Main content
The Kvasir-Capsule Dataset
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Data
Description: Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. However, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. In this respect, we present Kvasir-Capsule, a large VCE dataset collected from examinations at Hospitals in Norway. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around detected anomalies from 14 different classes of findings. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. Initial work demonstrates the potential benefits ofAI-based computer-assisted diagnosis systems for VCE. However, they also show that there is great potential for improvements, and the Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order for VCE technology to reach its true potential.
Kvasir-Capsule
This is the official OSF repository for the Kvasir-Capsule dataset, which is the largest publicly released VCE dataset. In total, the dataset contains 47,238 labeled images and 117 videos, where it captures anatomical landmarks and pathological and normal findings. The results is more than 4,741,621 images and video frames all together.
Some users experience problems with downloadin…
Files
Files can now be accessed and managed under the Files tab.
Citation
Recent Activity
Unable to retrieve logs at this time. Please refresh the page or contact support@osf.io if the problem persists.