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Welcome 
This	effect	sizes	and	confidence	intervals	collaborative	guide	aims	to	provide	academics,	
students	and	researchers	with	hands-on,	step-by-step	instructions	for	calculating	effect	
sizes	and	confidence	intervals	for	common	statistical	tests	used	in	the	behavioral,	cognitive	
and	social	sciences,	particularly	when	original	data	are	not	available	and	when	reported	
information	is	incomplete.	It	also	introduces	general	background	information	on	effect	
sizes	and	confidence	intervals,	as	well	as	useful	R	packages	for	their	calculation.	Many	of	
the	methods	and	procedures	described	in	this	Guide	are	based	on	R	or	R-based	Shiny	Apps	
developed	by	the	science	community.	We	were	motivated	to	focus	on	R	as	we	aim	to	
maximize	the	reproducibility	of	our	research	outcomes	and	encourage	the	most	
reproducible	study	planning	and	data	analysis	workflow,	though	we	also	document	other	
methods	whenever	possible	for	the	reference	of	our	readers.	We	regularly	update	this	open	
educational	resource,	as	packages	are	updated	frequently	and	new	packages	are	developed	
from	time	to	time	in	this	rapidly	changing	Open	Scholarship	era.	

Introduction 

Effect	sizes	and	confidence	intervals	are	critical	metrics	for	interpreting	results	and	
quantifying	the	magnitude	of	findings	in	scientific	research.	However,	calculating	these	
values	can	be	challenging,	particularly	when	original	data	are	unavailable	or	results	are	
incompletely	reported	in	prior	publications.	To	address	this	need,	our	collaborative	guide	
provides	hands-on	instructions	for	calculating	effect	sizes	and	confidence	intervals	for	
common	statistical	tests	in	the	behavioral,	cognitive,	and	social	sciences.	Our	guide	includes	
background	information	on	these	concepts	as	well	as	recommendations	for	useful	R	
packages	that	can	automate	many	of	these	computations.	R	is	emphasized	due	to	its	
capabilities	for	reproducible	analyses;	however,	we	also	cover	alternative	methods	for	
those	without	expertise	in	R.	This	guide	is	intended	to	be	an	evolving	open	educational	
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resource,	updated	as	new	methods	and	packages	become	available	in	this	fast-changing	era	
of	open	scholarship.	By	compiling	these	applied	instructions,	our	goal	is	to	enable	students	
and	researchers	to	easily	obtain	these	metrics,	facilitating	robust	and	transparent	
quantification	of	results,	as	well	as	cumulative	scientific	progress.	

Guidelines for contribution 

All	are	encouraged	to	contribute	to	this	Guide.	Please	note	that	this	Guide	is	in	continuous	
development	such	that	it	will	remain	a	work	in	progress	for	an	indefinite	period	of	time.	
This	is	intended	because	we	hope	the	Guide	to	always	reflect	the	state	of	the	art	on	the	
topics	of	effect	sizes	and	confidence	intervals.	To	contribute,	there	are	now	two	options:	

1. You	can	suggest	edits	and	make	comments	in	the	following	google	doc:	
mgto.org/effectsizeguide.	

2. You	can	suggest	edits	directly	in	the	online	book	using	Hypothes.is.	To	do	this	you	
will	need	to	create	a	free	account	on	hypothes.is	(hypothes.is/signup;	this	will	take	
about	a	minute).	Then	when	you	navigate	to	the	online	book,	you	can	open	the	panel	
on	the	top	right	of	the	screen.	There	you	can	suggest	edits	and	create	comments	
with	code	and	latex!	

Notes 
• Please	use	the	headings	and	style	as	set	forth	in	this	document.	You	can	use	

keyboard	shortcuts	such	as	Ctrl	+	Alt	+	1/2/3.	The	normal	text	is	in	Times	New	
Roman	font,	font	size	11.	The	codes	are	formatted	using	the	Code	Blocks	add-on	of	
Google	Docs,	github	theme,	font	size	8.	

• Use	the	Suggesting	mode	rather	than	the	Editing	mode.	Suggesting	is	now	the	
default	mode	for	this	document.	Therefore,	please	do	not	hesitate	to	correct	
mistakes	or	modify	the	contents	directly.	

• Add	a	comment	to	the	document	if	you	find	anything	missing	or	improper,	or	if	you	
feel	that	things	are	better	organized	in	a	different	way.	We	appreciate	your	
suggestions.	If	you	have	any	questions,	please	also	add	a	comment.	We	will	reply	
and	seek	to	clarify	in	the	document	body.	

• Please	make	proper	citations	(in	APA	7th	format)	and	provide	relevant	links	when	
you	refer	to	any	source	that	is	not	your	own.	

Credit and authorship 

If	you	believe	you	have	made	sufficient	contribution	that	qualifies	you	as	an	author,	and	
you	would	like	to	be	listed	as	an	author	of	this	Guide,	please	do	not	hesitate	and	list	your	
name	and	contact	information	below.	The	administrators	(M.	B.	J.,	Q.	X.,	S.	K.	Y.,	and	G.	F.)	of	
this	Guide	will	verify	your	contribution	and	add	you	to	the	author	list.	We	welcome	
comments	from	any	person,	regardless	of	whether	they	want	to	be	an	author.	You	are	also	
welcome	to	request	content	to	be	added	to	this	Guide	(please	see	the	Things	to	add	to	the	
guide	section	in	the	end).	

https://mgto.org/effectsizeguide
https://hypothes.is/signup
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The	authorship	order	is	such	that	M.	B.	J.	and	Q.	X.	will	be	the	first	two	authors,	S.	K.	Y.	will	
be	second	author,	and	G.	F.	will	be	the	last	and	the	corresponding	author.	All	other	
contributors	will	be	listed	alphabetically	in	the	middle	and	are	all	considered	joint	third	
authors.	Contributors	are	by	default	given	investigation,	writing	-	original	draft,	and	writing	
-	review	&	editing	CRediT	authorship	roles.	It	is	possible	to	take	on	more	roles	if	
contributors	prefer.	Any	change	in	this	authorship	order	rule	will	have	to	be	approved	by	
all	who	are	already	listed	as	an	author.	

Cite this book 

This	will	change	soon,	but	for	now	you	can	cite	this	book	with	the	following	citation:	

APA:	

Jané,	M.	B.,	Xiao,	Q.,	Yeung,	S.	K.,	Ben-Shachar,	M.	S.,	Caldwell,	A.	R.,	Cousineau,	D.,	Dunleavy,	
D.	J.,	Elsherif,	M.,	Johnson,	B.	T.,	Moreau,	D.,	Riesthuis,	P.,	Röseler,	L.,	Steele,	J.,	Vieira,	F.	F.,	
Zloteanu,	M.,	&	Feldman,	G.	(2024).	Guide	to	effect	sizes	and	confidence	intervals.	
https://matthewbjane.quarto.pub/effect-size-and-confidence-intervals-guide/.	Pre	

BibTeX:	

@misc{EffectSizeGuide, 	
  title={Guide to effect sizes and confidence intervals}, 	
  author={Jané, Matthew B and Xiao, Qinyu and Yeung, Siu Kit and Ben-Shachar, 
Mattan S and Caldwell, Aaron R and Cousineau, Denis and Dunleavy, Daniel J 
and Elsherif, Mahmoud and Johnson, Blair T and Moreau, David and Riesthuis, 
Paul and Röseler, Lukas and Steele, James and Vieira, Felipe F. and Zloteanu, 
Mircea and Feldman, Gilad},	
  year={2024},	
  url={https://matthewbjane.quarto.pub/effect-size-and-confidence-intervals-
guide/}	
} 	

1. Defining Effect Sizes 
Effect	sizes	quantify	the	magnitude	of	effects	(i.e.,	strength	of	a	relationship,	size	of	a	
difference),	which	are	the	outcomes	of	our	empirical	research.	Effect	sizes	are	by	no	means	
a	new	concept.	However,	reporting	them	remained	largely	optional	for	many	years,	and	
only	until	recently	does	it	become	a	community	standard:	scientists	now	see	reporting	
effect	sizes	(in	addition	to	the	traditional	statistical	significance)	as	a	must	and	journals	
also	start	to	require	such	reporting.	Notably,	in	2001	and	2010,	The	Publication	Manual	of	
the	American	Psychological	Association	5th	and	6th	editions	emphasized	that	it	is	“almost	
always	necessary”	(Divine	et	al.	2018)	to	report	effect	sizes	(APA	2010,	34;	see	Fritz,	
Morris,	and	Richler	2012,	which	provides	a	comprehensive	summary	on	history	and	
importance	of	effect	size	reporting).	

Effects	sizes	can	be	grouped	in	broad	categories	as	(1)	raw	effect	sizes,	and	(2)	
standardized	effect	sizes.	The	raw	effect	sizes	are	a	summary	of	the	results	that	are	
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expressed	in	the	same	units	as	the	raw	data.	For	example,	when	kilograms	are	measured,	a	
raw	effect	size	reports	a	measure	in	kilograms.	Consider	the	effect	of	a	diet	on	a	treatment	
group;	a	control	group	receives	no	diet.	The	change	in	weight	can	be	expressed	as	the	mean	
difference	between	the	groups.	This	measure	is	also	in	kg	and	so	is	a	raw	effect	size.	
Standardized	effect	sizes	expressed	on	a	standardized	scale	which	has	no	longer	any	unit	
but	which	have	a	universal	interpretation.	A	z	score	is	an	example	of	a	standardized	
measure.	This	document	is	concerned	exclusively	on	standardized	effect	sizes.	

2. Benchmarks 
What	makes	an	effect	size	“large”	or	“small”	is	completely	dependent	on	the	context	of	the	
study	in	question.	However,	it	can	be	useful	to	have	some	loose	criterion	in	order	to	guide	
researchers	in	effectively	communicating	effect	size	estimates.	Jacob	Cohen	(1988),	the	
pioneer	of	estimation	statistics,	suggested	many	conventional	benchmarks	(i.e.,	how	we	
refer	to	an	effect	size	other	than	using	a	number)	that	we	currently	use.	However,	Cohen	
(1988)	noted	that	labels	such	as	“small”,	“medium”,	and	“large”	are	relative,	and	in	
referring	to	the	size	of	an	effect,	the	discipline,	the	context	of	research,	as	well	as	the	
research	method	and	goals,	should	take	precedence	over	benchmarks	any	time	it’s	
possible.	There	are	general	differences	in	effect	sizes	across	different	disciplines,	and	
within	each	discipline,	effect	sizes	differ	depending	on	study	designs	and	research	methods	
(Schäfer	and	Schwarz	2019)	and	goals;	as	Glass,	McGaw,	and	Smith	(1981)	explains:	

Depending	on	what	benefits	can	be	achieved	at	what	cost,	an	effect	size	of	2.0	
might	be	“poor”	and	one	of	.1	might	be	“good.”	

Therefore,	it	is	crucial	to	recognize	that	benchmarks	are	only	general	guidelines,	and	
importantly,	out	of	context.	They	also	tend	to	attract	controversy	(Glass,	McGaw,	and	Smith	
1981;	Kelley	and	Preacher	2012;	Harrell	2020).	Note	that	field-specific	empirical	
benchmarks	have	been	suggested	by	researchers.	For	social	psychology,	these	alternative	
benchmarks	obtained	through	meta-analyzing	the	literature	(for	example,	this	and	this;	see	
this	Twitter/X	thread	for	a	summary)	are	typically	smaller	than	what	Cohen	put	forward.	
Although	such	field-specific	effect	size	distributions	can	provide	an	overview	of	the	
observed	effect	sizes,	it	does	not	provide	a	good	interpretation	of	the	magnitude	of	the	
effect	(see	Panzarella,	Beribisky,	and	Cribbie	2021).	To	examine	the	magnitude	of	the	effect,	
the	specific	context	of	the	study	at	hand	needs	to	be	taken	into	account	(pp.	532-535,	Cohen	
1988).	Please	refer	to	the	table	below:	

Effect	Size	 Reference	 Small	 Medium	 Large	
Mean	Differences	 	 	 	 	
Cohen’s	𝑑	or	Hedges’	𝑔	 Cohen	(1988)1	 0.20	 0.50	 0.80	

	

1	Sawilowsky	(2009)	expanded	Cohen’s	benchmarks	to	include	very	small	effects	(𝑑	=	
0.01),	very	large	effects	(𝑑	=	1.20),	and	huge	effects	(𝑑	=	2.0).	It	has	to	be	noted	that	very	
large	and	huge	effects	are	very	rare	in	experimental	social	psychology.	

https://doi.org/10.1037/1089-2680.7.4.331
https://doi.org/10.1016/j.paid.2016.06.069
https://twitter.com/cjsotomatic/status/1144701540839698432
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Effect	Size	 Reference	 Small	 Medium	 Large	
	 	 0.18	 0.37	 0.60	
	 Lovakov	and	Agadullina	(2021)2	 0.15	 0.36	 0.65	
Correlational	 	 	 	 	
Correlation	Coefficient	
(𝑟)	

Cohen	(1988)	 .10	 .30	 .50	

	 Richard,	Bond	Jr.,	and	Stokes-Zoota	
(2003)34	

.10	 .20	 .30	

	 Lovakov	and	Agadullina	(2021)	 .12	 .24	 .41	
	 Paterson	et	al.	(2016)	 .12	 .20	 .31	
	 Bosco	et	al.	(2015)	 .09	 .18	 .26	
Cohen’s	𝑓!	 	 .02	 .25	 .40	
eta-squared	(𝜂!)	 Cohen	(1988)	 .01	 .06	 .14	
Cohen’s	f	 Cohen	(1988)	 .10	 .25	 .40	
Categorical	 	 	 	 	
Cohen’s	𝑤	 Cohen	(1988)	 0.10	 0.30	 0.50	
Phi	 Cohen	(1988)	 .10	 .30	 .50	
Cramer’s	𝑉	 	 5	 	 	

	

2	According	to	this	recent	meta-analysis	on	the	effect	sizes	in	social	psychology	studies,	“It	
is	recommended	that	correlation	coefficients	of	.1,	.25,	and	.40	and	Hedges’	𝑔	(or	Cohen’s	
𝑑)	of	0.15,	0.40,	and	0.70	should	be	interpreted	as	small,	medium,	and	large	effects	for	
studies	in	social	psychology.	

3	Note,	for	paired	samples,	this	does	not	refer	to	the	probability	of	an	increase/decrease	in	
paired	samples	but	rather	the	probability	of	a	randomly	sampled	value	of	X.	This	is	also	
referred	to	as	the	“relative”	effect	in	the	literature.	Therefore,	the	results	will	differ	from	
the	concordance	probability	provided	below.	

