
Yield Curve Study 

 

▪ Yield curve is defined as the relationship between the yield-to-maturity and the maturity. It 

is derived from observed market instruments.  

▪ Yield curve is a representation for a two dimensional array of maturity date and 

corresponding continuously compounded zero-coupon interest rate pairs. 

▪ Given yield curve, one can compute either a discount factor to a given maturity date or a 

forward discount factor between two given maturity dates. 

▪ Based on yield curve, one can also compute either a zero-coupon rate to a given maturity 

date or a forward zero-coupon rate between two given maturity dates 

▪ Yield curve assumes an ACT/365 day-counting convention.  Assume that the “USD” curve 

consists of a two-dimensional array of continuously compounded zero-coupon rate and 

maturity date pairs, ( )iT TR
i
, , for ni ,...,1= , where nTTt  ...10 .   

▪ If the starting date, 
1t , coincides with the valuation date, 0t , then computes a discount 

factor to the maturity date, T .  In particular, if iTT = , for some  ni ,...,1 , then 
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▪ Moreover, if the date, T, does not match any point in the array of input “USD” curve 

maturity dates, but falls in between two consecutive input maturity points, 
1i

T  and 
2i

T (i.e., 

21 ii TTT  ), then the discount factor calculation is based on the log-linear interpolation of 

the discount factors at the bracketing points, 
1i

T  and 
2i

T ; for example, 
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▪ The term structure of zero rates is constructed from a set of market quotes of some liquid 

market instruments such as short term cash instruments, middle term futures or forward 

rate agreement (FRA), long term swaps and spreads.  

▪ If the starting date, 
1t , is different from the valuation date, 0t , then Dfactor computes a 

discount factor between the starting date, 0t , and the maturity date, T , as follows, 
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▪ Note that ZeroRate assumes an ACT/365 day-counting convention.  If the starting date, 
1t , 

coincides with the valuation date, 0t , then ZeroRate computes a zero-coupon rate, TR , to 

the maturity date, T , according to the specified quotation convention.   

▪ Moreover, if the maturity date, T, does not match any point in the array of input “USD” 

curve maturity points, but falls in between two consecutive input maturity points, 
1i

T  and 

2i
T (i.e., 

21 ii TTT  ), then the zero-coupon rate is calculated according to the quotation 

convention as shown below: 

▪ The yield term structure is increasingly used as the foundation for deriving relative term 

structures and as a benchmark for pricing and hedging.  
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▪ annual convention, 
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▪ When the starting date, 
1t , is different from the valuation date, 0t , then ZeroRate computes 

a forward zero-coupon rate, TtR ,1
, as follows: 
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▪ linear convention, 
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▪ annual convention, 
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Reference: 

https://finpricing.com/lib/EqBarrier.html 
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