing_struct()

// Prototype
void FILT_free_processing_struct(FILT_PROCESSING_STRUCT *filtps, si1 free_orig_data,

si1 free_filt_data);

This call frees all allocated members of the passed FILT_PROCESSING_STRUCT.
Given that the “orig_data” and “filt_data” members of a FILT_PROCESSING_STRUCT
are often sub-portions of larger external arrays, these must be freed explicitly with the
passed “free_orig_data” and “free_filt_data” flags;

example:

FILT_PROCESSING_STRUCT *filtps;

FILT_free_processing_struct(FILT_PROCESSING_STRUCT *filtps, MEF_TRUE, MEF_FALSE);

Frees all allocated arrays in the FILT_PROCESSING_STRUCT as well as the orig_data
array. The filt_data array will not be freed.

FUNCTION: FILT_initialize_processing_struct()

// Prototype
FILT_PROCESSING_STRUCT *FILT_initialize_processing_struct(si4 order, si4 type, sf8 samp_freq,

si8 data_len, si1 alloc_orig_data, si1 alloc_filt_data,
sf8 cutoff_1, ...);

This function allocates and returns a FILT_PROCESSING_STRUCT pointer. It
calculates coefficients for a Butterworth filter of the specified type and returns the poles
of the filter (which may be double of the order depending on filter type) in the numerator
and denominator fields of the FILT_PROCESSING_STRUCT. It will also calculate the
initial conditions and allocate the orig_data and filt_data arrays if those flags are set.

FUNCTION: FILT_generate_initial_conditions()

// Prototype
void FILT_generate_initial_conditions(FILT_PROCESSING_STRUCT *filtps);

This function calculates and returns the initial conditions for a Butterworth filter of the
specified type.

/**/
/************************************ RED Functions *********************************/
/**/

// Structures
typedef struct {

ui4 block_CRC;
ui1 flags;

 ui1 protected_region[RED_BLOCK_PROTECTED_REGION_BYTES];
 ui1 discretionary_region[RED_BLOCK_DISCRETIONARY_REGION_BYTES];
 sf4 detrend_slope;
 sf4 detrend_intercept;

sf4 scale_factor;
ui4 difference_bytes;
ui4 number_of_samples;
ui4 block_bytes;
si8 start_time;
ui1 statistics[RED_BLOCK_STATISTICS_BYTES];

} RED_BLOCK_HEADER;

typedef struct {
 si1 encryption_level; // encryption level for data blocks, passed in compression,

 // returned in decompression
 si1 discontinuity; // set if block is first after a discontinuity, passed in

 // compression, returned in decompression
 si1 detrend_data; // set if block is to be detrended (somewhat useful in lossless,

// more useful in lossy compression)
si1 return_lossy_data; // if set, lossy data returned in decompressed_data during

 // lossy compression
si1 reset_discontinuity; // if discontinuity directive == MEF_TRUE, reset to

 // MEF_FALSE after compressing the block
 si1 require_normality; // in lossy compression, lossless compression will be

 // performed in blocks whose samples are not approximately
 // normally distributed

 sf8 normal_correlation; // if require_normality is set, the correlation of the sample
 // distribution with a normal distribution must be >= this
 // number (range -1.0 to 1.0)

} RED_PROCESSING_DIRECTIVES;

typedef struct {
ui1 mode; // compression mode
sf8 goal_compression_ratio; // goal value passed
sf8 actual_compression_ratio; // actual value returned in RED_FIXED_COMPRESSION_RATIO

 // mode
sf8 goal_mean_residual_ratio; // goal value passed
sf8 actual_mean_residual_ratio; // actual value returned in RED_MEAN_RESIDUAL_RATIO

 // mode
sf8 goal_tolerance; // tolerance for lossy compression mode goal, value of <= 0.0

 // uses default values, which are returned
si4 maximum_rounds_per_block; // maximum loops to attain goal compression

} RED_COMPRESSION_PARAMETERS;

typedef struct {
 ui4 counts[RED_BLOCK_STATISTICS_BYTES + 1]; // used by

// RED_encode() & RED_decode()
 PASSWORD_DATA *password_data; // passed in compression & decompression