4	These	benchmarks	are	also	recommended	by	Gignac	and	Szodorai	(2016).	Funder	and	
Ozer	(2019)	expanded	them	to	also	include	very	small	effects	(𝑟	=	.05)	and	very	large	
effects	(𝑟	=	.40	or	greater).	According	to	them,	[…]	an	effect-size	𝑟	of	.05	indicates	an	effect	
that	is	very	small	for	the	explanation	of	single	events	but	potentially	consequential	in	the	
not-very-long	run,	an	effect-size	r	of	.10	indicates	an	effect	that	is	still	small	at	the	level	of	
single	events	but	potentially	more	ultimately	consequential,	an	effect-size	𝑟	of	.20	indicates	
a	medium	effect	that	is	of	some	explanatory	and	practical	use	even	in	the	short	run	and	
therefore	even	more	important,	and	an	effect-size	𝑟	of	.30	indicates	a	large	effect	that	is	
potentially	powerful	in	both	the	short	and	the	long	run.	A	very	large	effect	size	(r	=	.40	or	
greater)	in	the	context	of	psychological	research	is	likely	to	be	a	gross	overestimate	that	
will	rarely	be	found	in	a	large	sample	or	in	a	replication.”	But	see	here	for	controversies	
with	this	paper.	

https://twitter.com/aaronjfisher/status/1168252264600883200?s=20
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Effect	Size	 Reference	 Small	 Medium	 Large	
Cohen’s	ℎ	 Cohen	(1988)	 0.2	 0.5	 0.8	

It	should	be	noted	that	small/medium/large	effects	do	not	necessarily	mean	that	they	have	
small/medium/large	practical	implications	(for	details	see,	Coe	2012;	Pogrow	2019).	These	
benchmarks	are	more	relevant	for	guiding	our	expectations.	Whether	they	have	practical	
importance	depends	on	contexts.	To	assess	practical	importance,	it	will	always	be	desirable	
for	standardized	effect	sizes	to	be	translated	to	increase/decrease	in	raw	units	(or	any	
meaningful	units)	or	a	Binomial	Effect	Size	Display	(roughly,	differences	in	proportions	
such	as	success	rate	before	and	after	intervention).	The	reporting	of	unstandardardized	
effect	sizes	is	not	only	beneficial	for	interpretation	but	they	are	also	more	robust	and	more	
easy	to	compute	(Baguley	2009).	Additionally,	a	useful	tool	to	examine,	for	example,	the	
magnitude	of	a	Cohen’s	d	is	by	examining	U3,	percentage	overlap,	probability	of	
superiority,	and	numbers	needed	to	treat	(For	nice	visualizations	see	
https://rpsychologist.com/cohend/,	Magnusson	2023).	

To	further	assess	the	practical	importance	of	observed	effect	sizes,	it	is	necessary	to	
establish	the	smallest	effect	size	of	interest	for	each	specific	field	(SESOI,	Lakens,	Scheel,	
and	Isager	2018).	Cohen’s	benchmarks,	field-specific	benchmarks,	or	published	findings	are	
not	preferred	to	establish	the	SESOI	because	they	do	not	convey	information	about	the	
practical	relevance/magnitude	of	an	effect	size	(Panzarella,	Beribisky,	and	Cribbie	2021).	
Recent	developments	in	various	areas	of	research	in	psychology	have	been	taken	to	
establish	the	SESOI	through	anchor-based	methods	(Anvari	and	Lakens	2021),	consensus-
methods	(Riesthuis	et	al.	2022),	and	cost-benefit	analyses	(see	Otgaar	et	al.	2022,	2023).	
These	approaches	are	frequently	implemented	successfully	in	medical	research	(e.g.,	
HEIJDE	et	al.	2001)	and	recommendations	are	to,	ideally,	implement	the	various	methods	
simultaneously	to	obtain	a	precise	estimate	of	the	smallest	effect	size	of	interest	(termed	
minimally	clinically	important	difference	in	the	medical	literature,	Bonini	et	al.	2020).	
Interestingly,	the	minimally	clinically	important	difference	(MCID,	smallest	effect	which	
patients	perceive	as	beneficial	[or	harmful],	McGlothlin	and	Lewis	2014)	is	sometimes	even	
deemed	as	a	low	bar	and	other	measures	are	encouraged	such	as	patient	acceptable	
symptomatic	state	(PASS,	level	of	symptoms	a	patients	allows	while	still	accept	their	
symptom	state,	this	can	be	used	to	examine	whether	a	certain	treatment	leads	to	a	state	
that	patients	consider	acceptable,	Daste	et	al.	2022),	substantial	clinical	benefit	(SCB,	effect	
that	leads	patient	to	self-report	significant	improvements,	Wellington	et	al.	2023),	and	
maximal	outcome	improvement	(MOI,	similar	to	MCID,	PASS,	and	SCB,	except	that	the	
scores	are	normalized	by	the	maximal	improvement	possible	for	each	patient,	Beck	et	al.	
2020;	Rossi,	Brand,	and	Lubowitz	2023).	

	

5	The	benchmarks	for	Cramer’s	V	are	dependent	on	the	size	of	the	contingency	table	on	
which	the	effect	is	calculated.	According	to	Cohen,	use	benchmarks	for	phi	coefficient	
divided	by	the	square	root	of	the	smaller	dimension	minus	1.	For	example,	a	medium	effect	
for	a	Cramer’s	V	from	a	4	by	3	table	would	be	.3	/	sqrt(3	-	1)	=	.21.	
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Please	also	note	that	only	zero	means	no	effect.	An	effect	of	the	size	.01	is	an	effect,	but	a	
very	small	(Sawilowsky	2009),	and	likely	unimportant	one.	It	makes	sense	to	say	that	“we	
failed	to	find	evidence	for	rejecting	the	null	hypothesis,”	or	“we	found	evidence	for	only	a	
small/little/weak-to-no	effect”	or	“we	did	not	find	a	meaningful	effect”.	It	does	not	make	
sense	to	say,	“we	found	no	effect.”	Purely	by	the	random	nature	of	our	universe,	it	is	hard	
to	imagine	that	we	can	obtain	a	sharp	zero-effect	result.	This	is	also	related	to	the	crud	
factor,	which	refers	to	the	idea	that	“everything	correlates	with	everything	else”	(Orben	
and	Lakens	2020,	1;	Meehl	1984),	but	the	practical	implication	of	very	weak/small	
correlations	between	some	variables	may	be	limited,	and	whether	the	effect	is	reliably	
detected	depends	on	statistical	power.	

3. Reporting Effect Sizes 
When	reporting	effect	sizes,	it	is	important	to	provide	sufficient	detail	and	context	to	
ensure	transparency,	convey	directionality,	and	indicate	precision.	Transparency	involves	
clearly	documenting	procedures	and	data	so	that	others	can	reproduce	your	effect	size	
calculations.	Next,	for	directional	effects	like	Cohen’s	d,	make	sure	to	define	the	direction	of	
comparison	and	align	it	with	your	hypothesis.	Finally,	indicate	the	precision	of	the	
estimate,	typically	by	reporting	confidence	intervals.	Narrower	confidence	intervals	reflect	
more	precision,	while	wider	intervals	reflect	greater	uncertainty	(Winter,	2019).	Factors	
like	sample	size,	variability,	and	study	design	influence	precision.	Reporting	effect	sizes	
thoughtfully	with	transparency,	directionality,	and	precision,	enables	readers	to	accurately	
interpret	the	meaningfulness	and	implications	of	your	results.	In	the	following	sections,	we	
provide	recommendations	to	optimize	reporting	on	each	of	these	factors.	

		Not	all	CIs	are	created	equal.	

Confidence	Intervals	only	indicate	parameter	precision	under	specific	assumptions.	Some	
have	even	titled	this	issue	as	the	precision	fallacy	(Morey	et	al.	2016).	For	the	same	data,	
CIs	can	be	computed	in	various	ways	resulting	in	wildly	different	intervals	(see	the	
submarine	example	in	Morey	et	al.	2016).	Such	CIs	are	computed	by	inverting	hypothesis	
tests	(using	the	p-value	obtained	from	a	model);	see	this	discussion	by	Gelman	(2011).	
Under	this	approach,	the	CI	reflects	the	data	and	model	(+assumptions),	not	just	the	
parameter	estimate.	If	one	is	using	an	improper	model,	the	associated	CI	will	be	misleading	
and	its	width	will	not	reflect	precision	or	uncertainty.	The	solution	is	to	compute	CIs	based	
on	the	data	at	hand,	such	as	constructing	parametric	(if	the	distribution	is	known)	or	non-
parametric	(empirical	distribution)	bootstrapped	CIs,	or	understand	that	your	CIs	are	
conditional	on	the	model	you	used.	That	said,	for	CIs	computed	for	effect	sizes	like	Cohen’s	
d,	which	assume	a	Gaussian	distribution,	the	precision	fallacy	should	not	be	a	problem	and	
can	be	used	to	infer	precision	(see	this	forum	discussion).	

3.1 Transparency 

When	reporting	effect	sizes	and	their	calculations,	you	should	prioritize	transparency	and	
reproducibility.	No	matter	what	tool	you	used	to	calculate	your	effect	size	(R	is	the	most	

https://stats.stackexchange.com/questions/204530/what-do-confidence-intervals-say-about-precision-if-anything
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recommended	tool	here),	you	must	make	sure	that	others	can	easily	follow	your	
procedures	and	obtain	the	same	results.	This	means	that	if	you	use	online	calculators	
(which	is	discouraged)	or	standalone	programs	(JAMOVI	is	most	recommended;	you	can	
also	use	JASP,	which	however	does	not	allow	access	to	syntax	at	this	moment),	you	should	
include	screenshots	that	capture	the	input	and	output,	with	clear	explanations.	If	you	use	R,	
Python	or	other	programming	languages,	you	should	copy-and-paste	your	codes	into	your	
supplementary	document	(or	submit	your	scripts	to	open	online	repositories),	ideally	with	
annotations	and	comments	explaining	the	codes.	inputs	and	outputs.	

3.2 Directionality 

Some	effect	sizes	are	directional	(e.g.,	Cohen’s	𝑑,	Pearson	correlations	𝑟),	which	means	that	
they	can	be	positive	or	negative.	Their	signs	carry	important	information,	and	therefore	
cannot	be	omitted.	When	you	report	these	effect	sizes,	make	it	clear	what	is	compared	to	
what	(i.e.,	the	direction	of	comparison).	Better	still,	make	sure	your	comparison	is	inline	
with	the	theory.	For	instance,	a	theory	predicts	that	your	group	X	should	score	higher	on	an	
item	than	your	Group	Y,6	you	should	hypothesize	accordingly	that	Group	X	will	have	a	
higher	mean	than	Group	Y	on	the	item,	and	subtract	mean(Y)	from	mean(X)	(rather	than	
the	other	way	around)	to	obtain	the	mean	difference.	You	should	then	expect	your	𝑡	
statistic	to	be	positive,	and	your	𝑑	value	as	well.	In	other	words,	avoid	reporting	anything	
like	𝑡	=	-5.14,	𝑑	=	0.36,	where	the	signs	of	the	statistics	do	not	match.	

3.3 Precision 

Effect	sizes	may	be	very	precisely	estimated	from	the	available	data,	the	used	methodology,	
and	how	the	population	was	sampled.	It	might	also	be	estimated	with	little	confidence	on	
the	resulting	number.	This	may	be	the	case	for	example	when	the	sample	is	very	small,	
when	the	population	displays	a	lot	of	variability,	when	a	between-group	design	is	used	
instead	of	a	paired-sample	design,	and	finally,	when	clustered	sampling	is	used	instead	of	
randomized	sampling.	Precision	can	be	estimated	using	various	tools,	but	probably	the	
most	commonly	used	one	is	the	Confidence	intervals.	This	interval	has	a	confidence	level,	
frequently	95%.	

	

6	Of	course,	if	a	theory/effect	predicts	Group	X	has	a	higher	mean	than	Group	Y,	then	it	also	
predicts	the	reverse,	i.e.,	Group	Y	has	a	lower	mean	than	Group	X.	But	theories/effects	are	
commonly	articulated	in	a	certain	way.	It	is	more	common	that	we	say,	for	example,	people	
prefer	the	status	quo	rather	than	that	people	do	not	prefer	the	non-status	quo,	when	we	
refer	to	the	status	quo	bias.	Consider	another	“theory”:	teenagers	get	taller	when	they	get	
older.	It	just	does	not	make	sense	to	say	the	same	thing	reversely,	i.e.,	teenagers	get	shorter	
when	they	get	younger,	because	people	cannot	get	younger,	at	least	in	the	2020s.	
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4. Interpreting Confidence Intervals 
What	is	the	correct	interpretation	of	a	confidence	interval?	Imagine	you	conducted	a	study	
where	you	compared	two	groups.	You	obtained	a	Cohen’s	𝑑	=	0.3,	95%	CI	[0.2,	0.4].	How	do	
you	interpret	this	confidence	interval?	

Confidence	intervals	are	yielded	by	a	certain	procedure,	such	that	when	the	procedure	is	
repeatedly	applied	to	a	series	of	hypothetical	datasets	drawn	from	the	studied	
population/populations,	it	yields	intervals	that	contain	the	true	parameter	value	(in	our	
example,	it	means	the	true	difference	between	the	two	groups)	in	95%	of	the	cases.	For	the	
effect	estimate	and	confidence	intervals	to	be	valid,	the	data	and	test	must	meet	the	
assumptions	of	the	estimating	procedure.	

In	colloquial	terms,	if	we	conduct	this	research	over	and	over	(repeating	the	same	sampling	
procedure,	administering	the	same	experimental	manipulation,	conducting	the	same	
statistical	analysis,	etc.),	because	of	sampling	variability	(our	samples	are	slightly	different	
at	each	time),	we	will	get	different	Cohen’s	𝑑	values.	For	each	of	these	𝑑	values,	we	
calculate	a	95%	interval.	Then,	among	all	these	many	intervals,	we	expect	that	95%	of	them	
will	contain	the	true	𝑑,	which	we	never	know	exactly.	

There	is	also	a	common	criticism	levied	against	the	confidence	interval	interpretation:	
“There	is	a	95%	probability	that	the	true	parameter	exists	within	the	95%	confidence	
interval”.	However	this	criticism	is	unwarranted	in	the	specific	case	of	a	single	observed	
confidence	interval,	that	is,	as	long	as	there	is	a	single	realized	confidence	interval	sampled	
from	the	population,	this	interpretation	is	fine	(Vos	and	Holbert	2022).	It	is	important	to	
note	however,	this	interpretation	is	incorrect	when	there	are	multiple	realized	confidence	
intervals	randomly	sampled	from	the	same	population.	The	criticized	interpretation	also	
tends	to	be	more	practical	than	the	interpretation	using	repeated	sampling,	the	following	
example	described	by	Vos	and	Holbert	(2022)	illustrates	this,	

The	distinction	between	these	interpretations	can	be	understood	with	the	simple	
example	of	the	probability	of	rolling	a	‘6’	with	a	fair	die.	The	probability	is	1/6	
because	if	you	roll	the	die	repeatedly	the	proportion	of	times	that	the	face	with	‘6’	
comes	up	will	be	come	very	close	to	1/6.	Or,	the	probability	is	1/6	because	it	is	
equivalent	to	a	random	selection	from	an	urn	where	exactly	one	of	6	balls	is	
labelled	with	‘6’.	The	distinction	in	this	simple	example	is	less	useful	since	
repeatedly	rolling	a	die	is	less	problematic	than	repeatedly	conducting	the	same	
randomized	trial.	

