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ABSTRACT
Using sensor data from devices such as smart-watches or mobile
phones is very popular in both computer science and medical re-
search. Such movement data can predict certain health states or
performance outcomes.However, in order to increase reliability and
replication of the research it is important to share data and results
openly. In medicine, this is often difficult due to legal restrictions
or to the fact that data collected from clinical trials is seen as very
valuable and something that should be kept "in-house". In this paper,
we therefore present PSYKOSE, a publicly shared dataset consisting
of motor activity data collected from body sensors. The dataset con-
tains data collected from patients with schizophrenia. Schizophrenia
is a severe mental disorder characterized by psychotic symptoms
like hallucinations and delusions, as well as symptoms of cognitive
dysfunction and diminished motivation. In total, we have data from
22 patients with schizophrenia and 32 healthy control persons. For
each person in the dataset, we provide sensor data collected over
several days in a row. In addition to the sensor data, we also pro-
vide some demographic data and medical assessments during the
observation period. The patients were assessed by medical experts
from Haukeland University hospital. In addition to the data, we
provide a baseline analysis and possible use-cases of the dataset.
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1 INTRODUCTION
Objective physiological parameters collected from sensors and an-
alyzed by machine learning techniques have gained considerable
interest as a tool to support the existing subjective diagnostic prac-
tice within mental health [13]. To perform reliable and reproducible
research with such data it is important to share both data and results
openly. In the medical field, sharing data is often problematic due to
various privacy policies. In this paper, we present our second openly
shared anonymized dataset on motor activity, containing actigraph
data collected from patients with schizophrenia. The Norwegian
Regional Medical Research Ethics Committee West approved the
original study protocol, and all processes were in accordance with
the Helsinki Declaration of 1975 [2].

Aktigraphy is a non-invasive method of monitoring human rest
and activity cycles, and is normally recorded with a wrist-worn
device that registers gravitational acceleration units [2]. Data from
actigraphs have been applied to studies of sleep [27] and psychiatric
diagnosis like bipolar disorder [24] and ADHD [8], and in some
extent in the investigation of Schizophrenia. Schizophrenia is char-
acterized by "positive" symptoms like hallucinations and delusions,
"negative" symptoms like diminished motivation and cognitive
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symptoms like slower mental processing [20]. A recent systematic 
review summarised motor activity studies of schizophrenia, all ap-
plying traditional statistical analysis [26]. Overall, patients with 
schizophrenia are associated with lower motor activity levels as 
well as repetitious and rigid patterns of behavior when compared to 
healthy controls. Motor activity also reflects the symptomatic state. 
Increasing positive symptoms correlates with augmented complex-
ity in activity patterns and increased sleep disturbance. Increased 
negative symptoms associates with overall reduced activity and 
amplified nighttime sleep disturbance [26].

The circadian system, an internal self-regulating clock, regu-
lates the diurnal oscillating cycles of nighttime sleep and daytime 
activity [3]. Integrated and interlocked in the circadian clock are var-
ious ultradian rhythms of shorter duration regulating patterns like 
rest/activity cycles, feeding habits, and hormone levels. Time series 
of motor activity is an articulation of this recurring complex clock 
system in interaction with daily social rhythms [4]. Disturbed sleep 
patterns and lurched rest/active cycles are characterizing symp-
toms of schizophrenia [20]. The cognitive function of schizophrenic 
patients seems furthermore related to the level of circadian disar-
ray [26].

An alternative method to detect and classify schizophrenia is 
electroencephalography (EEG) measuring electrical activity in the 
brain [6]. Machine learning appears promising in differentiating be-
tween schizophrenic patients and healthy controls in such data [29]. 
Still, data collected with electrodes placed on the scalp seems like 
a substantially more cumbersome and demanding process than a 
simple wrist-worn actigraph registering motor activity.