RED_COMPRESSION_PARAMETERS compression;
RED_PROCESSING_DIRECTIVES directives;

 si1 *difference_buffer; // passed in both compression &
 // decompression

 ui1 *compressed_data; // passed in decompression, returned in

 // compression, should not be updated
RED_BLOCK_HEADER *block_header; // points to beginning of current block

// within compressed_data array, updatable
 si4 *decompressed_data; // returned in decompression or if

// lossy data requested, used in some
// compression modes, should not be updated

 si4 *decompressed_ptr; // points to beginning of current block
// within decompressed_data array, updatable

 si4 *original_data; // passed in compression, should not be
 // updated

 si4 *original_ptr; // points to beginning of current block
 // within original_data array, updatable

 si4 *detrended_buffer; // used if needed in compression, size
 // of decompressed block

 si4 *scaled_buffer; // used if needed in compression, size of
 // decompressed block

} RED_PROCESSING_STRUCT;

// Macros
#define RED_MAX_DIFFERENCE_BYTES(x) (x * 5) // full si4 plus 1 keysample flag byte per

 // sample
#define RED_MAX_COMPRESSED_BYTES(x, y) ((RED_MAX_DIFFERENCE_BYTES(x) +

RED_BLOCK_HEADER_BYTES + 7) * y) // no compression
// plus header plus maximum pad bytes, for y blocks

FUNCTION: RED_allocate_processing_struct()

// Prototype
RED_PROCESSING_STRUCT *RED_allocate_processing_struct(si8 original_data_size, si8

compressed_data_size, si8 decompressed_data_size, si8 difference_buffer_size, si8
detrended_buffer_size, si8 scaled_buffer_size, PASSWORD_DATA *password_data);

Allocates a RED_PROCESSING_STRUCT (RPS). Within the RPS the various buffers
are allocated. The PASSWORD_DATA structure is assigned. The directives are set to
their defaults. The compression parameters are set to their defaults.

example:

rps = RED_allocate_processing_struct(max_samps, RED_MAX_COMPRESSED_BYTES(max_samps, 1), 0,
RED_MAX_DIFFERENCE_BYTES(max_samps), 0, 0, pwd);

Create an RPS large enough to compress a block of size max_samps. Lossless
compression is the default, so no decompressed, offset, or scaled data buffers are
requested.

FUNCTION: RED_calculate_mean_residual_ratio()

// Prototype
sf8 RED_calculate_mean_residual_ratio(si4 *original_data, si4 *lossy_data, ui4 n_samps);

Calculates and returns the mean residual ratio between the original_data and
lossy_data buffers. Used in the MEAN_RESIDUAL_RATIO compression mode.

FUNCTION: RED_check_RPS_allocation()

// Prototype
si1 RED_check_RPS_allocation(RED_PROCESSING_STRUCT *rps);

Checks that the appropriate buffers are allocated in an RPS for the type of operation
being performed. The operation is determined by the values of the members of the
RPS’s compression and directives structures. It returns MEF_TRUE if the appropriate
buffers are allocated and MEF_FALSE if not unless the behavior_on_fail global is set to
exit. Deficient allocations are printed to stderr, as are unnecessarily allocated buffers.
This function may used if the programmer is uncertain which buffers to allocate for
specific compression & decompression requirements. It is not called by any of the other
functions in the library and must be called independently.

example:

RED_PROCESSING_STRUCT *rps;
si1 allocate_decompressed_data_buffer;

rps = RED_allocate_processing_struct(max_samps, RED_MAX_COMPRESSED_BYTES(max_samps, 1), 0,\
RED_MAX_DIFFERENCE_BYTES(max_samps), 0, 0, password_data);

rps->compression.mode = RED_FIXED_COMPRESSION_RATIO;

force_behavior(RETURN_ON_FAIL);
RED_check_RPS_allocation(rps);
force_behavior(RESTORE_BEHAVIOR);

FUNCTION: RED_decode()

// Prototype
void RED_decode(RED_PROCESSING_STRUCT *rps);

Decompress data passed in RPS from block_header pointer to RPS decompressed_ptr
field. If CRC validation is requested in the directives, the block CRC will be checked, if
the block does not have a valid CRC, it will not be decompressed and the function will
return zero. If the block is encrypted and the access level is sufficient, the block will be
decrypted before decompression. Encryption status is returned in the encryption
directive. Scaling and detrending are performed as necessary. The block discontinuity
status is returned in the discontinuity directive.