For	further	reading	on	confidence	interpretations,	see	Hoekstra	et	al.	(2014)	and	Morey	et	
al.	(2016).	

5. Reporting Confidence Intervals 
Confidence	intervals	must	be	calculated	and	reported	for	every	effect	size	that	you	
obtained	and	mentioned	in	your	manuscript.	If	you	are	doing	a	replication	and	your	target	



	 14	

article/study	did	not	report	CIs	for	its	effect	sizes,	you	should	calculate	CIs	and	report	
them.	

Normally,	we	calculate	95%	confidence	intervals	(i.e.,	95%	of	such	intervals	are	expected	to	
contain	the	true	parameter	value	if	we	conduct	an	infinite	number	of	identical	studies).	

		Alpha	level	

The	confidence	interval	depends	on	the	alpha	level,	that	is,	the	proportion	of	CIs	upon	
repeated	sampling	that	will	not	contain	the	true	parameter.	If	the	true	effect	is	zero	(or	
null),	the	the	alpha	level	represents	the	false	positive	rate	(i.e.,	the	rate	of	observing	a	
significant	effect	when	there	is	none).	The	95%	CI	is	based	on	an	alpha	level	of	.05,	however	
researchers	can	choose	any	value	(between	0	and	1),	as	long	as	it	is	properly	justified	
(Lakens	2022).	

Nonetheless,	for	some	effect	sizes	(e.g.,	eta-squared,	partial	eta-squared,	R-squared),	we	
calculate	90%	confidence	intervals.	This	is	because	𝜂!	is	squared	and	always	positive,	and	
F-tests	are	one-sided.	Reporting	95%	CI	for	eta	squared	may	result	in	situations	in	which	
the	CI	includes	zero	but	the	p-value	falls	below	.05,	whereas	reporting	90%	CI	prevents	
such	a	problem.	For	further	information	regarding	this	issue,	read	Daniel	Lakens	blog	on	
confidence	intervals	and	Steiger	(2004).	

Confidence	intervals	should	be	reported	immediately	after	an	effect	size,	e.g.,	Cohen’s	d	=	
0.40,	95%	CI	[0.20,	0.60].	After	the	first	time	reporting	them	in	a	manuscript,	every	
subsequent	CI	can	be	simply	denoted	by	brackets	without	the	“95%	CI”	preceding	it.	

Unless	you	are	measuring	something	that	is	meaningful	in	real	life	(e.g.,	income,	years	of	
experience,	amount	that	a	person	is	willing	to	donate),	please	make	sure	that	the	CI	you	
calculated	is	a	CI	of	the	effect	size,	not	of	other	statistics,	such	as	the	test	statistics	or	mean	
difference	in	raw	units.	

If	you	see	that	the	effect	size	estimate	is	not	included	within	your	CI,	you	likely	have	an	
issue,	check	carefully.	For	means	and	for	difference	in	means,	the	estimate	should	be	
precisely	the	midpoint	of	your	CI;	for	other	statistics	(e.g.,	correlation,	proportion,	
frequency,	standard	deviation),	one	arm	might	be	longer	than	the	other	so	the	estimate	
may	not	be	the	midpoint.	

For	further	reading	related	to	the	calculation	and	reporting	of	effect	sizes	and	confidence	
intervals,	see	Steiger	(2004)	and	Lakens	(2014).	

6. Using R 

6.1 Why Use R? 

We	strongly	recommend	using	open-source	software	such	as	R	or	Python	for	computing	
effect	sizes	and	confidence	intervals.	In	this	guide,	we	focus	on	R,	which	has	several	
advantages:	
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• Reproducibility:	R	syntax	can	be	shared	to	allow	others	to	reproduce	your	
analyses.	This	promotes	transparency	and	reliability	in	research.	

• Flexibility:	CRAN	repositories	contain	thousands	of	user-contributed	packages	for	
specialized	statistical	techniques.	This	allows	calculating	a	diverse	range	of	effect	
size	and	CI	metrics.	

• Free	and	open	source:	R	is	free	to	download	and	use.	The	open	source	nature	
means	community-driven	innovation	and	packages.	

• Visualizations:	R	makes	it	easy	to	create	publication-quality	graphics	to	visualize	
your	results.	

• Scripting:	Automating	analyses	through	R	scripts	improves	efficiency	and	
consistency.	

• Range	of	packages:	Packages	like	effectsize,	MBESS,	metafor,	and	more	contain	a	
variety	of	effect	size	and	CI	functions.	

Many	(if	not	all)	of	these	advantages	are	shared	with	Python	and	a	number	of	other	
programming	languages.	While	online	calculators	or	GUI	software	can	also	allow	
calculating	confidence	intervals	and	effect	sizes,	open-source	software	such	as	R	provide	
transparency,	reproducibility,	and	access	to	a	vast	array	of	techniques.	In	the	case	of	R,	the	
learning	curve	is	well	worth	it	for	doing	robust,	state-of-the-art	effect	size	and	confidence	
interval	estimation.	

6.2 Useful R Packages 

The	following	R	packages	are	handy	for	effect	size	and	CI	calculations,	conversions	among	
different	effect	sizes,	and	conversion	of	test	statistics	to	effect	sizes.	If	you	use	one	of	the	
packages	below,	please	make	sure	you	cite	them	to	give	the	authors	their	due	credit!	To	
obtain	citations	for	packages,	you	can	use	the	citation()	function	and	input	the	name	of	
the	package	as	a	string.	

• MOTE	(Buchanan	et	al.	2019):	This	is	a	highly	recommended	package	for	calculating	
effect	sizes,	which	is	capable	of	handling	a	wide	variety	of	effect	sizes	in	the	
difference	family	(the	d	family)	and	variance-overlap	family	(r,	eta,	omega,	epsilon).	
The	functions	also	provide	non-central	confidence	intervals	for	each	effect	size	and	
output	in	APA	style	in	LaTeX.	MOTE	has	an	online	shiny	application	
(doomlab.shinyapps.io/mote/).	The	CRAN	project	can	be	found	here:	cran.r-
project.org/package=MOTE.	

• effectsize	(Ben-Shachar,	Lüdecke,	and	Makowski	2020):	This	package	is	
particularly	useful	in	data	analysis.	A	major	advantage	of	this	package	is	that	it	takes	
in	many	different	model	objects	and	directly	outputs	effect	sizes	and	CIs.	It	also	
implements	conversions	between	a	wide	array	of	indices	and	features	functions	to	
perform	automated	effect	size	interpretations	based	on	existing	benchmark	

https://doomlab.shinyapps.io/mote/
https://cran.r-project.org/package=MOTE
https://cran.r-project.org/package=MOTE
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thresholds.	The	CRAN	project	can	be	found	here:	cran.r-
project.org/package=effectsize.	

• MBESS	(Kelley	2022):	One	of	the	most	comprehensive	and	useful	packages	for	effect	
size	and	confidence	interval	calculations.	It	provides	functions	that	can	calculate	ESs	
and	CIs	from	test	statistics	and	the	p-value.	The	CRAN	project	can	be	found	here:	
cran.r-project.org/package=MBESS.	

• metafor	(Viechtbauer	2010):	Probably	the	most	comprehensive	meta-analysis	
package	currently	available.	Includes	the	function,	escalc(),	that	calculates	various	
types	of	effect	sizes	from	test-statistics,	summary	statistics,	and	more.	The	CRAN	
project	can	be	found	here:	cran.r-project.org/package=metafor.	

• psych	(William	Revelle	2023):	One	of	the	most	comprehensive	and	general	packages	
for	common	statistical	procedures	in	psychology	research.	It	also	includes	some	
effect	size	and	CI	calculation	functions	(e.g.,	cohen.d()).	The	CRAN	project	can	be	
found	here:	cran.r-project.org/package=psych.	

• esc	(Lüdecke	2019):	This	package	can	help	convert	among	different	effect	sizes	
(pp.	4-12	in	the	reference	manual).	It’s	also	helpful	when	only	incomplete	
information	(e.g.,	only	descriptives,	or	only	p-values)	have	been	provided	in	the	
paper,	and	we	want	to	calculate	effect	sizes	from	them.	Another	package	that	
provides	similar	conversion	functions	is	the	compute.es	package.	The	CRAN	project	
can	be	found	here:	cran.r-project.org/package=esc.	

• psychmeta	(Dahlke	and	Wiernik	2019):	This	package	is	mainly	used	for	
psychometric	meta-analyses.	It	has	a	function	for	converting	different	effect	
sizes/test	statistics	(convert_es,	p.	38	in	the	reference	manual),	including	𝑟,	𝑑,	𝑡-
statistic	(and	its	p-value),	𝐹	(and	its	p-value	in	two-group	one-way	ANOVA),	chi-
squared	(one	degree	of	freedom),	etc.,	to	𝑟,	𝑑	and	the	common	language	effect	sizes	
(CLES,	A,	AUC).	The	CRAN	project	can	be	found	here	cran.r-
project.org/package=psychmeta.	

• effsize	(Torchiano	2020):	This	is	a	relatively	lightweight	package	that	handles	d,	g,	
Cliff	delta,	and	Vargha-Delaney	A).	The	CRAN	project	can	be	found	here:	cran.r-
project.org/package=effsize.	

• MAd	(W.	T.	Hoyt	2014):	This	package	is	a	collection	of	functions	for	conducting	a	
meta-analysis	with	mean	differences	data.	It	also	provides	conversion	functions.	The	
CRAN	project	can	be	found	here:	cran.r-project.org/package=MAd.	

• TOSTER	(Läkens	2017;	Caldwell	2022):	This	package	is	designed	for	equivalence	
testing.	It	contains	many	functions	to	test	for	differences	in	effect	sizes	along	with	
other	useful	functions	for	effect	size	comparisons.	The	CRAN	project	can	be	found	
here:	cran.r-project.org/package=TOSTER.	

• DeclareDesign	(Blair	et	al.	2019):	This	simulation	framework	can	be	used	to	assess	
whether	procedures	for	calculating	confidence	intervals	are	valid	and	can	be	used	

https://cran.r-project.org/package=effectsize
https://cran.r-project.org/package=effectsize
https://cran.r-project.org/package=MBESS
https://cran.r-project.org/package=metafor
https://cran.r-project.org/package=psych
https://cran.r-project.org/package=esc
https://cran.r-project.org/package=psychmeta
https://cran.r-project.org/package=psychmeta
https://cran.r-project.org/package=effsize
https://cran.r-project.org/package=effsize
https://cran.r-project.org/package=MAd
https://cran.r-project.org/package=TOSTER
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for	arbitrary	designs.	The	diagnose_design()	function	calculates	coverage	for	
designs	with	estimation	strategies	that	produce	confidence	intervals.	The	CRAN	
project	can	be	found	here:	cran.r-project.org/package=DeclareDesign.	

7. Mean Differences 
T-tests	are	the	most	commonly	used	statistical	tests	for	examining	differences	between	
group	means,	or	examining	a	group	mean	against	a	constant.	Calculating	effect	sizes	for	t-
tests	is	fairly	straightforward.	Nonetheless,	there	are	cases	where	crucial	figures	for	the	
calculation	are	missing	(which	happens	quite	often	in	older	articles),	and	therefore	we	
document	methods	that	make	use	of	partial	information	(e.g.,	only	the	M	and	the	SD,	or	
only	the	t-statistic	and	df)	for	the	calculation.	There	are	multiple	types	of	effect	sizes	used	
to	calculate	standardized	mean	differences	(i.e.,	Cohen’s	𝑑),	yet	researchers	very	often	do	
not	identify	which	type	of	𝑑	value	they	are	reporting	(see	Lakens	2013).	Here	we	document	
the	equations	and	code	necessary	for	calculating	each	type	of	𝑑	value	compiled	across	
multiple	sources	(Becker	1988;	Cohen	1988;	Lakens	2013;	Caldwell	2022;	Glass,	McGaw,	
and	Smith	1981).	A	𝑑	value	calculated	from	a	sample	will	also	contain	sampling	error,	
therefore	we	will	also	show	the	equations	to	calculate	the	standard	error.	The	standard	
allows	us	to	then	calculate	the	confidence	interval.	For	each	formulation	in	the	sections	
below,	the	confidence	interval	will	be	able	to	be	calculated	in	the	same	way,	that	is,	

𝐶𝐼" = 𝑑 ± 1.96 × 𝑆𝐸	

Lastly,	we	will	supply	example	R	code	so	you	can	apply	to	your	own	data.	

Here is a table for every effect size discussed in this chapter: 
Type	 Description	 Section	
Single	Group	
Design	

	 Section	7.2	

𝑑#	-	Single	Group	 Standardized	mean	difference	for	comparing	a	single	
group	to	some	constant	

Section	7.2	

Two	Independent	
Groups	Design	

	 Section	7.3	

𝑑$	-	Pooled	
Standard	Deviation	

Uses	the	average	within-group	standard	deviation	to	
standardize	the	mean	difference.	Can	be	calculated	
directly	from	a	independent	sample	t-test.	Assumes	
homogeneity	of	variance	between	groups.	

Section	7.3.1	

𝑑%	-	Control	Group	
Standard	Deviation	

Uses	the	standard	deviation	of	the	control	group	to	
standardize	the	mean	difference	(often	referred	to	as	
Glass’s	Delta).	Does	not	assume	homogeneity	of	
variance	between	treatment/intervention	and	control	
group.	

Section	7.3.2	

Repeated	
Measures	(Paired	

	 Section	7.4	

https://cran.r-project.org/package=DeclareDesign
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Type	 Description	 Section	
Groups)	Design	
𝑑&	-	Difference	
score	standard	
deviation	

Uses	the	standard	deviation	of	difference	scores	(also	
known	as	change	scores)	to	standardize	the	within	
person	mean	difference	(i.e.,	pre/post	change).	

Section	7.4.1	

𝑑'(	-	Repeated	
measures	

Uses	the	within-person	standard	deviation	that	
utilizes	a	correction	to	𝑑&	to	reduce	the	impact	of	the	
pre/post	correlation	on	the	effect	size.	Assumes	
homogeneity	of	variance	between	conditions.	

Section	7.4.2	

𝑑)*	-	Average	
variance	

Uses	the	pooled	variance	between	conditions	
(pre/post	test).	Does	not	use	the	correlation	between	
conditions.	Assumes	homogeneity	of	variance	
between	conditions.	

Section	7.4.3	

𝑑+	-	Becker’s	d	 Uses	the	pre-test	standard	deviation	to	standardize	
the	pre/post	mean	difference.	Does	not	assume	
homogeneity	of	variance	between	pre-test	and	post-
test.	

Section	7.4.4	

Pre-Post-Control	
Design	

	 Section	7.5	

𝑑,,-.	-	Separate	
pre-test	standard	
deviations	

Defined	as	the	difference	between	the	Becker’s	d	
between	the	treatment	and	control	group.	Particularly,	
standardizing	the	mean	pre/post	change	by	the	pre-
test	of	the	respective	group.	