The aim of this paper was to explore if machine learning-based 
analysis can support diagnostic practice of schizophrenia. More, to 
enable additional investigation by sharing the dataset and ideas for 
further research. The main contributions of this paper are:

(1) A new publicly available dataset containing sensor and de-
mographic data of a substantial number of patients with
schizophrenia.

(2) The dataset contains additionally sensor data from a large
number of healthy control persons.

(3) Baseline experiments that can be used by other researchers
to compare their results. Classifying schizophrenia versus
none-schizophrenia days, including recommendations for
evaluation metrics.

In the following, we describe the diagnosis of Schizophrenia,
how the data was collected and the attributes of the data itself.
This is followed by an experiment section containing the baseline
experiments. We also discuss possible future research questions
using the dataset and give a conclusion.

2 MEDICAL BACKGROUND
Schizophrenia is a severe mental disorder that affects approximately
one percent of the global population. Symptoms of schizophrenia
begin in early adulthood, and the debut age is younger for males
than females. The disorder tends to be chronic and relapsing, how-
ever with a highly variable disease burden and degree of disability
between individuals. A range of different symptoms, including “pos-
itive” symptoms like hallucinations, delusions or psycho-motoric
agitation, “negative” symptoms like impaired affective experience

or expression and diminished motivation, and cognitive symptoms
like problems with focus or paying attention and problem solving
may occur [20, 25]. The main treatment of schizophrenia is antipsy-
chotic medication, both for acute psychotic episodes and for relapse
prevention. The therapeutic effects of and side effects related to
antipsychotics vary substantially among individuals [20]. Antipsy-
chotics target the dopamine system, and the antidopaminergic effect
may influence motor activity through side effects such as extrapyra-
midal syndrome and akathisia[16]. Akathisia is characterized by
subjective and objective psycho-motoric restlessness [22]. This dis-
tressing side effects is an important factor for patients quitting their
prescribed antipsychotic medications [7]. Akathisia investigated in
motor activity studies appears therefore as a relevant and impor-
tant topic for future research. Unfortunately, this is not possible
in the present dataset. In retrospect, we have identified several
patient characteristics that would have been beneficial to studies
like this, however requiring a larger sample size. Variables like
previous antipsychotic use, duration of use, type of antipsychotic
including dosage and alteration of dosage,serum concentration of
antipsychotics to verify intake, patient status (inpatient/outpatient),
duration of untreated psychosis and alcohol consumption and sub-
stance use may all be valuable in further motor activity studies in
schizophrenia [22, 23].

3 DATASET DETAILS
Motor activity was collected with a wrist-worn actigraph device
(Actiwatch, Cambridge Neurotechnology Ltd, England, model AW4)
entailing a piezoelectric accelerometer programmed to record the
integration of intensity, amount and duration of movement in all
directions. The sampling frequency was 32 Hz and movements over
0.05 g recorded. The output was gravitational acceleration units
per minute [2].

The dataset consists of actigraph data collected from 22 psy-
chotic patients hospitalized at a long-term open psychiatric ward at
Haukeland University hospital. All are diagnosed with schizophre-
nia, and all used antipsychotic medications. The group contained
3 females and 19 males with an average age of 46.2 ± 10.9 years
(range 27 – 69 years). The mean age at first time of hospitalization
was 24.8 ± 9.3 (range 10 – 52 years). Clinical experts diagnosed
the patients using a semi-structured interview based on DSM-IV
criteria [1]. The present psychotic symptomatic state was rated on
the Brief Psychiatric Rating Scale (BPRS), a frequently used rating
scale for measuring the overall psychopathology of schizophrenic
patients. BPRS consists of 18 items rated from 1 to 7, and higher sum
scores indicate a more severe condition [18]. Further details on the
dataset are presented in previous papers analyzing the dataset with
various linear and nonlinear statistical approaches [2, 9, 10, 15].

