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How does the brain store the knowledge 
about shape that it uses for recognition?
● Theory 1: Just learn separate appearance models for all possible viewpoints.
● Theory 2: Same as Theory 1 but with weight-sharing for different translations 

(Convolutional Neural Nets).
● Theory 3: Store knowledge in the weights about the viewpoint independent 

relationships between wholes and parts. Make the activities be viewpoint 
equivariant.
○ This is what computer graphics did until 2020.
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If the knowledge of whole-part 
relationships is in the weights, how do we 
access it?
● We convert the viewpoint independent knowledge into viewpoint-dependent 

neural activities by choosing a viewpoint and forming a “mental image”.

Is the distance between the tips of the ears of a German Shepard bigger or smaller 
than the distance between its eyes?

● Once we have chosen a viewpoint and formed the mental image, we can 
read-off spatial relationships from the neural activities.
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What is a spatial relationship?

● It is the coordinate transformation that maps points relative to one rectangular 
coordinate frame into points relative to another rectangular coordinate frame.

● People impose rectangular coordinate frames on wholes and parts in order to 
represent shape.
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Some psychological evidence that our 
visual systems impose coordinate frames in 
order to represent shapes (after Irvin Rock)
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More evidence for rectangular coordinate 
frames
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MIT professors take more than a minute to figure out how to put these two identical 
parts together to make a tetrahedron!  Why?
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Disclaimer
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● The outer loop of vision is a sequence of intelligently chosen fixations that 
sample the optic array to provide the information required to perform a task.

● For each fixation we reuse the same neural net to produce a multi-level 
representation of the retinal image produced by that fixation.

● This talk is only about what happens on the first fixation. 
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Theory 3a: Identity-specific capsules
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Sabour, Frosst, Hinton (2017)
Hinton, Sabour, Frosst (2018)

Kosiorek, Sabour, Teh, Hinton (2019)

● Localize knowledge about a specific shape into a specific group of neurons 
that knows, in its weights, how all the parts are related to the whole.

● Recognize shapes by noticing when multiple different parts predict the same 
pose for the whole.
○ The pose of a part is the coordinate transform between the retina and the intrinsic frame of the 

part.
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Two layers in a hierarchy of parts
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A higher level visual 
entity is present if 
several lower level 
visual entities can 
agree on their 
predictions for its pose.

pose of the mouth, i.e., 
relationship to retina

viewpoint-ind
ependent 
spatial 
relationship
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Theory 3b: Ubiquitous Universal Capsules
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Hinton (2021):  arXiv:2102.12627

● Divide the image into many small locations.
● For each location, dedicate hardware to representing whatever it is that 

occupies that location.
○ i.e., use a retinotopic map

● Have multiple different levels of representation for each location, i.e. multiple 
universal capsules each of which represents one level in the part-whole 
hierarchy.
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The embedding vectors for nearby columns 
at a single time-step as GLOM settles

At each level there are 
islands of agreement. 
These islands represent 
the parse tree for the 
scene.

It is a multi-level, 
real-valued Ising model 
with coordinate transforms 
between levels. 
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scene level embeddings

part level embeddings

lowest level embeddings
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Three adjacent levels of GLOM in a single 
column
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Interactions between and within levels

● The level L embedding at location x is an average of four contributions:

1. The bottom-up contribution from the level L-1 embedding in the same column at the 
previous time-step.

2. The top-down contribution from the level L+1 embedding in the same column at the 
previous time-step.

3. The level L embedding at the previous time-step.
4. The attention-weighted average of the level L embeddings in other nearby columns 

at the previous time step.
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The attention-weighted average

● The level L embedding at location x tries to agree with similar 
level L embeddings at other locations.
○ The attention weighted average of the level L embeddings at other 

locations, y, uses weights proportional to exp[ L(x) L(y) ]
○ This causes the level L embeddings to form islands of similar 

embeddings. 
■ Islands are echo chambers.
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One way to deal with ambiguous parts: 
disambiguation at the part level
● A possible nose could interact directly with a possible mouth. 
● They disambiguate each other if they have the right spatial 

relationship. 
● So we need a “transformational random field” in which the pose of the 

nose predicts the pose of the mouth via a nose->mouth coordinate 
transform (and vice versa).

● N interacting parts need O(N^2) coordinate transforms between parts.
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A different way to deal with ambiguous 
parts: The Hough transform

● Instead of allowing the parts to interact directly, allow each part to make an ambiguous 
multimodal prediction for the identity and pose of the whole object in the same column.
○ Unlike earlier capsules, no dynamic routing is required.

● The whole is present if many multimodal predictions from different columns can agree 
on a mode via their lateral attention-weighted interactions.

● If each column predicts an unnormalized log probability distribution over the space of 
possible object instances, we can simply add the predicted distributions in different 
columns. 
○ But we must use attention so we only add similar distributions.
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How to implement multimodal predictions 
in the joint space of identity and pose

● Each neuron in the embedding vector for the object is a basis function that 
represents a vague distribution in the unnormalized log probability space.