Section	7.5.1	

𝑑,,-!	-	Pooled	pre-
test	standard	
deviation	

Standardizes	the	difference	in	mean	changes	between	
treatment	and	control	group.	Assumes	homogeneity	of	
variance	between	the	pre-test	of	the	control	and	
treatment	condition.	

Section	7.5.2	

𝑑,,-/	-	Pooled	pre-
test	and	post-test	
standard	deviation	

Pools	the	standard	deviation	between	pre-test	and	
post-test	in	treatment	and	control	condition.	Assumes	
homogeneity	of	variance	between	pre/post-test	scores	
and	treatment	and	control	conditions.	Confidence	
intervals	are	not	easy	to	compute.	

Section	7.5.3	

Mean	Ratios	 	 Section	9.8	
𝑙𝑛𝑅𝑅ind	-	Response	
ratio	between	
independent	
groups	

The	ratio	between	the	means	between	two	groups.	
Does	not	use	the	standard	deviation	in	the	effect	size	
formula.	

Section	7.7.1	

𝑙𝑛𝑅𝑅dep	-	Response	
ratio	between	
dependent	groups	

The	ratio	between	the	means	between	two	groups.	
Does	not	use	the	standard	deviation	in	the	effect	size	
formula.	

Section	7.7.2	
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7.1 Reporting a t-test with effect size and CI 

Whatever	effect	size	and	CI	you	choose	to	report,	you	can	report	it	alongside	the	t-test	
statistics	(i.e.,	t-value	and	the	p	value).	For	example,	

The	treatment	group	had	a	significantly	higher	mean	than	the	control	group	(t	=	
2.76,	p	=	.009,	n	=	35,	d	=	0.47	[0.11,	0.81]).	

7.2 Single Group Designs 

For	a	single	group	design,	we	have	one	group	and	we	want	to	compare	the	mean	of	that	
group	to	some	constant,	𝐶	(i.e.,	a	target	value).	The	standardized	mean	difference	for	a	
single	group	can	be	calculated	by	(equation	2.3.3,	Cohen	1988),	

𝑑# =
𝑀 − 𝐶
𝑆.

	

A	positive	𝑑#	value	would	indicate	that	the	mean	of	group	1	is	larger	than	the	target	value,	
𝐶.	This	formulation	assumes	that	the	sample	is	drawn	from	a	normal	distribution.	The	
standardizer	(i.e.,	the	denominator)	is	the	sample	standard	deviation.	The	corresponding	
standard	error	for	𝑑#	is	(see	documentation	for	Caldwell	2022),	

𝑆𝐸"! = H1
𝑛 +

𝑑#!

2𝑛.	

In	R,	we	can	use	the	d.single.t	function	from	the	MOTE	package	to	calculate	the	single	
group	standardized	mean	difference.	

# Install packages if not already installed:	
# install.packages('MOTE')	
# Cohen's d for one group	
	
# For example:	
# Sample Mean = 30.4, SD = 22.53, N = 96	
# Target Value, C = 15	
	
library(MOTE)	
	
stats <- d.single.t(	
  m = 30.4,	
  u = 15,	
  sd = 22.53,	
  n = 96	
)	
	
# print just the d value and confidence intervals	
data.frame(d = apa(stats$d), 	
           dlow = apa(stats$dlow), 	
           dhigh = apa(stats$dhigh))	
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      d  dlow dhigh	
1 0.684 0.460 0.904	

As	you	can	see,	the	output	shows	that	the	effect	size	is	𝑑#	=	0.68,	95%	CI	[0.46,	0.90].	Note	
the	apa	function	in	MOTE	takes	a	value	and	returns	an	APA	formatted	effect	size	value	(i.e.,	
leading	zero	and	three	decimal	places).	

7.3 Two Independent Groups Design 

7.3.1 Standardize by Pooled Standard Deviation (𝑑$) 

For	a	two	group	design	(i.e.,	between-groups	design),	we	want	to	compare	the	means	of	
two	groups	(group	1	and	group	2).	The	standardized	mean	difference	between	two	groups	
can	be	calculated	by	(equation	5.1,	Glass,	McGaw,	and	Smith	1981),	

𝑑$ =
𝑀. −𝑀!

𝑆$
.	

A	positive	𝑑$	value	would	indicate	that	the	mean	of	group	1	is	larger	than	the	mean	of	
group	2.	Dividing	the	mean	difference	by	the	pooled	standard	deviation,	𝑆$,	is	the	classic	
formulation	of	Cohen’s	𝑑.	The	pooled	standard	deviation,	𝑆$,	can	be	calculated	as	the	
square	root	of	the	average	variance	(weighted	by	the	degrees	of	freedom,	𝑑𝑓 = 𝑛 − 1)	of	
group	1	and	group	2	(pp.	108,	Glass,	McGaw,	and	Smith	1981):	

𝑆$ = H
(𝑛. − 1)𝑆.! + (𝑛! − 1)𝑆!!

𝑛. + 𝑛! − 2
	

Note	that	the	term	variance	refers	to	the	square	of	the	standard	deviation	(𝑆!).	Cohen’s	𝑑$	
has	is	related	to	the	t-statistic	from	an	independent	samples	t-test.	In	fact,	we	can	calculate	
the	𝑑$	value	from	the	𝑡-statistic	with	the	following	formula	(equation	5.3,	Glass,	McGaw,	
and	Smith	1981):	

𝑑 = 𝑡H
1
𝑛.
+
1
𝑛!
.	

The	corresponding	standard	error	of	𝑑$	is,	

𝑆𝐸"" = H
𝑛. + 𝑛!
𝑛.𝑛!

+
𝑑$!

2(𝑛. + 𝑛!)
.	

In	R,	we	can	use	the	d.ind.t	function	from	the	MOTE	package	to	calculate	the	two	group	
standardized	mean	difference.	Since	we	have	already	loaded	in	the	MOTE	package,	we	do	not	
need	to	again.	

# Cohen's d for two independent groups	
# given means and SDs	
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# For example:	
# Group 1 Mean = 30.4, SD = 22.53, N = 96	
# Group 2 Mean = 21.4, SD = 19.59, N = 96	
	
stats <- d.ind.t(	
  m1 = 30.4,	
  m2 = 21.4,	
  sd1 = 22.53,	
  sd2 = 19.59,	
  n1 = 96,	
  n2 = 96,	
  a = 0.05	
)	
	
# print just the d value and confidence intervals	
data.frame(d = apa(stats$d), 	
           dlow = apa(stats$dlow), 	
           dhigh = apa(stats$dhigh))	

      d  dlow dhigh	
1 0.426 0.140 0.712	

The	output	shows	that	the	effect	size	is	𝑑$	=	0.43,	95%	CI	[0.14,	0.71].	

7.3.2 Standardize by Control Group Standard Deviation (𝑑%) 

When	two	groups	differ	substantially	in	their	standard	deviations,	we	can	instead	
standardize	by	the	control	group	standard	deviation	(𝑆-),	such	that,	

𝑑% =
𝑀0 −𝑀-

𝑆-
.	

Where	the	subscripts,	𝑇	and	𝐶,	denotes	the	treatment	group	and	control	group,	
respectively.	This	formulation	is	commonly	referred	to	as	Glass’	𝛥	(Glass	1981).	The	
standard	error	for	𝑑%	can	be	defined	as,	

𝑆𝐸"# = H
𝑛0 + 𝑛-
𝑛0𝑛-

+
𝑑%!

𝑛- + 1
	

Notice	that	when	we	only	standardize	by	the	standard	deviation	of	the	control	group	
(rather	than	pooling),	we	he	will	have	less	degrees	of	freedom	(𝑑𝑓 = 𝑛- − 1)	and	therefore	
more	sampling	error	than	we	do	when	we	divide	by	the	pooled	standard	deviation	(𝑑𝑓 =
𝑛0 + 𝑛- − 2).In	R,	we	can	use	the	delta.ind.t.diff	function	from	the	MOTE	package	to	
calculate	𝑑%.	

# Cohen's dz for difference scores	
# given difference score means and SDs	
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# For example:	
# Control group Mean = 30.4, SD = 22.53, N = 96	
# Treatment group Mean = 21.4, SD = 19.59, N = 96	
# correlation between conditions: r = .40	
	
stats <- delta.ind.t(	
  m1 = 30.4,	
  m2 = 21.4,	
  sd1 = 22.53,	
  sd2 = 19.59,	
  n1 = 96,	
  n2 = 96,	
  a = 0.05	
)	
	
# print just the d value and confidence intervals	
data.frame(d = apa(stats$d), 	
           dlow = apa(stats$dlow), 	
           dhigh = apa(stats$dhigh))	

      d  dlow dhigh	
1 0.399 0.140 0.712	

7.4 Repeated Measures Designs 

In	a	repeated-measures	design,	the	same	subjects	(or	items,	etc.)	are	measured	on	two	or	
more	separate	occasions,	or	in	multiple	conditions	within	a	single	session,	and	we	want	to	
know	the	mean	difference	between	those	occasions	or	conditions	(Baayen,	Davidson,	and	
Bates	2008;	Barr	et	al.	2013).	An	example	of	this	would	be	in	a	pre/post	comparison	where	
subjects	are	tested	before	and	after	undergoing	some	treatment	(see	Figure	7.1	for	a	
visualization).	A	standardized	mean	difference	in	a	repeated-measures	design	can	take	on	a	
few	different	forms	that	we	define	below.	
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Figure	7.1:	Figure	displaying	simulated	data	of	a	repeated	measures	design,	the	x-axis	shows	
the	condition	(e.g.,	pre-test	and	post-test)	and	y-axis	is	the	scores.	Lines	indicate	within	person	
pre/post	change.	

7.4.1 Difference Score 𝑑 (𝑑&) 

Instead	of	comparing	the	means	of	two	sets	of	scores,	a	within	subject	design	allows	us	to	
subtract	the	scores	obtained	in	condition	1	from	the	scores	in	condition	2.	These	difference	
scores	(𝑋diff = 𝑋! − 𝑋.)	can	be	used	similarly	to	the	single	group	design	(if	the	target	value	
was	zero,	i.e.,	𝐶 = 0)	such	that	(equation	2.3.5,	Cohen	1988),	

𝑑& =
𝑀diff

𝑆diff
	

Where	the	difference	between	this	formulation	and	the	single	group	design	is	the	nature	of	
the	scores	(difference	scores	rather	than	raw	scores).	The	convenient	thing	about	𝑑&	is	that	
it	has	a	straight-forward	relationship	with	the	𝑡-statistic,	𝑑& =

1
√3
.	This	makes	it	very	useful	

for	power	analyses.	If	the	standard	deviation	of	difference	scores	are	not	accessible,	then	it	
can	be	calculated	using	the	standard	deviation	of	condition	1	(𝑆.),	the	standard	deviation	of	
condition	2	(𝑆!),	and	the	correlation	between	conditions	(𝑟)	(equation	2.3.6,	Cohen	1988):	
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𝑆diff = O𝑆.! + 𝑆!! − 2𝑟𝑆.𝑆!	

It	is	important	to	note	that	when	the	correlation	between	groups	is	large,	then	the	𝑑&	value	
will	also	be	larger,	whereas	a	small	correlation	will	return	a	smaller	𝑑&	value.	The	standard	
error	of	𝑑&	can	be	calculated	similarly	to	the	single	group	design	such	that,	

𝑆𝐸"$ = H1
𝑛 +

𝑑&!

2𝑛	

In	R,	we	can	use	the	d.ind.t.diff	function	from	the	MOTE	package	to	calculate	𝑑& .	

# Cohen's dz for difference scores	
# given difference score means and SDs	
	
# For example:	
# Difference Score Mean = 21.4, SD = 19.59, N = 96	
	
library(MOTE)	
	
stats <- d.dep.t.diff(	
  m = 21.4,	
  sd = 19.59,	
  n = 96,	
  a = 0.05	
)	
	
# print just the d value and confidence intervals	
data.frame(d = apa(stats$d), 	
           dlow = apa(stats$dlow), 	
           dhigh = apa(stats$dhigh))	

      d  dlow dhigh	
1 1.092 0.837 1.344	

The	output	shows	that	the	effect	size	is	𝑑&	=	1.09,	95%	CI	[0.84,	1.34].	

7.4.2 Repeated Measures 𝑑 (𝑑'() 

For	a	within-group	design,	we	want	to	compare	the	means	of	scores	obtained	from	
condition	1	and	condition	2.	The	repeated	measures	standardized	mean	difference	
between	the	two	conditions	can	be	calculated	by	(equation	9,	Lakens	2013),	

𝑑'( =
𝑀! −𝑀.

𝑆4
.	

A	positive	𝑑'(	value	would	indicate	that	the	mean	of	condition	2	is	larger	than	the	mean	of	
condition	1.	The	standardizer	here	is	the	within-subject	standard	deviation,	𝑆4 .	The	within-
subject	standard	deviation	can	be	defined	as,	
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𝑆4 = H𝑆.
! + 𝑆!! − 2𝑟𝑆.𝑆!
2(1 − 𝑟) .	

We	can	also	express	𝑆4 	in	terms	of	the	standard	deviation	of	difference	scores	(𝑆diff),	

𝑆4 =
𝑆diff

P2(1 − 𝑟)
.	

Furthermore,	we	can	even	express	𝑑'(	in	terms	of	the	difference	score	standardized	mean	
difference	(𝑑&),	

𝑑'( = 𝑑& ×P2(1 − 𝑟).	

Ultimately	the	𝑑'(	is	more	appropriate	as	an	effect	size	estimate	for	use	in	meta-analysis	
whereas	𝑑&	is	more	appropriate	for	power	analysis	(Lakens	2013).	The	standard	error	for	
𝑑'(	can	be	computed	as,	

𝑆𝐸"%& = HQ
1
𝑛 +

𝑑'(!

2𝑛 R × 2
(1 − 𝑟)	

In	R,	we	can	use	the	d.ind.t.rm	function	from	the	MOTE	package	to	calculate	the	repeated	
measures	standardized	mean	difference	(𝑑'().	

# Cohen's d for repeated measures	
# given means and SDs and correlation	
	
# For example:	
# Condition 1 Mean = 30.4, SD = 22.53, N = 96	
# Condition 2 Mean = 21.4, SD = 19.59, N = 96	
# correlation between conditions: r = .40	
	
stats <- d.dep.t.rm(	
  m1 = 30.4,	
  m2 = 21.4,	
  sd1 = 22.53,	
  sd2 = 19.59,	
  r = .40,	
  n = 96,	
  a = 0.05	
)	
	
# print just the d value and confidence intervals	
data.frame(d = apa(stats$d), 	
           dlow = apa(stats$dlow), 	
           dhigh = apa(stats$dhigh))	

      d  dlow dhigh	
1 0.425 0.215 0.633	
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The	output	shows	that	the	effect	size	is	𝑑'(	=	0.42,	95%	CI	[0.21,	0.63].	