The dataset also contains actigraphy data from 32 healthy control
persons, consisting of 23 hospital employees, 5 nursing students,
and 4 healthy persons recruited from a general practitioner. None
had a history of either psychotic or affective disorders. The group
consists of 20 females and 12 males, with a mean age of 38.2 ± 13.0
(range 21 – 66 years).

The participants used the actigraph devices for an average of
12.7 days in the control and condition groups. See Table 1 for details.
The total number of collected days was 687 comprising 402 days
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in the control group and 285 in the condition group. Note that the
actigraph files might contain more days, but only the first 𝑛 days
were considered in our analysis where 𝑛 is the number of days
reported in the days.csv file.

Table 1: Statistics of number of collected days by group.

Control group Condition group

Mean 12.6 12.95
Sd. 2.3 0.37
Max 20 14
Min 8 12

3.1 Dataset Structure
The root folder of the dataset contains five items. Two folders,
one contains the activity data for the controls and the other the
data for the patients. For each patient and control, a CSV file is
provided containing the actigraphy activity measurements over
time. The columns in the patient and control files are timestamp
(one-minute intervals), date (date of measurement), activity (activity
measurement from the actigraph watch).

The root folder also contains a file named patients_info.csv. This
file contains the following columns: Number (patient identifier),
gender (male or female), age (age of the patient), days (whole days
the patient wore the actigraph), schtype (type of schizophrenia),
migraine (did the patient have migraine), bprs (BPRS sum score),
cloz (did the patient use clozapine as antipsychotic medication),
trad (did the patient use traditional neuroleptic or modern antipsy-
chotic medication), moodst (did the patient use mood stabilizing
medications), agehosp (age first time hospitalized).

Another file in the root folder is named days.csv. This file contains
the number of days the patient and controls are in the study. It
contains the columns id (identifier) and days (number of full days).

Finally, the root folder contains a file named schizophreni_features.csv.
This contains the statistical features used for the baseline experi-
ments. The file contains four columns: userid (patient identifier),
class (class to predict binary), class_str (class name as string), f.mean
(the mean), f.sd (the standard deviation), f.propZeros (proportion
of zeros).

The dataset can be accessed via:https://osf.io/dgjzu/ or directly
downloaded from https://datasets.simula.no/psykose/. The li-
cense for the PSYKOSE dataset is Creative Commons Attribution-
NonCommercial 4.0 International.

4 APPLICATIONS OF THE DATASET
The main goal of publishing this dataset is to encourage other
researchers to use the data to improve the quality of life for mental
health patients. The dataset has several application areas, of which
some will be discussed in the following. Some suggested future
research directions using this dataset could be:

• Use machine learning for schizophrenia state classification.
• Analysis of circadian and ultradian cycles in schizophrenia
compared to non-schizophrenia.

• Sleep pattern analysis of schizophrenia versus non-schizophrenia.

In addition, we also want to point out that this dataset can be
combined with our previously published Depresjon dataset [12],
to increase the number of persons and measurements for both
datasets. When comparing the motor activity profiles of depressed
patients, schizophrenic patients and healthy controls, the distribu-
tion and length of active and resting periods differentiate in motor
activity [10]. Complexity analyzes have also identified motor ac-
tivity profiles segregating the three groups [15] [17]. Therefore,
by combing these two datasets, some potential research questions
emerge:

• Use machine learning for schizophrenia, depression state
classification.

• Compare attributes of schizophrenia and depression patients.
• Differences in sleep patterns and/or the rest/activity cycles
of schizophrenia versus non-schizophrenia versus depressed.

In addition to these specific medical research questions, more
general research questions in the field of machine learning could
also be addressed using this dataset. For example, comparing differ-
ent algorithms and metrics on the dataset, over and under-sampling
techniques and their effectmeasured using the dataset, and research-
ing and developing more advanced time-series based analysis al-
gorithms. Examples of more advanced algorithms include those
based on deep learning, such as convolutional neural networks or
recurrent neural networks.