● The activity of the neuron scales this log distribution.
● The full object embedding vector represents the sum of these scaled log 

distributions.
● The individual distributions can be very vague because they only need to 

represent one thing at a time:  the object occupying that location.
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A big problem for ubiquitous universal 
capsules as a brain theory

● The bottom-up and top-down neural networks at every location need to be 
the same.

● It seems extremely wasteful to learn all this knowledge separately for each 
location.
○ In a computer we can just share the weights of the local neural networks.
○ So how can we get the effect of weight-sharing in a brain?
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A brief introduction to distillation

● Distillation is a way of extracting the knowledge from one model and putting it 
into a model with a different structure.

● It is typically used to convert the knowledge learned by a big model or an 
ensemble of big models into a smaller model.
○ Such as a speech recognizer that runs on your phone instead of in a data-center.
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The analogy that distillation is based on
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The main idea

● The big cumbersome model implements a function from input to 
output.

● Forget the architecture and weights of the big model and focus on the 
function.
○ After learning the big model, we have our hands on the function.

● How do we transfer the knowledge in the function into a model with a 
different architecture?
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Distillation: A way to transfer the knowledge

● If the output is a big N-way softmax, the targets are usually a single 1 and a 
whole lot of 0’s.
○ On average each target puts at most log N bits of constraint on the function.

● If we have our hands on a big model, we can divide its logits by a 
“temperature” to get a much softer distribution. 
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This reveals much more 
information about the 
function on each training 
case.
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An example of hard and soft targets

Softened outputs 
reveal the dark 
knowledge in the big 
model. Most of its 
knowledge is in the 
relative probabilities 
of wrong answers.
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cow dog cat car

0 1 0 0

cow dog cat car

10-6 .9 .1 10-9

cow dog cat car

0.05 .3 .2 .00

Original hard 
targets

Output of a 
big model

Softened 
output of the 
big model
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What species is this?

Snow leopard?

Tiger?

Cow?

Carrot?
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Some examples of soft targets
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Experiment on MNIST

● Vanilla backprop in a 784 → 800 → 800 → 10 net with rectified linear hidden 
units gives 146 test errors.
○ RELU:  y = max(0, x)

● If we train a 784 →  1200 → 1200 → 10 net using dropout and weight constraints 
and jittering the input, we eventually get 67 errors.

● How much of this improvement can be transferred to
the 784 → 800 → 800 → 10 net? 
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Transfer to the small net

● Using both the soft targets obtained from the big   net and the hard 
targets, we get 74 errors in the 784 → 800 → 800 → 10  net.
○ The transfer training uses the same training set but with no dropout and no 

jitter.
○ It’s just vanilla backprop (with added soft targets). 

● The soft targets show the small net how to generalize well (if you trust the 
big model). 
○ In distillation, we are finally training with the correct objective function which is 

to generalize well. 
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The mythical digit three:
A very surprising  result on MNIST

● Using soft targets from the big model, train the 784 → 800 → 800 → 10 
net on a transfer set that does not contain any examples of a 3. 

● After the transfer training, raise the bias of the 3 (the distilled net thinks 
that 3’s are very rare).
○ The distilled net then gets 98.6% of the test threes correct even though it never 

saw any threes during the transfer training.
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Co-distillation: 
training a community of neural nets

● If we train ten 784 → 500 → 300 → 10 nets independently on MNIST, they 
average 158 test errors. The ensemble gets 143 errors.

● What if we let each net try to match soft targets derived by averaging the 
opinions of the whole community as it is training? (in addition to matching the 
hard targets)
○ The nets now average 126 errors!
○ The ensemble gets 120 errors.
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How can columns share knowledge in a 
brain?
● In GLOM, the bottom-up and top-down neural nets between two adjacent 

levels are the same for all columns.
○ But a brain cannot share weights.

● All we actually need to share is the knowledge in different columns.
○ We can do this by co-distillation
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Transferring knowledge between columns

● In each column, the bottom-up and top-down neural nets treat the 
consensus embedding at level L as a target.

● The consensus embedding is the average of 
○ the bottom-up prediction for level L from level L+1 at that location,
○ the top-down prediction for level L from level L-1 at that location,
○ the attention-weighted predictions from nearby level L embeddings.

● By trying to model the consensus embedding, each local neural net is 
using the neural nets in nearby columns as a teacher. 
○ The whole system is doing co-distillation.
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Why distillation is actually better than 
weight-sharing

● The retina does not have uniform resolution and the 
photoreceptors are not in a regular grid.

● So the optic array is preprocessed differently in each location. 
● We want the neural nets at each location to compute the same 

function of the optic array.
○ Distillation achieves this

32



Geoffrey Hinton ⦁  Keynote Lecture

THE END

Paper on distillation: arXiv:1503.02531 

Paper on GLOM: arXiv:2102.12627
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