7.4.3 Average Variance 𝑑 (𝑑)*) 

The	problem	with	𝑑&	and	𝑑'(,	is	that	they	require	the	correlation	between	conditions.	In	
practice,	correlations	between	conditions	are	frequently	not	reported.	An	alternative	
estimator	of	Cohen’s	𝑑	in	repeated	measures	design	is	to	simply	use	the	classic	variation	of	
cohen’s	𝑑	(i.e.,	pooled	standard	deviation).	In	a	repeated	measures	design,	the	sample	size	
does	not	change	between	conditions.	Therefore	weighting	the	variance	of	condition	1	and	
condition	2	by	their	respective	degrees	of	freedom	(i.e.,	𝑑𝑓 = 𝑛 − 1)	is	an	unnecessary	step.	
Instead,	we	can	standardize	by	the	square	root	of	the	average	the	variances	of	condition	1	
and	2	(see	equation	5,	Algina	and	Keselman	2003):	

𝑑)* =
𝑀! −𝑀.

O𝑆.
! + 𝑆!!
2

	

This	formulation	is	convenient	especially	when	the	correlation	is	not	present,	however	
without	the	correlation	it	fails	to	take	into	account	the	consistency	of	change	between	
conditions.	The	standard	error	of	the	𝑑)*	can	be	expressed	as	(equation	9,	Algina	and	
Keselman	2003),	

𝑆𝐸"'( = H
2(𝑆.! + 𝑆!! − 2𝑟𝑆.𝑆!)

𝑛(𝑆.! + 𝑆!)
	

In	R,	we	can	use	the	d.ind.t.rm	function	from	the	MOTE	package	to	calculate	the	repeated	
measures	standardized	mean	difference	(𝑑'().	

# Cohen's d for repeated measures (average variance)	
# given means and SDs 	
	
# For example:	
# Condition 1 Mean = 30.4, SD = 22.53, N = 96	
# Condition 2 Mean = 21.4, SD = 19.59, N = 96	
	
stats <- d.dep.t.avg(	
  m1 = 30.4,	
  m2 = 21.4,	
  sd1 = 22.53,	
  sd2 = 19.59,	
  n = 96,	
  a = 0.05	
)	
	
# print just the d value and confidence intervals	
data.frame(d = apa(stats$d), 	
           dlow = apa(stats$dlow), 	
           dhigh = apa(stats$dhigh))	
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      d  dlow dhigh	
1 0.427 0.217 0.635	

The	output	shows	that	the	effect	size	is	𝑑)*	=	0.43,	95%	CI	[0.22,	0.64].	

7.4.4 Becker’s 𝑑 (𝑑+) 

An	even	simpler	variant	of	repeated	measures	𝑑	value	comes	from	Becker	(1988).	Becker’s	
𝑑	standardizes	simply	by	the	pre-test	standard	deviation	when	the	comparison	is	a	
pre/post	design,	

𝑑+ =
𝑀post −𝑀pre

𝑆pre
.	

The	convenient	interpretation	of	“change	in	baseline	standard	deviations”	can	be	quite	
useful.	We	can	also	obtain	the	standard	error	with	(equation	13,	Becker	1988),	

𝑆𝐸") = H2(1 − 𝑟)
𝑛 +

𝑑+!

2𝑛	

Notice	that	even	though	the	formula	for	calculating	𝑑+	did	not	include	the	correlation	
coefficient,	the	standard	error	does.	

In	base	R,	we	can	calculate	Becker’s	formulation	of	standardized	mean	difference	using	the	
equations	above.	

# Install the package below if not done so already	
# install.packages(escalc)	
# Cohen's d for repeated measures (becker's d)	
# given means, the pre-test SDs, and the correlation	
	
# For example:	
# Pre-test Mean = 21.4, SD = 19.59, N = 96	
# Post-test Mean = 30.4, N = 96	
# Correlation between conditions: r = .40	
	
Mpre <- 21.4	
Mpost <- 30.4	
Spre <- 19.59	
r <- .40	
n <- 96	
a <- 0.05	
	
d <- (Mpost - Mpre) / Spre	
	
SE <- sqrt( 2*(1-r)/n + d^2/(2*n) )	
	
# print just the d value and confidence intervals	
data.frame(d = apa(d), 	
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           dlow = apa(d - 1.96*SE), 	
           dhigh = apa(d + 1.96*SE))	

      d  dlow dhigh	
1 0.459 0.231 0.688	

The	output	shows	that	the	effect	size	is	𝑑'(	=	0.46,	95%	CI	[0.23,	0.69].	

7.4.5 Comparing Repeated Measures 𝑑 values 

Figure	7.2	shows	repeated	measures	designs	with	a	high	(𝑟 =	.95)	and	low	(𝑟 =	.05)	
correlation	between	conditions.	Let	us	fix	the	standard	deviations	and	means	for	both	
conditions	(i.e.,	high	and	low	correlation)	and	only	vary	the	correlation.	Now	we	can	
compare	the	repeated	measures	estimators	based	on	these	two	conditions	shown	in	
Figure	7.2:	

• High	correlation:	
– 𝑑& = 1.24	
– 𝑑'( = 0.39	
– 𝑑)* = 0.43	
– 𝑑+ = 0.40	

• Low	correlation:	
– 𝑑& = 0.31	
– 𝑑'( = 0.43	
– 𝑑)* = 0.43	
– 𝑑+ = 0.40	

We	notice	that	the	correlation	greatly	influences	𝑑&	more	than	any	other	estimator.	The	
𝑑'(	value	has	very	little	change,	whereas	𝑑)*	and	𝑑+	do	not	take	into	account	the	
correlation	at	all.	
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Figure	7.2:	Figure	displaying	simulated	data	of	a	repeated	measures	design,	the	x-axis	shows	
the	condition	(e.g.,	pre-test	and	post-test)	and	y-axis	is	the	scores.	Left	panel	shows	a	high	
pre/post	correlation	(𝑟	=	.95)	and	right	panel	shows	a	low	correlation	condition	(𝑟	=	.05).	
Lines	indicate	within	person	pre/post	change.	

7.5 Pretest-Posttest-Control Group Designs 

In	many	areas	of	research	both	between	and	within	group	factors	are	incorporated.	For	
example,	in	research	involving	the	examination	of	the	effects	of	an	intervention	often	a	
sample	is	randomised	into	two	seperate	groups	(intervention	and	control)	and	then	they	
are	measured	on	the	outcome	of	interest	both	before	(pretest)	and	after	(posttest)	the	
intervention/control	period.	In	these	types	of	2x2	(group	x	time)	study	designs	it	is	usually	
the	difference	between	the	standardised	mean	change	for	the	intervention/treatment	(𝑇)	
and	control	(𝐶)	groups	that	is	of	interest.	For	a	visualization	of	a	pretest-posttest-control	
group	design	see	Figure	7.3.	

Morris	(2008)	details	three	effect	sizes	for	this	pretest-posttest-control	(PPC).	
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Figure	7.3:	Illustration	of	a	pre-post	control	design.	Left	panel	shows	the	pre-post	difference	in	
the	control	group	and	right	panel	shows	the	pre-post	difference	in	the	intervention/treatment	
group.	Lines	indicate	within	person	pre/post	change.	

7.5.1 PPC1 - separate pre-test standard deviations 

The	separate	pre-test	(i.e.,	baseline)	standard	deviations	are	used	to	standardize	the	
pre/post	mean	difference	in	the	intervention	group	and	the	control	group	respectively	(see	
equation	4,	Morris	2008),	

𝑑0 =
𝑀0,post −𝑀0,pre

𝑆0,pre
	

𝑑- =
𝑀-,post −𝑀-,pre

𝑆-,pre
	

Note	that	these	effect	sizes	are	identical	to	the	Becker’s	𝑑	formulation	of	the	SMD	(see	
Section	7.4.4).	Therefore	the	pretest-posttest-control	group	effect	size	is	simply	the	
difference	between	the	intervention	and	control	pre/post	SMD	(equation	15,	Becker	1988),	

𝑑,,-. = 𝑑0 − 𝑑- 	
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The	asymptotic	standard	error	of	𝑑,,-!	was	first	derived	by	Becker	(1988)	and	can	be	
expressed	as	the	square	root	of	the	sum	of	the	sampling	variances	(equation	16,	Becker	
1988)	

𝑆𝐸"**+, = HU
2(1 − 𝑟0)

𝑛0
+
𝑑0
2𝑛0

V + U
2(1 − 𝑟-)

𝑛-
+
𝑑-
2𝑛-

V	

We	can	calculate	𝑑,,-.	and	it’s	confidence	intervals	using	base	R:	

# Example:	
	
# Control Group (N = 90)	
## Pre-test Mean = 20, SD = 6	
## Post-test Mean = 25, SD = 7	
## Pre/post correlation = .50	
M_Cpre <- 20	
M_Cpost <- 25	
SD_Cpre <- 6	
SD_Cpost <- 7	
rC <- .50	
nC <- 90	
	
# Intervention Group (N = 90)	
## Pre-test Mean = 20, SD = 5	
## Post-test Mean = 27, SD = 8	
## Pre/post correlation = .50	
M_Tpre <- 20	
M_Tpost <- 27	
SD_Tpre <- 5	
SD_Tpost <- 8	
rT <- .50	
nT <- 90	
	
# calculate the observed standardized mean difference	
dT <- (M_Tpost- M_Tpre) / SD_Tpre	
dC <- (M_Cpost - M_Cpre) / SD_Cpre	
dPPC1 <- dT - dC	
	
# calculate the standard error	
SE <- sqrt( 2*(1-rT)/nT + dPPC1^2/(2*nT) + 2*(1-rC)/nC + dPPC1^2/(2*nC) )	
	
# print the d value and confidence intervals	
data.frame(d = MOTE::apa(dPPC1),	
           dlow = MOTE::apa(dPPC1 - 1.96*SE),	
           dhigh = MOTE::apa(dPPC1 + 1.96*SE))	

      d  dlow dhigh	
1 0.567 0.252 0.881	
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The	output	shows	a	pre-post	intervention	effect	of	𝑑,,-.	=	0.57	[0.25,	0.88].	

7.5.2 PPC2 - pooled pre-test standard deviations 

The	pooled	pre-test	(i.e.,	baseline)	standard	deviations	can	be	used	to	standardized	the	
difference	in	pre/post	change	between	intervention	and	control	groups	such	that	(equation	
8,	Morris	2008),	

𝑑,,-! =
W𝑀0,post −𝑀0,preX − W𝑀-,post −𝑀-,preX

𝑆$,pre
	

where	

𝑆$,pre = H
(𝑛0 − 1)𝑆0,pre! + (𝑛- − 1)𝑆-,post!

𝑛0 + 𝑛- − 2
.	

The	distribution	of	𝑑,,-!	was	described	by	Morris	(2008)	and	can	be	expressed	as	
(adapted	from	equation	16,	Morris	2008),	

$$	\small{SE_{d_{PPC2}}	=	\sqrt{2\left(1-\frac{n_T	r_T	+	n_C	r_C}{n_T	+	
n_C}\right)\left(\frac{n_T	+	n_C}{n_T	n_C}\right)\left[1	+	\frac{d^2_{PPC2}}{2\left(1-
\frac{n_T	r_T	+	n_C	r_C}{n_T	+	n_C}\right)\left(\frac{n_T	+	n_C}{n_T	n_C}\right)}\right]	-	
d^2_{PPC2}}}	$$	

Note	the	original	equation	shown	in	the	paper	by	Morris	(2008)	uses	the	population	
pre/post	correlation	𝜌,	however	in	the	equation	above	we	replace	𝜌	with	the	sample	size	
weighted	average	of	the	Pearson	correlation	computed	in	the	treatment	group	and	the	
control	group	(i.e.,	𝜌 ≈ 3-'-63+'+

3-63+
).	

We	can	use	base	R	to	obtain	𝑑,,-!	and	confidence	intervals:	

# Example:	
	
# Control Group (N = 90)	
## Pre-test Mean = 20, SD = 6	
## Post-test Mean = 25, SD = 7	
## Pre/post correlation = .50	
M_Cpre <- 20	
M_Cpost <- 25	
SD_Cpre <- 6	
SD_Cpost <- 7	
rC <- .50	
nC <- 90	
	
# Intervention Group (N = 90)	
## Pre-test Mean = 20, SD = 5	
## Post-test Mean = 27, SD = 8	
## Pre/post correlation = .50	
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M_Tpre <- 20	
M_Tpost <- 27	
SD_Tpre <- 5	
SD_Tpost <- 8	
rT <- .50	
nT <- 90	
	
# calculate the observed standardized mean difference	
dPPC2 <- ((M_Tpost- M_Tpre) - (M_Cpost - M_Cpre)) / sqrt( ( (nT - 
1)*(SD_Tpre^2) + (nC - 1)*(SD_Cpre^2) ) / (nT + nC - 2) )	
	
# calculate the standard error	
SE <-  sqrt(2*(1-( (nT*rT+nC*rC)/(nT + nC))) * ((nT+nC)/(nT*nC)) * (1 + 
(dPPC2^2 / (2*(1 - ((nT*rT+nC*rC)/(nT+nC))) * ((nT+nC)/(nT*nC)))))) - dPPC2	
	
# print the d value and confidence intervals	
data.frame(d = MOTE::apa(dPPC2),	
           dlow = MOTE::apa(dPPC2 - 1.96*SE),	
           dhigh = MOTE::apa(dPPC2 + 1.96*SE))	

      d  dlow dhigh	
1 0.362 0.304 0.420	

The	output	shows	a	pre-post	intervention	effect	of	𝑑,,-!	=	0.36	[0.30,	0.42].	

7.5.3 PPC3 - pooled pre- and post-test 

The	two	previous	effect	sizes	only	use	the	pretest	standard	deviation.	But	if	we	are	happy	
to	assume	that	pretest	and	posttest	variances	are	homogenous7	the	pooled	pre-test	and	
post-test	standard	deviations	can	be	used	to	standardized	the	difference	in	pre/post	
change	between	intervention	and	control	groups	such	that	(equation	8,	Morris	2008),	

𝑑,,-/ =
W𝑀0,post −𝑀0,preX − W𝑀-,post −𝑀-,preX

𝑆$,pre-post
,	

where,	

𝑆$,pre-post = H
(𝑛0 − 1)W𝑆0,pre! + 𝑆0,post! X + (𝑛- − 1)W𝑆-,pre! + 𝑆-,post! X

𝑛0 + 𝑛- − 2
.	

