
Neuromatch Academy: Model Fitting - Summary Sheet1

Linear regression with MSE

Mean Squared Error (MSE)

Linear least squares regression is an old but gold opti-
mization procedure that we are going to use for data fit-
ting. Least squares (LS) optimization problems are those in
which the objective function is a quadratic function of the
parameter(s) being optimized.
Suppose you have a set of measurements: for each data
point or measurement, you have yi (the "dependent" vari-
able) obtained for a different input value, xi (the "indepen-
dent" variable). Suppose we believe themeasurements are
proportional to the input values, but are corrupted by some
(random) measurement errors, ϵi , that is:

yi = θxi + ϵi (1)

for some unknown slope parameter θ. The least squares
regression problem uses mean squared error (MSE) as its
objective function, it aims to find the value of the parameter
θ by minimizing the average of squared errors:

min
θ

1

N

N∑
i=1

(ϵi)
2 (2)

min
θ

1

N

N∑
i=1

(yi − θxi)
2 (3)

Least-Squares Optimization

The MSE value relies on a grid of hand-specified values. If
we didn’t pick a good range to begin with, or with enough
granularity, we might miss the best possible estimator. In-
stead of finding the minimum MSE from a set of candidate
estimates, let’s solve for it analytically. We can do this by
minimizing the cost function. Mean squared error is a con-
vex objective function, therefore we can compute its mini-
mum using calculus for find the best estimate:

θ̂ =
x⊤y

x⊤x
(4)

where x and y are vectors of data points.

Linear regression with MLE

Gaussian noise

In the MSE we made the assumption that the data was
drawn from a linear relationship with noise added.
In that case we treated the noise as simply a nuisance, but
what if we factored it directly into our model?
The noise component ϵ is often modeled as a random vari-
able drawn from a Gaussian distribution (also called the
normal distribution).
The Gaussian distribution is described by its probability
density function (pdf)

N (x;µ, σ
2
) =

1
√
2πσ2

e
− 1

2σ2 (x−µ)2

(5)

and is dependent on two parameters: the mean µ and
the variance σ2 . We often consider the noise signal to be
Gaussian "white noise", with zero mean and unit variance
ϵ ∼ N (0, 1).

Probabilistic Models

Consider again our simplified model y = θx+ ϵwhere the
noise has zeromean andunit variance ϵ ∼ N (0, 1). We can
now also treat y as a random variable drawn from a Gaus-
sian distribution where µ = θx and σ2 = 1, y ∼ N (θx, 1),
which is to say that the probability of observing y given x
and parameter θ is

p(y|x, θ) =
1

√
2π

e
− 1

2
(y−θx)2 (6)

Likelihood Estimation

Given the inherent uncertainty when dealing in probabili-
ties, we talk about the likelihood that some estimate θ̂ fits
our data. The likelihood function L(θ) is equal to the prob-
ability density function parameterized by that θ:

L(θ|x, y) = p(y|x, θ) =
1

√
2πσ2

e
− 1

2σ2 (y−θx)2

(7)

Since we have assumed that the noise affects each output
independently, we can factorize the likelihood, and write:

L(θ|x,y) =
N∏

i=1

L(θ|xi, yi), (8)

where we have N data points x = [x1, ..., xN] and y =

[y1, ..., yN].

Linear regression with MLE

Finding the Maximum Likelihood Esti-
mator (MLE)

Wewant to find the parameter value θ̂ that makes our data
set most likely:

θ̂MLE = argmax
θ

L(θ|X,Y) (9)

We discussed how taking the logarithm of the likelihood
helps with numerical stability, the good thing is that it does
so without changing the parameter value that maximizes
the likelihood. Indeed, the log() function is *monotonically
increasing*, which means that it preserves the order of its
inputs. So we have:

θ̂MLE = argmax
θ

m∑
i=1

logL(θ|xi, yi) (10)

Now substituting our specific likelihood function and taking
its logarithm, we get:

θ̂MLE = argmax
θ

[−
N

2
log 2πσ

2 −
1

2σ2

N∑
i=1

(yi − θxi)
2
].

(11)

Note that maximizing the log likelihood is the same asmin-
imizing the negative log likelihood (in practice optimiza-
tion routines are developed to solve minimization not max-
imization problems). Because of the convexity of this ob-
jective function, we can take the derivative of our negative
log likelihhood, set it to 0, and solve - just like our solution
to minimizing MSE.