FUNCTION: RED_detrend()

// Prototype
ui4 RED_detrend(RED_PROCESSING_STRUCT *rps, si4 *input_buffer, si4 *output_buffer);

Detrends data from input_buffer to output_buffer. The detrended slope and intercept
values entered into RPS’s block_header. If the input_buffer == output_buffer detrending
is done in place.

FUNCTION: RED_encode()

// Prototype
void RED_encode(RED_PROCESSING_STRUCT *rps);

Compress data from original_ptr to block_header pointer (compressed data array). This
is the main entry point into the library’s compression routines.

FUNCTION: RED_encode_exec()

// Prototype
void RED_encode_exec(RED_PROCESSING_STRUCT *rps, si4 *input_buffer, si1 input_is_detrended);

This is generally called by RED_encode() or RED_encode_lossy(), but can be called
directly. It RED compresses from input_buffer to to block_header pointer (compressed
data array). If the data is already detrended, it will not be done again. Encryption is done
here according to the encryption directive, and the block_header flags are set
appropriately. The discontinuity flag is set according to the discontinuity directive. The
block CRC is calculated and filled in.

FUNCTION: RED_encode_lossy()

// Prototype
void RED_encode_lossy(RED_PROCESSING_STRUCT *rps);

// Constants
#define RED_LOSSLESS_COMPRESSION 0 // lossless (default)
#define RED_FIXED_SCALE_FACTOR 1 // apply this scale factor to the block,

 // 1.0 results in lossless compression;
#define RED_FIXED_COMPRESSION_RATIO 2 // e.g. 20% of original si4 size is 0.2 -

 // if lossless satisfies, no
 // compression is done

#define RED_MEAN_RESIDUAL_RATIO 3 // sum(abs((scaled_data -
 // original_data))) /
 // sum(abs(original_data)), e.g. 5%
 // difference is 0.05

RED compress from original_ptr to block_header pointer (compressed data array),
according to the specified compression mode. If lossy data is to be returned in the
decompressed data buffer, this is generated. The function calls RED_encode_exec() for
the actual compression which is described above. It returns the number of bytes
(including pad bytes) in the compressed block.

example:

RED_PROCESSING_STRUCT *rps;

rps = RED_allocate_processing_struct(max_samps, RED_MAX_COMPRESSED_BYTES(max_samps), 0,\
RED_MAX_DIFFERENCE_BYTES(max_samps), 0, 0, password_data);

rps->directives.encryption = NO_ENCRYPTION;
rps->directives.discontinuity == MEF_FALSE; // not a discontinuity
rps->block_header->number_of_samples = num_samps;
rps->block_header->start_time = start_time;
rps-> original_ptr = data_ptr;
RED_encode_lossy(rps);

FUNCTION: RED_filter()

// Prototype
void RED_filter(FILT_PROCESSING_STRUCT *filtps);

Applies the filter specified by filtps to it’s original data field. The sf8_filt_data are
conver ted to s i4s in the f i l t _da ta f i e ld . The f i l t _da ta f i e ld o f the
FILT_PROCESSING_STRUCT can be assigned to the filtered data buffer of a
RED_PROCESSING_STRUCT for non-destructive filtering, or to the original data field
for destructive filtering, with memory conservation.

FUNCTION: RED_find_extrema()

// Prototype
void RED_find_extrema(si4 *buffer, si8 number_of_samples, TIME_SERIES_INDEX *tsi);

Finds the extrema in buffer and enters them into their respective fields in a time series
index.

FUNCTION: RED_free_processing_struct()
FUNCTION: RED_free_processing_struct()

// Prototype
void RED_free_processing_struct(RED_PROCESSING_STRUCT *rps);

Frees any non-NULL buffer pointers in a RED_PROCESSING_STRUCT, then frees the
structure itself.