5 SUGGESTED METRICS
The evaluation of classification algorithms can be done in a variety
of different ways. Sometimes, metrics that measure the same thing
have different names depending on the discipline in which they are
discussed. For example, recall in information retrieval is often called
sensitivity in a medical context. In the following, we will present
two experiments using different metrics that we recommend for
this dataset. In general, there are two important things to take
into account. Firstly, medical datasets are often imbalanced (one
class is presented more often than another). For an imbalanced
dataset like this, it is important to weigh the metrics based on
the number of classes. Such weighting is specifically applicable
to binary classifications. Secondly, it is good practice to present
a comprehensive set of outcome metrics, beyond the frequently
reported limited subset of accuracy or precision, recall, and F1-
score.

All outcome metrics we recommend are calculated by using
True positives ((TP) number of correctly classified patients with
schizophrenia), true negatives ((TN) number of correctly classified
controls), false positives ((FP) number of misclassified controls)
and false negatives ((FN) number of misclassified patients with
schizophrenia). The metrics used for this dataset are, False-Positive
Rate, Precision, Recall/Sensitivity, Matthews Correlation Coefficient
(MCC) and F1-score. In addition, we recommend using Precision-
Recall-Curves (PRC) and Receiver-Operating-Characteristic-Curves
(ROC). Additionally, to obtain better generalizable models, a cross-
validation approach ought to be utilized. We propose either N-fold
or leave-one-patient-out cross-validation.

https://osf.io/dgjzu/
https://datasets.simula.no/psykose/
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6 BASELINE PERFORMANCE
To provide a baseline performance and also to inspire future work, 
we present two baseline experiments using the dataset. The goal 
of both experiments is to classify patients into schizophrenia or 
non-schizophrenia. For all experiments, we used statistical features 
extracted from the activity data. The features used are standard 
deviation, proportion of zeros and mean. The features are calculated 
per full day per patient. This leads to 687 data points. From these, 
285 are classified as schizophrenic and 402 as non-schizophrenic. 
The extracted features used for the experiments are shared with 
the dataset for reproducibility. Figure 1 shows a projection of the 
extracted features into a 2D plane using Multidimensional Scaling 
(MDS). It can be seen that those features, to some extent, are able to 
separate both groups but not perfectly, though. In the next few sec-
tions, we present baseline results using machine learning classifiers 
to infer each points’ class (no-schizophrenia and schizophrenia).
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Figure 1: Computed features projected into a 2D plane using
MDS.

6.1 Experiment 1
For the first experiment, we perform 10-fold cross-validation for
the training and leave a certain amount of data out for testing (90%,
66%, 50%, 33%, and 10%). The data left out for testing is stratified,
meaning the number of schizophrenic and non-schizophrenic data
points is balanced if possible (this cannot be done for the 90% test
data case).

The experiments are performed using four different algorithms,
namely, Logistic Regression (LR) [14], Random Forest (RF) [19],
Extreme Gradient Boosting (XGB) [5] and Light Gradient Boosting
(LGB) [11]. All four are commonly used for machine learning tasks.
In addition, we also used ensemble to combine the four different
algorithms to perform a combined classification. For all tested al-
gorithm,s we report the average precision (from the PRC) and the
area under the curve (from the ROC). For the best working one, we
also present plots of the PRC and ROC. Implementations are made
using Scikit-learn [21] and the packages XGBoost1 and LightGBM2

1https://xgboost.readthedocs.io/en/latest/index.html
2https://github.com/microsoft/LightGBM

Table 2: Classification performance for experiment 1 (10-
folded cross-validation) reporting average precision and
area under the curve for different test set sizes.