∂ logL(θ|x, y)
∂θ

=
1

σ2

N∑
i=1

(yi − θxi)xi = 0 (12)

1 ’t Hart et al., (2022). Neuromatch Academy: a 3-week, online summer school in computational neuroscience. Journal of Open Source Education, 5(49), 118. https://doi.org/10.21105/jose.00118

https://compneuro.neuromatch.io/tutorials/intro.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/chapter_title.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.html

Confidence Intervals and Bootstrap-
ping and Cross-validation

Confidence Intervals and Bootstrap-
ping

Bootstrapping is a resampling procedure that allows to
build confidence intervals around inferred parameter val-
ues. It is a widely applicable and very practical method that
relies on computational power and pseudo-random num-
ber generators (as opposed to more classical approaches
than depend on analytical derivations)
The idea is to generate many new synthetic datasets from
the initial true dataset by randomly sampling from it, then
finding estimators for each one of these new datasets, and
finally looking at the distribution of all these estimators to
quantify our confidence.
Note that each new resampled datasets will be the same
size as our original one, with the new data points sampled
with replacement i.e. we can repeat the same data point
multiple times.

Cross-validation

A commonly used method for model selection is to ask
how well the model predicts new data that it hasn’t seen
yet. But we don’t want to use test data to do this, otherwise
that would mean using it during the training process! One
approach is to use another kind of held-out data which we
call validation data: we do not fit the model with this data
but we use it to select our best model.
We often have a limited amount of data though (especially
in neuroscience), so we do not want to further reduce our
potential training data by reassigning some as validation.
Luckily, we can use k-fold cross-validation! In k-fold cross
validation, we divide up the training data into k subsets (that
are called folds, see diagram below), train ourmodel on the
first k-1 folds, and then compute error on the last held-out
fold.

Multiple Linear Regression and Poly-
nomial Regression

Multiple Linear Regression

We can easily extend univariate regression to themultivari-
ate scenario by adding another parameter for each addi-
tional feature

y = θ0 + θ1x1 + θ2x2 + ... + θdxd + ϵ (13)

where θ0 is the intercept and d is the number of features (it
is also the dimensionality of our input).
We can condense this succinctly using vector notation for
a single data point

yi = θ
⊤
xi + ϵ (14)

and fully in matrix form

y = Xθ + ϵ (15)

where y is a vector of measurements, X is a matrix con-
taining the feature values (columns) for each input sample
(rows), and θ is our parameter vector. This matrixX is often
referred to as the design matrix. To find an optimal vector
of parameters θ̂ we use:

θ̂ = (X
⊤
X)

−1
X

⊤
y. (16)

Polynomial Regression

The polynomial regression is an extension of linear regres-
sion, the dependent variabley given the input valuesx. The
key change is the type of relationship between inputs and
outputs that the model can capture. With polynomial re-
gression, we model the outputs as a polynomial equation
based on the inputs. For example, we can model the out-
puts as:

y = θ0 + θ1x + θ2x
2
+ θ3x

3
+ ϵ (17)

We can change how complex a polynomial is fit by chang-
ing the order of the polynomial. The order of a polynomial
refers to the highest power in the polynomial.

Model Selection: Bias-variance
trade-off

Train and Test

The data used for the fitting procedure for a given model
is the training data. We computed MSE on the training
data of our polynomial regression models and compared
training MSE across models. An additional important type
of data is test data. This is held-out data that is not used (in
any way) during the fitting procedure. When fitting models,
we oftenwant to consider both the train error (the quality of
prediction on the training data) and the test error (the qual-
ity of prediction on the test data).

Bias-Variance Tradeoff

Finding a good model can be difficult. One of the most
important concepts to keep in mind when modeling is the
bias-variance tradeoff.
Bias is the difference between the prediction of the model
and the corresponding true output variables you are trying
to predict. Models with high bias will not fit the training data
well since the predictions are quite different from the true
data. These high biasmodels are overly simplified - they do
not have enough parameters and complexity to accurately
capture the patterns in the data and are thus underfitting.
Variance refers to the variability of model predictions for a
given input. Essentially, do the model predictions change
a lot with changes in the exact training data used? Models
with high variance are highly dependent on the exact train-
ing data used - they will not generalize well to test data.
These high variance models are overfitting to the data.

https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial3.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial3.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial6.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial4.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial4.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial5.html
https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial5.html