FUNCTION: RED_generate_lossy_data()

// Prototype
void RED_generate_lossy_data(RED_PROCESSING_STRUCT *rps, si4 *input_buffer, si4
*output_buffer, si1 input_is_detrended);

Generates lossy data from input_buffer to output_buffer using the detrained and scale
factors from the block_header. If the data is already detrended, it will not be done again.
If input_buffer == output_buffer, lossy data will be generated in place.

FUNCTION: RED_initialize_normal_CDF_table()

// Prototype
sf8 *RED_initialize_normal_CDF_table(si4 global_flag);

Allocates and initializes the RED_normal_CDF_table (normal cumulative distribution
function) into heap space. If the global_flag is set, the MEF_globals pointer
RED_normal_CDF_table is also set to this value. This function is called by
initialize_meflib() and the table is used by RED_test_normality(). The function returns a
pointer to the table.

FUNCTION: RED_retrend()

// Prototype
si4 *RED_retrend(RED_PROCESSING_STRUCT *rps, si4 *input_buffer, si4 *output_buffer);

The function adds the trend specified by the block_header to the data from input_buffer
to output_buffer. If the input_buffer == output_buffer retrending is done in place.

FUNCTION: RED_round()

// Prototype
si4 RED_round(sf8 val);

Rounds sf8 to si4 setting values that exceed RED_POSITIVE_INFINITY to
RED_POSITIVE_INFINITY, and values less than RED_NEGATIVE_INFINITY to
RED_NEGATIVE_INFINITY.

FUNCTION: RED_scale()

// Prototype
si4 *RED_scale(RED_PROCESSING_STRUCT *rps, si4 *input_buffer, si4 *output_buffer);

Scales data from input_buffer to output_buffer by the scale_factor in the block_header.
If input_buffer == output_buffer, scaling will be done in place.

FUNCTION: RED_show_block_header()

// Prototype
void RED_show_block_header(RED_BLOCK_HEADER *bh);

// Structure
typedef struct {

ui4 block_CRC;
ui1 flags;

 ui1 protected_region[RED_BLOCK_PROTECTED_REGION_BYTES];
 ui1 discretionary_region[RED_BLOCK_DISCRETIONARY_REGION_BYTES];
 sf4 detrend_slope;
 sf4 detrend_intercept;

sf4 scale_factor;
ui4 difference_bytes;
ui4 number_of_samples;
ui4 block_bytes;
si8 start_time;
ui1 statistics[RED_BLOCK_STATISTICS_BYTES];

} RED_BLOCK_HEADER;

This function displays the contents of a RED_BLOCK_HEADER structure. Can be
useful in debugging code.

FUNCTION: RED_test_normality()

// Prototype
sf8 RED_test_normality(si4 *data, ui4 n_samps);

Returns the Pearson correlation of the normalized cumulative distribution of the input
data to a pure normal cumulative distribution function (a variant of the Kolmogorov-
Smirnov test for normality).

FUNCTION: RED_unscale()

// Prototype
si4 *RED_unscale(RED_PROCESSING_STRUCT *rps, si4 *input_buffer, si4 *output_buffer);

Removes the scale data from input_buffer to output_buffer by the scale_factor in the
block_header. If input_buffer == output_buffer, unscaling will be done in place.

FUNCTION: RED_update_RPS_pointers()

// Prototype
RED_BLOCK_HEADER *RED_update_RPS_pointers(RED_PROCESSING_STRUCT *rps, ui1 flags);

// Constants
#define RED_UPDATE_ORIGINAL_PTR 1
#define RED_UPDATE_BLOCK_HEADER_PTR 2 // will also update block_header pointer
#define RED_UPDATE_DECOMPRESSED_PTR 4

Convenience function to update the RPS pointers specified by flags. The block_header
is updated by the block_header value block_bytes. Other pointers are updated by the
block_header value number_of_samples. The function is inline, so there is no extra
overhead. The block_header pointer is returned.

example:

ui1 flags;
RED_BLOCK_HEADER *block_header;

flags = RED_UPDATE_ORIGINAL_PTR | RED_UPDATE_BLOCK_HEADER_PTR | RED_UPDATE_DECOMPRESSED_PTR;
block_header = RED_update_RPS_pointers(rps, flags);