The	standard	error	for	𝑑,,-!	is	currently	unknown.	An	option	to	estimate	this	standard	
error	is	to	use	a	non-parametric	or	parametric	bootstrap	by	repeatedly	sampling	the	raw	
data,	or	if	the	raw	data	is	not	available	resample	simulated	data.	We	can	do	this	in	base	R	by	

	

7	Note,	this	may	not	be	the	case	especially	where	there	is	a	mean-variance	relationship	and	
one	(usually	the	intervention)	group	has	a	higher	posttest	mean	score.	
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simulating	pre/post	data	using	the	mvrnorm()	function	from	the	MASS	package	(Venables	
and	Ripley	2002):	

# Install the package below if not done so already	
# install.packages(MASS)	
	
# Example:	
	
# Control Group (N = 90)	
## Pre-test Mean = 20, SD = 6	
## Post-test Mean = 25, SD = 7	
## Pre/post correlation = .50	
M_Cpre <- 20	
M_Cpost <- 25	
SD_Cpre <- 6	
SD_Cpost <- 7	
rC <- .50	
nC <- 90	
	
# Intervention Group (N = 90)	
## Pre-test Mean = 20, SD = 5	
## Post-test Mean = 27, SD = 8	
## Pre/post correlation = .50	
M_Tpre <- 20	
M_Tpost <- 27	
SD_Tpre <- 5	
SD_Tpost <- 8	
rT <- .50	
nT <- 90	
	
# simulate data	
set.seed(1) # set seed for reproducibility	
boot_dPPC3 <- c()	
for(i in 1:1000){	
  # simulate control group pre-post data	
  data_C <- MASS::mvrnorm(n = nC,	
                          # input observed means	
                          mu = c(M_Cpre,M_Cpost),	
                          # input observed covariance matrix	
                          Sigma = data.frame(pre = c(SD_Cpre^2, 
rC*SD_Cpre*SD_Cpost), 	
                                             post = 
c(rC*SD_Cpre*SD_Cpost,SD_Cpost^2)))	
  # simulate intervention group pre-post data	
  data_T <- MASS::mvrnorm(n = nT,	
                          # input observed means	
                          mu = c(M_Tpre,M_Tpost),	
                          # input observed covariance matrix	
                          Sigma = data.frame(pre = c(SD_Tpre^2, 
rT*SD_Tpre*SD_Tpost), 	
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                                             post = 
c(rT*SD_Tpre*SD_Tpost,SD_Tpost^2)))	
  	
  # calculate the mean difference in pre/post change (the numerator)	
  MeanDiff <- (mean(data_T[,2]) - mean(data_T[,1])) - (mean(data_C[,2]) - 
mean(data_C[,1]))	
  	
  # calculate the pooled pre-post standard deviation (the denominator)	
  S_Pprepost <-  sqrt( ( (nT - 1)*(sd(data_T[,1])^2+sd(data_T[,2])^2) + (nC - 
1)*(sd(data_C[,1])^2+sd(data_C[,2])^2) ) / (nT + nC - 2) )	
  	
  # calculate the standardized mean difference for each bootstrap iteration	
  boot_dPPC3[i] <- MeanDiff / S_Pprepost	
}	
	
# calculate bootstrapped standard error	
SE <- sd(boot_dPPC3)	
	
# calculate the observed standardized mean difference	
dPPC3 <- ((M_Tpost- M_Tpre) - (M_Cpost - M_Cpre)) / sqrt( ( (nT - 
1)*(SD_Tpre^2+SD_Tpost^2) + (nC - 1)*(SD_Cpre^2+SD_Cpost^2) ) / (nT + nC - 2) 
)	
	
#print the d value and confidence intervals	
data.frame(d = MOTE::apa(dPPC3),	
           dlow = MOTE::apa(dPPC3 - 1.96*SE),	
           dhigh = MOTE::apa(dPPC3 + 1.96*SE))	

      d  dlow dhigh	
1 0.214 0.002 0.427	

The	output	shows	a	pre-post	intervention	effect	of	𝑑,,-/	=	0.21	[0.002,	0.43].	

7.6 Small Sample Bias in 𝑑 values 

All	the	estimators	of	𝑑	listed	above	are	biased	estimates	of	the	population	𝑑	value,	
specifically	they	all	over-estimate	the	population	value	in	small	sample	sizes.	To	adjust	for	
this	bias,	we	can	apply	a	correction	factor	based	on	the	degrees	of	freedom.	The	degrees	of	
freedom	will	largely	depend	on	the	estimator	used.	The	degrees	of	freedom	for	each	
estimator	is	listed	below:	

• Single	Group	design	(𝑑#):	𝑑𝑓 = 𝑛 − 1	
• Between	Groups	-	Pooled	Standard	Deviation	(𝑑$):	𝑑𝑓 = 𝑛. + 𝑛! − 2	
• Between	Groups	-	Control	Group	Standard	Deviation	(𝑑%):	𝑑𝑓 = 𝑛- − 1	
• Repeated	Measures	-	all	types	(𝑑& ,	𝑑'(,	𝑑)* ,	𝑑+):	𝑑𝑓 = 𝑛 − 1	
• Pretest-Posttest-Control	Separate	Standard	Deviation	(𝑑,,-.):	𝑑𝑓 = 𝑛- − 1	
• Pretest-Posttest-Control	Pooled	Pretest	Standard	Deviation	(𝑑,,-!):	𝑑𝑓 = 𝑛0 + 𝑛- −

2	
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• Pretest-Posttest-Control	Pooled	Pretest	and	Posttest	Standard	Deviation	(𝑑,,-/):	
𝑑𝑓 = 2(𝑛0 + 𝑛- − 2)	

With	the	appropriate	degrees	of	freedom,	we	can	use	the	following	correction	factor,	𝐶𝐹,	to	
obtain	an	unbiased	estimate	of	the	population	standardized	mean	difference:	

𝐶𝐹 =
𝛤 ]𝑑𝑓2 ^

𝛤 ]𝑑𝑓 − 12 ^O𝑑𝑓2

	

Where	𝛤(⋅)	is	the	gamma	function.	An	approximation	of	this	complex	formula	given	by	
Hedges	(1981)	can	be	written	as	𝐶𝐹 ≈ 1 − /

7⋅"9:.
.	In	R,	this	can	be	calculated	using,	

# Example:	
# Group 1 sample size = 20	
# Group 2 sample size = 18	
	
n1 <- 20	
n2 <- 18	
	
df <- n1 + n2 - 2	
	
CF <- gamma(df/2) / ( sqrt(df/2) * gamma((df-1)/2) )	
	
CF	

[1] 0.9789964	

This	correction	factor	can	then	be	applied	to	any	of	the	estimators	mentioned	above,	

𝑑∗ = 𝑑 × 𝐶𝐹	

The	corrected	𝑑	value,	𝑑∗,	is	commonly	referred	to	as	Hedges’	𝑔	or	just	𝑔.	To	avoid	notation	
confusion	we	will	just	add	an	asterisk	to	𝑑	to	denote	the	correction.	We	also	need	to	correct	
the	standard	error	for	𝑑∗	

𝑆𝐸"∗ = 𝑆𝐸" × 𝐶𝐹	

These	standard	errors	can	then	be	used	to	calculate	the	confidence	interval	of	the	corrected	
𝑑	value,	

𝐶𝐼"∗ = 𝑑∗ ± 1.96 × 𝑆𝐸"∗ 	

# Example:	
# Cohen's d = .50, SE = .10	
	
d = .50	
SE = .10	
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# correct d value and CIs small sample bias	
d_corrected <- d * CF	
SE_corrected <- SE * CF	
dlow_corrected <- d_corrected - 1.96*SE_corrected	
dhigh_corrected <- d_corrected + 1.96*SE_corrected	
	
# print just the d value and confidence intervals	
data.frame(d = apa(d), 	
           dlow = apa(dlow_corrected), 	
           dhigh = apa(dhigh_corrected))	

      d  dlow dhigh	
1 0.500 0.298 0.681	

The	output	shows	that	the	corrected	effect	size	is	𝑑∗	=	0.50,	95%	CI	[0.30,	0.68].	

7.7 Ratios of Means 

Another	common	approach,	particularly	within	the	fields	of	ecology	and	evolution,	is	to	
take	the	natural	logarithm	of	the	ratio	between	two	means;	the	so-called	Response	Ratio	
(𝑙𝑛𝑅𝑅).	This	is	sometimes	more	favorable	as,	due	to	its	construction	using	the	standard	
deviation	in	some	form	as	a	denominator,	the	various	versions	of	standardized	mean	
differences	are	impacted	by	the	estimate	of	this	parameter	for	which	studies	are	often	less	
powered	compared	to	mean	magnitudes	(Yang	et	al.	2022).	For	the	𝑙𝑛𝑅𝑅	however	the	
standard	deviation	only	impacts	its	variance	estimation	and	not	the	point	estimate.	A	
limitation	of	the	lnRR	however	is	that	it	is	limited	to	data	that	are	observed	on	a	ratio	scale	
(i.e.,	have	an	absolute	zero	and	instances	of	it	are	related	ordinally	and	additively	meaning	
both	means	will	be	positive).	

Although	strictly	speaking	the	𝑙𝑛𝑅𝑅	is	not	a	difference	in	means	in	an	additive	sense	as	the	
above	standardized	mean	difference	effect	sizes	are,	it	can	in	one	sense	be	considered	to	
reflect	the	difference	in	means	on	the	multiplicative	scale.	In	fact,	after	calculation	it	is	often	
transformed	to	reflect	the	percentage	difference	or	change	between	means:	100 ×
exp(𝑙𝑛𝑅𝑅) − 1.	However,	this	can	introduce	transformation	induced	bias	because	a	non-
linear	transformation	of	a	mean	value	is	not	generally	equal	to	the	mean	of	the	transformed	
value.	In	the	context	of	meta-analysis	combining	𝑙𝑛𝑅𝑅	estimated	across	studies	a	correct	
factor	can	be	applied:	100 × exp(𝑙𝑛𝑅𝑅 + 0.5𝑆total! ) − 1,	where	𝑆total! 	is	the	variance	of	all	
𝑙𝑛𝑅𝑅	values.	

Similarly	to	the	various	standardized	mean	differences,	there	are	varied	calculations	for	the	
lnRR	dependent	upon	the	study	design	being	used	(see	Senior,	Viechtbauer,	and	Nakagawa	
2020).	

7.7.1 lnRR for Independent Groups (𝑙𝑛𝑅𝑅ind) 

The	lnRR	can	be	calculated	when	groups	are	independent	as	follows,	

𝑙𝑛𝑅𝑅ind = ln ]
𝑀0

𝑀-
^ + 𝐶𝐹	
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Where	𝑀0 	and	𝑀- 	are	the	means	for	the	treatment	and	control	group	respectively	and	𝐶𝐹	
is	the	small	sample	correction	factor	calculated	as,	

𝐶𝐹 =
𝑆0!

2𝑛0𝑀0
! −

𝑆-!

2𝑛-𝑀-
!	

The	standard	error	can	be	calculated	as,	

𝑆𝐸<3==ind = H
𝑆0!

𝑛0𝑀0
! +

𝑆-!

𝑛-𝑀-
! +

𝑆07

2𝑛0!𝑀0
7 +

𝑆-7

2𝑛-!𝑀-
7	

Using	R	we	can	easily	calculate	this	effect	size	using	the	escalc()	function	in	the	metafor	
package	(Viechtbauer	2010):	

# lnRR for two independent groups	
# given means and SDs	
	
# For example:	
# Group 1 Mean = 30.4, Standard deviation = 22.53, Sample size = 96	
# Group 2 Mean = 21.4, Standard deviation = 19.59, Sample size = 96	
	
library(metafor)	
	
	
# prepare the data	
M1 <- 30.4	
M2 <- 21.4	
SD1 <- 22.53	
SD2 <- 19.59	
N1 = 96	
N2 = 96	
	
# calculate lnRRind and standard error	
lnRRind <- escalc(measure = "ROM", 	
               m1i = M1,	
               m2i = M2,	
               sd1i = SD1,	
               sd2i = SD2,	
               n1i = N1,	
               n2i = N2)	
	
lnRRind$SE <- sqrt(lnRRind$vi)	
	
# calculate confidence interval	
lnRRind$CIlow <- lnRRind$yi - 1.96*lnRRind$SE	
lnRRind$CIhigh <-  lnRRind$yi + 1.96*lnRRind$SE	
	
# print the VR value and confidence intervals	
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data.frame(lnRRind = MOTE::apa(lnRRind$yi),	
           lnRRind_low = MOTE::apa(lnRRind$CIlow),	
           lnRRind_high = MOTE::apa(lnRRind$CIhigh))	

  lnRRind lnRRind_low lnRRind_high	
1   0.351       0.115        0.587	

The	example	shwos	a	natural	log	response	ratio	of	𝑙𝑛𝑅𝑅ind	=	0.35	[0.12,	0.59].	

7.7.2 lnRR for dependent groups (𝑙𝑛𝑅𝑅dep) 

The	lnRR	can	be	calculated	when	groups	are	dependent	(i.e.,	same	subjects	in	both	
conditions),	for	example	a	pre-post	comparison,	as	follows,	

𝑙𝑛𝑅𝑅dep = ln ]
𝑀!

𝑀.
^ + 𝐶𝐹	

Where	𝐶𝐹	is	the	small	sample	correct	factor	calculated	as,	

𝐶𝐹 =
𝑆!!

2𝑛𝑀!
! −

𝑆.!

2𝑛𝑀.
!	

The	standard	error	can	then	be	calculated	as,	

$$	\small{SE_{lnRR_\text{dep}}	=	\sqrt{	\frac{S^2_1}{n	M_1^2}	+	\frac{S^2_2}{n	M_2^2}	+	
\frac{S^4_1}{2n^2M^4_1}	+		\frac{S^4_2}{2n^2M^4_2}	+	\frac{2rS_1	S_2}{n	M_1	M_2}	+	
\frac{r^2S^2_1	S^2_2	(M_1^4	+	M_2^4)}{2n^2	M_1^4	M_2^4}}}	$$	

Using	R	we	can	easily	calculate	this	effect	size	using	the	escalc()	function	from	the	
metafor	package	as	follows:	

# lnRR for two dependent groups	
# given means and SDs	
	
	
# For example:	
# Mean 1 = 30.4, Standard deviation 1 = 22.53	
# Mean 2 = 21.4, Standard deviation 2 = 19.59	
# Sample size = 96	
# Correlation = 0.4	
	
library(metafor)	
	
	
# prepare the data	
M1 <- 30.4	
M2 <- 21.4	
SD1 <- 22.53	
SD2 <- 19.59	
N = 96	
R = 0.4	
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# calculate lnRR and standard error	
lnRRdep <- escalc(measure = "ROMC", 	
               m1i = M1,	
               m2i = M2,	
               sd1i = SD1,	
               sd2i = SD2,	
               ni = N,	
               ri = R)	
	
# obtain standard error from sqrt of sampling variance	
lnRRdep$SE <- sqrt(lnRRdep$vi)	
	
	
# calculate confidence interval	
lnRRdep$CIlow <- lnRRdep$yi - 1.96*lnRRdep$SE	
lnRRdep$CIhigh <-  lnRRdep$yi + 1.96*lnRRdep$SE	
	
	
	
	
# print the VR value and confidence intervals	
data.frame(lnRRdep = MOTE::apa(lnRRdep$yi),	
           lnRRdep_low = MOTE::apa(lnRRdep$CIlow),	
           lnRRdep_high = MOTE::apa(lnRRdep$CIhigh))	

  lnRRdep lnRRdep_low lnRRdep_high	
1   0.351       0.167        0.535	

The	example	shwos	a	natural	log	response	ratio	of	𝑙𝑛𝑅𝑅dep	=	0.35	[0.17,	0.54].	

