Meta-analytic decoding of the cortical gradient of functional connectivity
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Background

 Macroscale gradients have emerged as a central principle for understanding functional brain organization. * With regard to segmentation approaches, PCT showed the best performance, while KMeans performed better than KDE.
 Margulies et al. demonstrated that a principal gradient of connectivity exists, with unimodal, primary sensorimotor * LDA-based decoder, in addition to showing a high average of top correlation scores, yielded the highest information
regions situated at one end and transmodal regions associated with the default mode network and representative of content, TFIDF, and SNR,

abstract functioning at the other?®.  We observed little differences in correlation profile between NS and NQ combinations; in some cases, NS performed
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 The functional interpretation of macroscale gradients remains a central vk perception mmmEN slightly better (e.g., Term-PCT), and in others, NQ showed higher correlation values to some degree (e.g., LDA-PCT).
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increments, binarizing the 20 resultant maps, and decoding each map. This 3 “Tmesn 01 02 03 04 05 o o 00 300
. . . declarative memory PEEEEEE B . ! L L
segmented approach has been used in prior studies’® and allows reward-based decision 3 JIIMNEREANN
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resting-state fMRI data® were used to generate functional connectivity and compute the affinity matrix. 10 S0 5 TEIE5 0 15 o NI B
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 Whole-brain gradient maps were segmented to divide the gradient spectrum into a finite number of brain maps. 5T KMeans KDE CT KMeans KDE 22 (RN
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* The KMeans algorithm shows the most consistent result across segment solutions, with a distribution having the highest Rl §6 e ﬁ g o R odian " “hore
median value and the lowest number of vertices with negative silhouette coefficients. o & | OQ e o L g - = q = "‘ - - é&
* The KMeans approach consistently resulted in better segment assighment across the cortical surface. =\ ™ e e tioene e e e
* Data-driven segmentation determined by a KMeans algorithm produced the most balanced distributions of boundaries T i g“’“: Doty
with the highest vertex-wise and mean silhouette coefficient across segment solutions. b pre i . e
* A small number of segments is preferred if we want to produce gradient maps with high silhouette scores, and to find the iageryT ) \ /T correct reeanac{ [N O ryrisk
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3 0 segmentation solutions, with
051 the highest values observed ¢ For small numbers of segments, a KMeans algorithm yields the most confident distribution of boundaries as shown by
X between 3-8 segments. the vertex-wise and mean silhouette coefficients.
. | * We determined that a large number of segments was detrimental to the performance of correlation decoders, as the
- EOZ _O7T, Somoran average of the top correlation values decreases exponentially with the increase of the segment solution.
: | S 6. - \\x o * LDA-based produced meta-analytic maps that yielded both a relatively high correlation value and a collection of terms
£ ;1 %0_5_ N that naturally improved the information content, TFIDF, and SNR.
: §0.4_ _______ : /\ * NS and NQ performed similarly in terms of their correlation profile, given the similarity between their corpora.
05 % / '''' * The size of the vocabulary may help improve the information content of a decoder, as well as the production of more
32 0 §03' """""" / functional terms. As such we recommend using a large database with a large and rich vocabulary like NeuroQuery.
05 2 * In conclusion, we provide recommendations on best practices for gradient-based functional decoding of fMRI data. We
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found that a K-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database
was the optimal combination of methods for decoding functional connectivity gradients.
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