/**/
/************************************ CRC Utilities *********************************/
/**/

FUNCTION: CRC_calculate()

// Prototype
ui4 CRC_calculate(ui1 *block_ptr, ui4 block_bytes);

// Constant
#define CRC_START_VALUE 0xFFFFFFFF

Returns the CRC of block of size block_bytes, pointed to by block_ptr.

crc = CRC_calculate(block_ptr, block_bytes);

is equivalent to:

crc = CRC_update(block_ptr, block_bytes, CRC_START_VALUE);

FUNCTION: CRC_initialize_table()

// Prototype
ui4 *CRC_initialize_table(si4 global_flag);

Allocates and initializes the CRC table generated from the 32-bit Koopman polynomial
into heap space. If global_flag is set, the MEF_globals pointer CRC_table is also set to
this value. This function is called by initialize_meflib().

FUNCTION: CRC_update()

// Prototype
ui4 CRC_update(ui1 *block_ptr, ui4 block_bytes, ui4 current_crc);

Returns the CRC of block of size block_bytes, pointed to by block_ptr, starting CRC
value is passed in current_crc.

FUNCTION: CRC_validate()

// Prototype
si4 CRC_validate(ui1 *block_ptr, ui4 block_bytes, ui4 crc_to_validate);

Returns MEF_TRUE if the calculated CRC of the block pointed to by block_ptr matches
the value passed in crc_to_validate. If they do not match, MEF_FLASE is returned.

/**/
/*********************************** UTF-8 Utilities ********************************/
/**/

// Prototypes

si4 UTF8_charnum(si1 *s, si4 offset); // byte offset to character number

void UTF8_dec(si1 *s, si4 *i); // move to previous character

si4 UTF8_escape(si1 *buf, si4 sz, si1 *src, si4 escape_quotes); // convert UTF-8 "src" to
// ASCII with escape sequences.

si4 UTF8_escape_wchar(si1 *buf, si4 sz, ui4 ch); // given a wide character, convert it to an
ASCII escape sequence stored in buf, where buf is "sz" bytes. returns the number of characters
output

si4 UTF8_f
uments may be in UTF-8. You can avoid this function and just use ordinary printf()

// if the current locale is UTF-8.

si4 UTF8_hex_digit(si1 c); // utility predicates used by the above

void UTF8_inc(si1 *s, si4 *i); // move to next character

ui4 *UTF8_initialize_offsets_from_UTF8_table(si4 global_flag);

si1 *UTF8_initialize_trailing_bytes_for_UTF8_table(si4 global_flag);

si4 UTF8_is_locale_utf8(si1 *locale); // boolean function returns if locale is UTF-8, 0
// otherwise

si1 *UTF8_memchr(si1 *s, ui4 ch, size_t sz, si4 *charn); // same as the above, but searches
// a buffer of a given size instead of a NUL-terminated string.

ui4 UTF8_nextchar(si1 *s, si4 *i); // return next character, updating an index variable

si4 UTF8_octal_digit(si1 c); // utility predicates used by the above

si4 UTF8_offset(si1 *str, si4 charnum); // character number to byte offset

si4 UTF8_printf(si1 *fmt, ...); // printf() where the format string and arguments may be in
// UTF-8. You can avoid this function and just use ordinary printf() if the current
// locale is UTF-8.

si4 UTF8_read_escape_sequence(si1 *str, ui4 *dest); // assuming src points to the character
// after a backslash, read an escape sequence, storing the result in dest and returning
// the number of input characters processed

si4 UTF8_seqlen(si1 *s); // returns length of next UTF-8 sequence

si1 *UTF8_strchr(si1 *s, ui4 ch, si4 *charn); // return a pointer to the first occurrence of
// ch in s, or NULL if not found. character index of found character returned in *charn.

si4 UTF8_strlen(si1 *s); // count the number of characters in a UTF-8 string

si4 UTF8_toucs(ui4 *dest, si4 sz, si1 *src, si4 srcsz); // convert UTF-8 data to wide
// character

si4 UTF8_toutf8(si1 *dest, si4 sz, ui4 *src, si4 srcsz); // convert wide character to UTF-8
data

si4 UTF8_unescape(si1 *buf, si4 sz, si1 *src); // convert a string "src" containing escape
// sequences to UTF-8 if escape_quotes is nonzero, quote characters will be preceded by
// backslashes as well.