8. Correlation between Two Continuous Variables 
To	quantify	the	relationship	between	two	continuous	variables,	the	most	common	method	
is	to	use	a	Pearson	correlation	coefficient	(denoted	with	the	letter	𝑟).	The	pearson	
correlation	takes	the	covariance	between	a	continuous	independent	(𝑋)	and	dependent	(𝑌)	
variable	and	standardizes	it	by	the	standard	deviations	of	𝑋	and	𝑌,	

𝑟 =
Cov(𝑋, 𝑌)
𝑆>𝑆?

.	

We	can	visualize	what	a	correlation	between	two	variables	looks	like	with	scatter	plots.	
Figure	8.1	shows	scatter	plots	with	differing	levels	of	correlation.	
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Figure	8.1:	Simulated	data	from	a	bivariate	normal	distribution	displaying	6	different	
correlations,	r	=	0,	.20,	.40,	.60,	.80,	and	1.00.	

The	standard	error	of	the	Pearson	correlation	coefficient	is,	

𝑆𝐸' = H(1 − 𝑟
!)!

𝑛 − 1 	

Unlike	Cohen’s	𝑑	and	other	effect	size	measures,	The	correlation	coefficient	is	bounded	by	-
1	and	positive	1,	with	positive	1	being	a	perfectly	positive	correlation,	-1	being	a	perfectly	
negative	correlation,	and	zero	indicating	no	correlation	between	the	two	variables.	The	
bounding	has	the	consequence	of	making	the	confidence	interval	asymmetric	around	𝑟	
(e.g.,	if	the	correlation	is	positive,	the	lower	bound	is	farther	away	from	𝑟	than	the	upper	
bound	is).	It	is	important	to	note	that	with	a	correlation	of	zero,	the	confidence	interval	is	
symmetric	and	approximately	normal.	Instead,	to	obtain	the	confidence	intervals	of	𝑟,	we	
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first	need	to	apply	a	Fisher’s	Z	transformation.	A	Fisher’s	Z	transformation	is	a	hyperbolic	
arctangent	transformation	of	a	Pearson	correlation	coefficient	and	can	be	computed	as,	

𝑍' = arctanh(𝑟)	

The	Fisher	Z	transformation	ensures	𝑍' 	has	a	symmetric	and	approximately	normal	
sampling	distribution.	This	then	allows	us	to	calculate	the	confidence	interval	from	the	
standard	error	of	𝑍' 	(𝑆𝐸@% =

.
√3:/

).	We	can	also	back-transform	the	confidence	into	a	
Pearson	correlation	scale,	

𝐶𝐼' = tanhW𝑍' ± 1.96 × 𝑆𝐸@%X	

We	can	then	back-transform	the	upper	bound	and	lower	bound	into	the	upper	and	lower	
bound	of	𝑟	by	taking	the	hyperbolic	tangent	(the	inverse	of	the	arctangent).	

In	R,	the	full	process	of	obtaining	confidence	intervals	can	be	done	quite	easily.	Note	if	you	
have	raw	data	for	𝑋	and	𝑌,	then	you	can	compute	the	correlation	with	base	R,	cor(X,Y).	

# example: r = .50, n = 50	
r <- .50	
n <- 50	
	
# compute Zr	
Zr <- atanh(r)	
	
# calculate standard error of Zr	
SE_Zr <- 1/sqrt(n-3)	
	
# compute confidence interval of Zr	
Zlow <- Zr - 1.96 * SE_Zr	
Zhigh <- Zr + 1.96 * SE_Zr	
	
# backtransform CI of Z to CI of Pearson correlation	
rlow <- tanh(Zlow) 	
rhigh <- tanh(Zhigh)	
	
# print pearson correlation and confidence intervals	
data.frame(r = MOTE::apa(r), 	
           rlow = MOTE::apa(rlow), 	
           rhigh = MOTE::apa(rhigh))	

      r  rlow rhigh	
1 0.500 0.257 0.683	

The	output	shows	that	the	correlation	and	its	confidence	intervals	are	𝑟	=	0.50,	95%	CI	
[0.26,	0.68].	
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9. Effect Sizes for Categorical Variables 
For	dichotomous	relationships	that	involve	proportions,	there	are	many	variations	of	effect	
sizes	that	one	can	use.	Commonly	used	effect	size	measures	for	statistical	procedures	on	
categorical	data	include:	phi	coefficient	(𝜙),	Cramer’s	𝑉,	Cohen’s	ℎ,	Cohen’s	𝜔,	odds	ratio	
(𝑂𝑅),	risk	difference	(𝑅𝐷),	and	relative	risk	(𝑅𝑅).	

Here is a table for every effect size discussed in this chapter: 
Type	 Description	 Section	
𝜙	-	phi	
coefficient	

Pearson	correlation	between	two	binary	variables	(i.e.,	2x2	
contingency	tables).	

Section	9.1	

𝑉	-	Cramer’s	
V	

Measures	the	association	between	categorical	variables.	
Similar	to	a	𝜙	coefficient,	but	meant	for	contingency	tables	
larger	than	2x2.	

Section	9.2	

ℎ	-	Cohen’s	h	 Pearson	correlation	between	two	binary	variables.	Difficult	to	
interpret.	

Section	9.3	

𝑤	-	Cohen’s	w	 Association	between	two	categorical	variables	and	it	is	
computed	identically	to	the	𝜙	coefficient.	If	computed	on	a	2x2	
contingency	table,	it	will	have	an	identical	value	to	𝜙.	

Section	9.4	

-Ben	-	פ
Shachar’s	Fei	

A	correction	to	Cohen’s	𝑤	for	one	dimensional	count	tables.	 Section	9.5	

𝑂𝑅	-	Odds	
Ratio	

Ratio	of	odds	of	an	event	occurring	between	treatment	and	
control	groups	

Section	9.6	

𝑅𝐷	-	Risk	
Difference	

Difference	between	proportions	in	treatment	and	control	
groups.	

Section	9.7	

𝑅𝑅	-	Relative	
Risk	

Ratio	of	proportions	in	the	treatment	and	control	groups.	 Section	9.8	

9.1 Phi Coefficient (𝜙) 

Phi	coefficient	(𝜙)	is	a	measure	of	association	between	two	binary	variables	(therefore,	it	
ONLY	applies	to	2	by	2	contingency	tables,	i.e.,	each	variable	has	only	two	levels).	It	is	a	
special	case	of	the	Pearson	correlation	coefficient	and	an	𝑟	for	two	binary	variables	is	equal	
to	phi.	Note	that	unlike	𝑟	that	ranges	from	-1	to	1,	phi	ranges	from	0	to	1.	Also,	the	sign	of	𝑟	
indicates	the	direction	of	association,	whereas	to	get	the	direction	of	an	association	given	a	
2	by	2	contingency	table,	we	need	to	look	at	the	table	itself;	phi	only	provides	a	measure	of	
strength.	The	2	by	2	contingency	table	is	illustrated	by	Table	9.1.	

Table	9.1:	Contingency	table	between	two	binary	variables	

	 𝑋 = 0	 𝑋 = 1	
𝑌 = 0	 𝑛AA	 𝑛.A	
𝑌 = 1	 𝑛A.	 𝑛..	
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The	sample	sizes	within	each	cell	provide	us	with	the	necessary	information	to	estimate	the	
relationship	between	the	two	variables.	A	large	phi	coefficient	would	be	expected	to	have	
relatively	large	sample	sizes	in	the	diagonal	cells	(𝑛AA	and	𝑛..)	and	relatively	low	sample	
sizes	in	the	off-diagonal	cells	(𝑛A.	and	𝑛.A).	To	calculate	phi,	it	can	be	calculated	from	the	
cells	of	the	contingency	table	directly	(adapted	from	equation	1,	Guilford	1965),	

𝜙 =
𝑛..𝑛AA − 𝑛.A𝑛A.

P(𝑛AA + 𝑛A.)(𝑛.A + 𝑛..)(𝑛AA + 𝑛.A)(𝑛A. + 𝑛..)
	

or	more	conveniently,	from	the	𝜒!-statistic	(equation	7.2.5,	Cohen	1988),	

𝜙 = H𝜒
!

𝑛 	

Where	𝑛	is	the	total	sample	size	(i.e.,	the	sum	of	all	the	cells).	Using	the	psych	package	in	R,	
we	can	calculate	the	the	phi	coefficient	using	the	phi	function	directly	from	the	contingency	
table	

# Example contingency table:	
#  40  17	
#  11  45	
	
library(effectsize)	
	
contingency_table <- matrix(c(40, 11,	
                              17, 45),ncol = 2)	
	
phi_coefficient <- phi(contingency_table, alternative = "two.sided")	
	
phi_coefficient	

Phi (adj.) |       95% CI	
-------------------------	
0.50       | [0.31, 0.69]	

In	our	example	we	obtained	a	phi	coefficient	of	𝜙	=	.50	[0.31,	0.69].	

9.2 Cramer’s 𝑉 

Cramer’s	V,	sometimes	also	referred	to	as	Cramer’s	phi	(𝜙),	is	a	generalized	effect	size	
measure	of	the	association	between	two	nominal	variables.	It	applies	to	contingency	tables	
of	any	size	(2 × 2,	3 × 3,	3 × 4,	5 × 3,	etc.).	Cramer’s	𝑉	on	a	2 × 2	contingency	table	is	
equivalent	to	the	phi	coefficient.	For	an	illustration	of	a	higher	order	contingency	table,	
Table	9.2	represents	a	3 × 4	contingency	table	of	two	variables.	

Table	9.2:	Contingency	table	between	two	categorical	variables	

	 𝑋 = 0	 𝑋 = 1	 𝑋 = 2	 𝑋 = 3	
𝑌 = 0	 𝑛AA	 𝑛.A	 𝑛!.	 𝑛/.	
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	 𝑋 = 0	 𝑋 = 1	 𝑋 = 2	 𝑋 = 3	
𝑌 = 1	 𝑛A.	 𝑛..	 𝑛!.	 𝑛/.	
𝑌 = 2	 𝑛A!	 𝑛.!	 𝑛!!	 𝑛/!	

Similarly	to	the	phi	coefficient,	the	value	of	Cramer’s	𝑉	ranges	from	0	to	1	and	can	
interpreted	in	a	similar	way	to	a	phi	coefficient.	Again	we	can	use	the	𝜒!	statistic	to	
compute	the	value,	however,	since	there	can	be	more	than	2	levels	to	each	variable,	we	also	
need	to	take	into	account	the	number	of	levels,	𝑘,	of	the	variable	with	the	least	number	of	
levels	(e.g.,	a	3 × 4	contingency	table,	𝑘	would	be	equal	to	3).	Cramer’s	𝑉	is	defined	as	
(equation	7.2.6,	Cohen	1988),	

𝑉 = H
𝜒!

𝑛(𝑘 − 1)	

The	standard	error	of	a	Cramer’s	𝑉	is	similar	to	that	of	a	Pearson	correlation	and	a	𝜙	
coefficient.	

𝑆𝐸B = H(1 − 𝑉
!)!

𝑛 − 1 	

Where	𝑛	is	the	total	sample	size	(i.e.,	the	sum	of	all	cells).	Like	the	pearson	correlation,	we	
can	not	calculate	the	confidence	interval	directly	from	the	standard	error,	instead,	we	must	
convert	𝑉	to	a	Fisher’s	Z	statistic,	𝑍B = arctanh(𝑉).	We	can	then	calculate	the	95%	
confidence	interval	for	𝑉	by	back-transforming	the	confidence	interval	for	𝑍B:	

𝑆𝐸@/ =
1

√𝑛 − 3
	

𝐶𝐼B = tanhW𝑍B ± 1.96 × 𝑆𝐸@/X	

Using	the	ufs	package	(Peters	and	Gruijters	2023),	we	can	calculate	Cramer’s	𝑉	and	it’s	
95%	confidence	interval	using	the	Fisher’s	Z	method	described	above.	For	the	example,	we	
can	example	data	from	a	3	×	3	contingency	table.	

# Example contingency table:	
#  40  14  12	
#  11  27   9	
#   5  10  34	
	
library(ufs)	
	
contingency_table <- matrix(c(40, 11,  5,	
                              14, 27, 10,	
                              12,  9, 34),ncol = 3)	
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V <- cramersV(contingency_table)	
CI <- confIntV(contingency_table)	
	
# print pearson correlation and confidence intervals	
data.frame(V = MOTE::apa(V$output$cramersV), 	
           Vlow = MOTE::apa(CI$output$confIntV.fisher[1]), 	
           Vhigh = MOTE::apa(CI$output$confIntV.fisher[2]))	

      V  Vlow Vhigh	
1 0.442 0.309 0.558	

In	our	example	we	obtained	a	Cramer’s	𝑉	of	𝑉	=	.44	[.31,	.56].	

9.3 Cohen’s ℎ 

Cohen’s	ℎ	is	a	measure	of	distance	between	two	proportions	or	probabilities.	It	is	
sometimes	also	referred	to	as	the	“difference	between	arcsines”.	For	a	given	proportion	𝑝,	
its	arcsine	transformation	is	given	by	(equation	6.2.1,	Cohen	1988):	

𝜓 = 2 ⋅ arcsinWP𝑝X.	

Cohen’s	ℎ	is	the	difference	between	the	arcsine	transformations	of	two	proportions	
(equation	6.2.2,	Cohen	1988):	

ℎ = 𝜓. − 𝜓!	

Cohen’s	ℎ	is	commonly	used	for	the	power	analysis	of	proportion	tests.	We	can	calculate	
the	standard	error	in	Cohen’s	ℎ	It	is	the	required	effect	size	measure	in	the	program	G	
Power	(Faul	et	al.	2009).	

𝑆𝐸C = H
1
𝑛.
+
1
𝑛!
	

Since	the	sampling	distribution	of	ℎ	is	symmetric,	we	can	calculate	the	confidence	intervals	
from	the	standard	error,	

𝐶𝐼C = ℎ ± 1.96 × 𝑆𝐸C	

To	calculate	Cohen’s	ℎ,	we	can	use	the	cohens_h	function	in	the	effectsize	package	in	R.	

# install package if not done so already	
# install.packages('effectsize')	
# Example proportions: p1 = .45, p2 = .30	
	
library(effectsize)	
	
contingency_table <- matrix(c(40, 11,	
                              14, 27),ncol = 2)	
	
cohens_h(contingency_table)	
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Cohen's h |       95% CI	
------------------------	
0.93      | [0.52, 1.34]	

From	the	example,	the	R	code	outputted	a	Cohen’s	ℎ	value	of	ℎ	=	.93	[0.52,	1.34].	