Metric Testset size LR RF XGB LGB Ensemble

Average Precision 10 0.89 0.86 0.86 0.89 0.92
Average Precision 33 0.94 0.90 0.90 0.93 0.91
Average Precision 50 0.94 0.89 0.89 0.93 0.91
Average Precision 66 0.92 0.89 0.90 0.92 0.89
Average Precision 90 0.92 0.82 0.82 0.89 0.90
Area under the Curve 10 0.81 0.78 0.82 0.85 0.91
Area under the Curve 33 0.90 0.85 0.86 0.90 0.88
Area under the Curve 50 0.89 0.84 0.86 0.90 0.89
Area under the Curve 66 0.89 0.83 0.87 0.90 0.87
Area under the Curve 90 0.88 0.76 0.79 0.84 0.87

for the two respective algorithms. The implementation details and
configurations are shared with the dataset.

Looking at table 2, we can observe that all algorithms perform
well with average precision and area under the curve above 0.80.
Overall, the logistic regression performs best in terms of average
precision and area under the curve. Figure 2 shows the precision-
recall curve for the LR and 90% of the data as a testset. It is inter-
esting to see that the performance is very good, even with a small
number of training data. The random baseline threshold would be
0.41 (true positive divided by all samples). For the ROC shown in
figure 3, we can make the same observation with an area under the
curve of 0.92.

Figure 2: PRC for the logistic regression using 90% of the
data as testset.

6.2 Experiment 2
For experiment 2, we changed the evaluation of cross-validation
training and separate test set to leave one patient out cross-validation.
This means we leave one patient out of the training and use that
for testing. This is repeated until all patients have been one time
the test. For these experiments, we used the WEKA [28] machine
learning library. We are reporting the weighted average of the met-
rics. The tested algorithms are ZeroR (which is the majority class
baseline), Random Tree, Random Forest (RF), and classification via
Regression (CVR). From the results in table 3, we can see that all al-
gorithms outperform the ZeroR baseline. Looking at the Matthews
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Figure 3: ROC for the logistic regression using 90% of the
data as testset.

Table 3: Classification performance (leave one patient out
cross validation). The best performing classifier on the
weighted average is bold.

Classifier Class False-Positive Rate Precision Recall F1-Score MCC

RT Non-Schizophrenia 0.232 0.835 0.828 0.831 0.596
RT Schizophrenia 0.172 0.760 0.768 0.764 0.596
RT weighted average 0.207 0.804 0.803 0.804 0.596

RF Non-Schizophrenia 0.232 0.844 0.886 0.864 0.662
RF Schizophrenia 0.114 0.826 0.768 0.796 0.662
RF weighted average 0.183 0.836 0.837 0.836 0.662

CVR Non-Schizophrenia 0.098 0.906 0.672 0.771 0.570
CVR Schizophrenia 0.328 0.661 0.902 0.763 0.570
CVR weighted average 0.194 0.804 0.767 0.768 0.570

ZeroR Non-Schizophrenia 1.000 0.585 1.000 0.738 0
ZeroR Schizophrenia 0.000 0 0.000 0 0
ZeroR weighted average 0.585 0.515 0.585 0.515 0

correlation coefficient (MCC), we can see that Random Forest is the
overall best performing classifier. The other two algorithms seem
to have a problem to efficiently detect schizophrenia compared to
non-schizophrenia.

6.3 Experiments Summary
Both sets of experiments showed promising results for using activ-
ity data to detect schizophrenia versus non-schizophrenia. However,
the results are not optimal, and there is still potential for large im-
provements. For example, it might be better to look at the complete
activity using more sophisticated methods such as recurrent neural
networks.

7 CONCLUSION
In this paper, we have presented a dataset containing motor activity
data from patients with schizophrenia. The baseline analysis of
our experimental results showed the potential for using such data
to answer medical relevant research questions. We also discussed
possible applications using the dataset such as schizophrenia versus
non-schizophrenia classification of patients. In this respect, we hope
that this dataset will encourage other researchers to both perform
experiments using the data, and also to share their own insights and
datasets. The PSYKOSE dataset will hopefully enable reproducible

and comparable results and assist in the development of future
automated systems supporting the existing subjective diagnostic
practice within mental health.
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