si4 UTF8_vfprintf(FILE *stream, si1 *fmt, va_list ap); // called by UTF8_fprintf()

si4 UTF8_vprintf(si1 *fmt, va_list ap); // called by UTF8_printf()

si4 UTF8_wc_toutf8(si1 *dest, ui4 ch); // single character to UTF-8

Not all of the UTF-8 functions are used in the library, but they are included in the library
for end-user and potential future use. Some of the included functions are used by other
UTF-8 functions, and thus require inclusion. Only those functions that are currently used
in other (non-UTF-8) meflib functions are described in this section.

FUNCTION: UTF8_initialize_offsets_from_UTF8_table()

// Prototype
ui4 *UTF8_initialize_offsets_from_UTF8_table(si4 global_flag);

Allocates and initializes the offsets_from_UTF8 table into heap space. If global_flag is
set, the MEF_globals pointer UTF8_offsets_from_UTF8_table is also set to this value.
This function is called by initialize_meflib().

FUNCTION: UTF8_initialize_trailing_bytes_for_UTF8_table()

// Prototype
si1 *UTF8_initialize_trailing_bytes_for_UTF8_table(si4 global_flag);

Allocates and initializes the trailing_bytes_for_UTF8 table into heap space. If global_flag
is set, the MEF_globals pointer UTF8_trailing_bytes_for_UTF8_table is also set to this
value. This function is called by initialize_meflib().

FUNCTION: UTF8_fprintf()

// Prototype
si4 UTF8_fprintf(FILE *stream, si1 *fmt, …);

Used like fprintf(), but accommodates UTF-8 as well as conventional strings.

FUNCTION: UTF8_nextchar()

// Prototype
ui4 UTF8_nextchar(si1 *s, si4 *i);

Returns the next character in the UTF-8 string s, updating the index variable i. Used by
extract_terminal_password_bytes().

FUNCTION: UTF8_printf()

// Prototype si4 UTF8_printf(si1 *fmt, ...);

Used like printf(), but accommodates UTF-8 as well as conventional strings.

FUNCTION: UTF8_strlen()

// Prototype
si4 UTF8_strlen(si1 *s);

Returns the number of UTF-8 characters in the UTF-8 string s. Used by
check_password().

/**/
/************************************ AES Utilities *********************************/
/**/

// Function Prototypes

void AES_add_round_key(si4 round, ui1 state[][4], ui1 *RoundKey);

void AES_decrypt(ui1 *in, ui1 *out, si1 *password, ui1 *expanded_key);

void AES_encrypt(ui1 *in, ui1 *out, si1 *password, ui1 *expanded_key);

void AES_key_expansion(si4 Nk, si4 Nr, ui1 *RoundKey, si1 *Key);

void AES_cipher(si4 Nr, ui1 *in, ui1 *out, ui1 state[][4], ui1 *RoundKey);

si4 AES_get_sbox_invert(si4 num);

si4 AES_get_sbox_value(si4 num);

si4 *AES_initialize_rcon_table(si4 global_flag);

si4 *AES_initialize_rsbox_table(si4 global_flag);

si4 *AES_initialize_sbox_table(si4 global_flag);

void AES_inv_cipher(si4 Nr, ui1 *in, ui1 *out, ui1 state[][4], ui1 *RoundKey);

void AES_inv_mix_columns(ui1 state[][4]);

void AES_inv_shift_rows(ui1 state[][4]);

void AES_inv_sub_bytes(ui1 state[][4]);

void AES_mix_columns(ui1 state[][4]);

void AES_shift_rows(ui1 state[][4]);

void AES_sub_bytes(ui1 state[][4]);

Not all of the AES functions are used by the other functions in the library, but are used
by other AES functions, and thus require inclusion. Only those functions that are
currently used in other (non-AES) meflib functions are described in this section.

FUNCTION: AES_initialize_rcon_table()

// Prototype
si4 *AES_initialize_rcon_table(si4 global_flag);

Allocates and initializes the AES rcon table into heap space. If global_flag is set, the
MEF_globals pointer AES_rcon_table is also set to this value. This function is called by
initialize_meflib().

FUNCTION: AES_initialize_rsbox_table()

// Prototype
si4 *AES_initialize_rsbox_table(si4 global_flag);

Allocates and initializes the AES rsbox table into heap space. If global_flag is set, the
MEF_globals pointer AES_rsbox_table is also set to this value. This function is called by
initialize_meflib().

FUNCTION: AES_initialize_sbox_table()

// Prototype
si4 *AES_initialize_sbox_table(si4 global_flag);

Allocates and initializes the AES sbox table into heap space. If global_flag is set, the
MEF_globals pointer AES_sbox_table is also set to this value. This function is called by
initialize_meflib().

FUNCTION: AES_decrypt()

// Prototype
void AES_decrypt(ui1 *in, ui1 *out, si1 *password, ui1 *expanded_key);

Decrypts a 16 byte (128 bit) block of AES-128 encrypted data in the “in” buffer to the
“out” buffer. The decryption can be done in place (“in” equals “out”), and is most often
done this way within the library functions. Either expanded_key or password must be
non-NULL. If both are non-NULL, the expanded key will be used, as it is more efficient.
An expanded key can be obtained from the function AES_key_expansion(). If a
password is to be used, an expanded key is generated from it, used, and discarded. A

password is a 16 byte sequence. If, as is usually the case, this is a string, unused bytes
should be zeroed, as these bytes, while meaningless to the string, cannot vary for
reproducible decryption. If a UTF-8 string is used for a password, the meflib routines
extract the terminal (most unique) bytes from each character to be used as the
password bytes. This can be done with the function extract_terminal_password_bytes();
it is not done in this function.

FUNCTION: AES_encrypt()

// Prototype
void AES_encrypt(ui1 *in, ui1 *out, si1 *password, ui1 *expanded_key);

Encrypts a 16 byte (128 bit) block of data in the “in” buffer to the “out” buffer using the
AES-128 algorithm. The encryption can be done in place (“in” equals “out”), and is most
often done this way within the library functions. Either expanded_key or password must
be non-NULL. If both are non-NULL, the expanded key will be used, as it is more
efficient. An expanded key can be obtained from the function AES_key_expansion(). If a
password is to be used, an expanded key is generated from it, used, and discarded. A
password is a 16 byte sequence. If, as is usually the case, this is a string, unused bytes
should be zeroed, as these bytes, while meaningless to the string, cannot vary for
reproducible encryption. If a UTF-8 string is used for a password, the meflib routines
extract the terminal (most unique) bytes from each character to be used as the
password bytes. This can be done with the function extract_terminal_password_bytes();
it is not done in this function.

FUNCTION: AES_key_expansion()

// Prototype
void AES_key_expansion(ui1 *expanded_key, si1 *key);

Generates an expanded key from a key. A key is a 16 byte sequence. If, as is usually
the case, the key is a password, unused bytes should be zeroed, as these bytes, while
meaningless to the string, cannot vary for reproducible encryption / decryption. If a
UTF-8 string is used for a password, the meflib routines extract the terminal (most
unique) bytes from each character to be used as the password bytes. This can be done
with the function extract_terminal_password_bytes(); it is not done in this function.

/**/
/************************************ SHA Utilities *********************************/
/**/

// Function Prototypes

ui4 *SHA256_initialize_h0_table(si4 global_flag);

ui4 *SHA256_initialize_k_table(si4 global_flag);

void sha256(const ui1 *message, ui4 len, ui1 *digest);

void SHA256_final(SHA256_ctx *ctx, ui1 *digest);

void SHA256_init(SHA256_ctx *ctx);

void SHA256_transf(SHA256_ctx *ctx, const ui1 *message, ui4 block_nb);

void SHA256_update(SHA256_ctx *ctx, const ui1 *message, ui4 len);

SHA-256 is the 256-bit version of the SHA-2 cryptographic hash function. Only the 256-
bit version is included in the library. Not all of the SHA functions are used by other
functions in the library, but are used by other SHA functions, and thus require inclusion.
Only those functions that are currently used in other (non-SHA) meflib functions are
described in this section.

FUNCTION: SHA256_initialize_h0_table()

// Prototype
ui4 *SHA256_initialize_h0_table(si4 global_flag);

Allocates and initializes SHA AES h0 table into heap space. If global_flag is set, the
MEF_globals pointer SHA_h0_table is also set to this value. This function is called by
initialize_meflib().

FUNCTION: SHA256_initialize_k_table()

// Prototype
ui4 *SHA256_initialize_k_table(si4 global_flag);

Allocates and initializes SHA AES k table into heap space. If global_flag is set, the
MEF_globals pointer SHA_k_table is also set to this value. This function is called by
initialize_meflib().

FUNCTION: sha256()

// Prototype

void sha256(const ui1 *message, ui4 len, ui1 *digest);

// Constant
#define SHA256_OUTPUT_SIZE 256

Returns a 256 byte SHA-2 hash of the message (of length len) in digest. This function is
used by process_password_data().

Mefrec API
User defined records are defined and coded in “mefrec.c” and “mefrec.h”. The functions
required for adding a new record type are described here. Record types themselves are
described in the file “MEF 3 Records Specification”.

All records have an identically structured record header, followed by a customizable
body. The body length must be padded out to a multiple of 16 bytes in length to facilitate
individual record encryption with AES-128.

Structures within records should have all members aligned to their type and the total
size evenly divisible by 8 (for 64-bit CPUs).

Records are named with 4 ascii characters and have a major and minor version
associated with them so that they can evolve, as needed, with time. These 4 characters
also define a type code as the bytes of a 4 byte unsigned integer. Note that translation
of ascii to hexadecimal on little endian machines requires reversing the byte
ordering the hexadecimal representation.

Each new record type should have two associated functions: a “show” function, and an
“alignment” function. “Show” functions display the contents of the records and have the
following form:

Name: show_mefrec_xxxx_type()
where “xxxx” is the record type name.

Prototype: void show_mefrec_xxxx_type(RECORD_HEADER *record_header);
where a RECORD_HEADER is a structure defined in “meflib.h”

The “show” function should handle all versions of the record type. An example “show
function is shown below for the “Note” record type.

void show_mefrec_Note_type(RECORD_HEADER *record_header)
{
 si1 *Note;

 // Version 1.0
 if (record_header->version_major == 1 && record_header->version_minor == 0) {
 Note = (si1 *) record_header + MEFREC_Note_1_0_TEXT_OFFSET;
 UTF8_printf("Note text: %s\n", Note);
 }
 // Unrecognized record version
 else {
 printf("Unrecognized Note version\n");
 }

 return;
}

All show function constants are defined in “mefrec.h”. The function show_record()
defined in mefrec.c must be modified in the switch statement, copied below, to add new
record types.

switch (type_code) {
case MEFREC_Note_TYPE_CODE:

show_mefrec_Note_type(record_header);
break;

case MEFREC_Seiz_TYPE_CODE:
show_mefrec_Seiz_type(record_header);
break;

case MEFREC_SyLg_TYPE_CODE:
show_mefrec_SyLg_type(record_header);
break;

case MEFREC_UnRc_TYPE_CODE:
default:

printf("\"%s\" (0x%x) is an unrecognized record type\n", \
record_header>type_string, type_code);
break;

}

“Alignment” functions have the following form:

Name: check_mefrec_xxxx_type_alignment()
where “xxxx” is the record type name.

Prototype: si4 check_mefrec_Note_type_alignment(ui1 *bytes);
where “bytes” is an optional buffer against which to check alignment

New record “alignment” functions check the alignment of any structures represented in
the record body. Those structures are defined in “mefrec.h”. The function
check_record_structure_alignments() defined in mefrec.c must be modified in the serial
if statements, copied below, to add a new record type.

if ((check_mefrec_Note_type_alignment(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

if ((check_mefrec_Seiz_type_alignment(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

if ((check_mefrec_SyLg_type_alignment(bytes)) == MEF_FALSE)
return_value = MEF_FALSE;