9.4 Cohen’s 𝑤 

Cohen’s	𝑤	is	a	measurem	of	association	analogous	to	the	phi	coefficient	but	on	tables	that	
are	larger	than	2x2.	Although	Cohen’s	𝑤	is	useful	for	power	analyses,	it	is	not	so	useful	as	a	
stand-alone	effect	size.	As	Cohen	(1988)	states	(pp.	221):	

As	a	measure	of	association,	[Cohen’s	𝑤]	lacks	familiarity	and	convenience	

Cohen’s	𝑤	has	the	exact	same	formula	as	the	phi	coefficient	with	the	only	difference	being	
that	the	𝜒!	statistic	comes	from	a	contingency	table	of	any	size	(equation	7.2.5,	Cohen	
1988),	

𝑤 = H𝜒
!

𝑛 	

And	can	also	be	calculated	directly	from	Cramer’s	𝑉	(equation	7.2.7,	Cohen	1988),	

𝑤 = 𝑉 × √𝑘 − 1	

Where	𝑘	is	the	number	of	categories	in	the	variable	with	the	least	number	of	categories.	We	
can	use	the	cohens_w()	function	in	the	effectsize	package	(Ben-Shachar,	Lüdecke,	and	
Makowski	2020).	

# Example contingency table	
# 40 14	
# 11 27	
	
contingency_table <- matrix(c(40, 11, 	
                              14, 27),ncol = 2)	
	
cohens_w(contingency_table,	
         alternative = "two.sided")	

Cohen's w |       95% CI	
------------------------	
0.45      | [0.24, 0.65]	

From	the	example	code,	the	cohens_w	function	returned	Cohen’s	𝑤	value	of	𝑤	=	.45	[0.24,	
0.65].	

9.5 Ben-Shachar’s Fei (פ) 

Ben-Shachar	et	al.	(2023)	introduced	a	new	effect	size	for	one-dimensional	tables	of	
counts/proportions	that	they	label	with	the	Hebrew	letter,	פ.	Ben-Shachar’s	פ	is	a	
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correction	to	Cohen’s	𝑤	that	adjusts	for	the	expected	value	and	consequently	bounds	the	
value	between	0	and	1.	The	equation	for	פ	is	defined	as,	

פ = o
𝜒!

𝑛 ] 1
min(𝑃D)

− 1^
	

Where	min(𝑃D)	is	the	smallest	expected	probability.	The	formula	for	Ben-Schachar’s	פ	can	
be	also	be	expressed	in	terms	of	Cohen’s	𝜔,	

פ =
𝜔

O] 1
max(𝑃D)

− 1^
	

In	R,	we	can	calculate	Ben-Shachar’s	פ	using	the	fei()	function	in	the	effectsize	package	
(Ben-Shachar,	Lüdecke,	and	Makowski	2020).	

# Example:	
# Observed counts: 20, 50, 100 (observed proportions: .12, .29, .59)	
# Expected proportions: .5, .2, .3	
	
observed_counts <- c(20,50,100)	
expected_probabilities <- c(.5,.2,.3)	
	
	
fei(observed_counts,	
    p = expected_probabilities,	
    alternative = "two.sided")	

Fei  |       95% CI	
-------------------	
0.39 | [0.31, 0.47]	
	
- Adjusted for uniform expected probabilities.	

From	the	example	code,	the	fei	function	returned	Ben-Shachar’s	פ	value	of	.39	[0.31,	0.47].	

9.6 Odds Ratio (𝑂𝑅) 

Odds	ratio	measures	the	effect	size	between	two	binary	variables.	It	is	commonly	used	in	
medical	and	behavioral	intervention	research,	and	notably,	in	meta-analysis.	

Let’s	imagine	a	study	conducted	to	investigate	the	association	between	smoking	and	the	
development	of	major	depressive	disorder	(MDD).	The	study	includes	a	sample	of	251	
individuals,	categorizing	them	into	two	groups:	125	smokers	and	126	non-smokers.	The	
researchers	are	interested	in	understanding	the	odds	of	having	major	depressive	disorder	
(MDD)	among	smokers	compared	to	non-smokers.	Say	we	find	that	25	smokers	were	
diagnosed	with	MDD	while	100	were	not,	but	in	the	non-smoker	group,	12	individuals	were	
diagnosed	with	MDD	while	120	were	not.	The	odds	ratio	would	then	be:	
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𝑂𝑅 =
25/100
12/120 =

. 25

. 10 = 2.50	

In	general,	we	can	can	compute	the	odds-ratio	from	a	contingency	table	between	binary	
variables	𝑋	(i.e.,	the	treatment)	and	𝑌	(i.e.,	the	outcome;	see	Table	9.3).	

Table	9.3:	Contingency	table	between	two	binary	variables	

	 𝑋 = 𝑇	 𝑋 = 𝐶	
𝑌 = 0	 𝑛0A	 𝑛-A	
𝑌 = 1	 𝑛0.	 𝑛-.	

Ultimately,	we	want	to	compare	the	outcome	between	the	treatment	group	(𝑋 = 𝑇)	and	the	
control	group	(𝑋 = 𝐶).	Therefore	we	can	compute	the	odds	ratio	as,	

𝑂𝑅 =
𝑛0./𝑛0A
𝑛-./𝑛-A

	

The	standard	distribution	of	the	odds-ratio	is	asymmetric.	To	calculate	confidence	
intervals,	we	can	first	convert	the	odds	ratio	to	a	log	odds	ratio	(𝐿𝑂𝑅 = log(𝑂𝑅)).	Then	we	
can	calculate	the	standard	error	of	the	log	odds	ratio,	

𝑆𝐸EF= = H
1
𝑛0A

+
1
𝑛0.

+
1
𝑛-A

+
1
𝑛-.

	

With	the	standard	error	of	the	log	odds	ratio	we	can	then	calculate	the	confidence	interval	
of	the	odds	ratio	by	back-transforming	using	the	exponential	function,	

𝐶𝐼F= = exp(𝐿𝑂𝑅 ± 1.96 × 𝑆𝐸EF=)	

In	R,	we	can	use	the	effectsize	package	to	calculate	the	odds	ratio	and	it’s	confidence	
interval:	

# Example:	
# Treatment Group: 10 diseased, 43 healthy	
# Control Group:  24 diseased, 41 healthy	
	
	
contingency_table <- matrix(c(10, 24,	
                              43, 41),ncol = 2)	
	
oddsratio(contingency_table,	
          alternative = "two.sided")	

Odds ratio |       95% CI	
-------------------------	
0.40       | [0.17, 0.93]	

The	code	output	for	this	example	shows	an	odds	ratio	of	𝑂𝑅	=	0.40	[0.17,	0.93]	
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9.7 Risk Difference (𝑅𝐷) 

Risk	difference	can	be	used	to	interpret	the	difference	between	two	proportions.	If	we	use	
the	contingency	table	from	Table	9.3,	and	calculate	a	risk	difference	between	the	treatment	
group	and	the	control	group.	We	can	first	calculate	the	proportion	of	cases	where	the	
outcome	is	𝑌 = 1	within	the	control	group	and	the	treatment	group:	

𝑝- =
𝑛-.

𝑛-A + 𝑛-.
	

𝑝0 =
𝑛0.

𝑛0A + 𝑛0.
	

Then	using	these	proportions	we	can	calculate	the	risk	difference	(𝑅𝐷),	

𝑅𝐷 = 𝑝0 − 𝑝- .	

The	corresponding	standard	error	is,	

𝑆𝐸=G = H
𝑝-(1 − 𝑝-)

𝑛-
+
𝑝0(1 − 𝑝0)

𝑛0
	

Where	𝑛- 	and	𝑛0 	are	the	total	sample	sizes	within	the	control	and	treatment	group,	
respectively.	The	standard	error	can	then	be	used	to	compute	the	95%	confidence	
intervals,	

𝐶𝐼=G = 𝑅𝐷 ± 1.96 × 𝑆𝐸=G	

The	risk	difference	formula	is	fairly	simple,	so	we	can	compute	it	using	base	R.	

# Example: 	
# Treatment group: proportion of cases = .5, sample size = 40	
# Control group: proportion of cases = .3, sample size = 45	
	
pT <- .50	
pC <- .30	
nT <- 40	
nC <- 45	
	
RD <- pT - pC	
	
SE <- sqrt( pC*(1-pC)/nC + pT*(1-pT)/nT )	
	
# compute 95% CIs	
RDlow <- RD - 1.96*SE	
RDhigh <- RD + 1.96*SE	
	
data.frame(	
  RD = MOTE::apa(RD),	
  RDlow = MOTE::apa(RDlow),	
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  RDhigh = MOTE::apa(RDhigh)	
  )	

     RD  RDlow RDhigh	
1 0.200 -0.005  0.405	

9.8 Relative Risk (𝑅𝑅) 

The	relative	risk,	often	referred	to	as	the	“risk	ratio,”	calculates	the	ratio	between	the	
proportion	of	cases	in	the	treatment	group	and	the	proportion	of	cases	in	the	control	
group.	It	provides	a	straightforward	interpretation:	“individuals	receiving	the	treatment	
have	a	𝑅𝑅	times	higher	odds	of	experiencing	the	outcome	compared	to	controls.”	To	
calculate	relative	riskm,	first	we	need	to	calculate	the	proportion	of	outcome	cases	in	the	
treatment	and	control	group	

𝑝- =
𝑛-.

𝑛-A + 𝑛-.
	

𝑝0 =
𝑛0.

𝑛0A + 𝑛0.
	

Then	we	can	calculate	the	relative	risk,	

𝑅𝑅 =
𝑝0
𝑝-
	

The	corresponding	standard	error	can	be	computed	as,	

𝑆𝐸== = H
𝑝0
𝑛0

+
𝑝-
𝑛-
	

The	confidence	intervals	can	be	computed	from	the	standard	error,	

𝐶𝐼== = 𝑅𝑅 ± 1.96 × 𝑆𝐸== 	

To	compute	relative	risk,	we	can	simply	use	the	equations	above	in	base	R.	

# Example:	
# Treatment Group: 10 diseased, 43 healthy, 53 total	
# Control Group:  24 diseased, 41 healthy, 65 total	
	
pT <- 10/(43+10)	
pC <- 24/(41+24)	
nT <- 53	
nC <- 65	
	
RR <- pT / pC	
	
SE <- sqrt(pT/nT + pC/nC)	
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RRlow <- RR - 1.96*SE	
RRhigh <- RR + 1.96*SE	
	
# print pearson correlation and confidence intervals	
data.frame(RR = MOTE::apa(RR), 	
           RRlow = MOTE::apa(RRlow), 	
           RRhigh = MOTE::apa(RRhigh))	

     RR RRlow RRhigh	
1 0.511 0.323  0.699	

10. Effect Sizes for ANOVAs 

10.1 ANOVAs 

For	ANOVAs/F-tests,	you	will	always	need	to	report	two	kinds	of	effects:	the	omnibus	effect	
of	the	factor(s)	and	the	effect	of	planned	contrasts	or	post	hoc	comparisons.	

For	instance,	imagine	that	you	are	comparing	three	groups/conditions	with	a	one-way	
ANOVA.	The	ANOVA	will	first	return	an	F-statistic,	the	degrees	of	freedom,	and	the	
associated	p-value.	Here,	you	need	to	calculate	the	size	of	this	omnibus	factor	effect	in	eta-
squared,	partial	eta-squared,	or	generalized	eta-squared.	

Suppose	the	omnibus	effect	is	significant.	You	now	know	that	there	is	at	least	one	group	
that	differs	from	the	others.	You	want	to	know	which	group(s)	differ	from	the	others,	and	
how	much	they	differ.	Therefore,	you	conduct	post	hoc	comparisons	on	these	groups.	
Because	post	hoc	comparisons	compare	each	group	with	the	others	in	pairs,	you	will	get	a	
t-statistic	and	p-value	for	each	comparison.	For	this,	you	can	calculate	and	report	a	
standardized	mean	difference.	

Imagine	that	you	have	two	independent	variables	or	factors,	and	you	conduct	a	two-by-two	
factorial	ANOVA.	The	first	thing	to	do	then	is	look	at	the	interaction.	If	the	interaction	is	
significant,	you	again	report	the	associated	omnibus	effect	size	measures,	and	proceed	to	
analyze	the	simple	effects.	Depending	on	your	research	question,	you	compare	the	levels	of	
one	IV	on	each	level	of	the	other	IV.	You	will	report	d	or	g	for	these	simple	effects.	If	the	
interaction	is	not	significant,	you	look	at	the	main	effects	and	report	the	associated	
omnibus	effect.	You	then	proceed	to	analyze	the	main	effect	by	comparing	the	levels	of	one	
IV	while	collapsing/aggregating	the	levels	of	the	other	IV.	You	will	report	d	or	g	for	these	
pairwise	comparisons.	Note	that	lower-order	effects	are	not	directly	interpretable	if	
higher-order	effects	are	significant.	If	you	have	a	significant	interaction	in	a	two-way	
ANOVA,	you	cannot	interpret	the	main	effects	directly.	If	you	have	a	significant	three-way	
interaction	in	a	three-way	ANOVA,	you	cannot	interpret	the	main	effects	or	the	two-way	
interactions	directly,	regardless	of	whether	they	are	significant	or	not.	
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10.2 ANOVA tables 

An	ANOVA	table	generally	consists	of	the	grouping	factors	(+	residuals),	the	sum	of	
squares,	the	degrees	of	freedom,	the	mean	square,	the	F-statistic,	and	the	p-value.	Using	
base	R,	we	can	construct	an	ANOVA	table	using	the	aov()	function	to	generate	the	ANOVA	
model	and	then	using	summary.aov()	to	extract	the	table.	For	an	example	case,	we	will	use	
the	palmerpenguins	data	set	package	and	we	will	investigate	the	differences	in	the	body	
mass	(the	outcome)	of	three	penguin	species	(the	predictor/grouping	variable):	

library(palmerpenguins)	
	
# construct anova model 	
# formula structure: outcome ~ grouping variable	
ANOVA_mdl <- aov(body_mass_g ~ species, 	
                 data = penguins) # dataset	
	
ANOVA_table <- summary.aov(ANOVA_mdl)	
ANOVA_table	

             Df    Sum Sq  Mean Sq F value Pr(>F)    	
species       2 146864214 73432107   343.6 <2e-16 ***	
Residuals   339  72443483   213698                   	
---	
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
2 observations deleted due to missingness	

By	default,	summary.aov()	does	not	report	the	𝜂!	value,	however	we	will	discuss	this	more	
in	Section	10.7.1.	The	results	show	that	the	mean	body	mass	between	the	three	penguin	
species	(Adelie,	Gentoo,	Chinstrap)	differ	significantly	from	one	another.	
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10.3 One-way between-subjects ANOVA 

One-way	between-subject	ANOVA	is	an	extension	of	independent-samples	t-tests.	The	null	
hypothesis	is	that	all	k	means	of	k	independent	groups	are	identical,	whereas	the	
alternative	hypothesis	is	that	there	are	at	least	two	means	from	these	k	groups	differ.	The	
assumptions	include:	(1)	independence	of	observations,	(2)	normality	of	residuals,	and	(3)	
equality	(or	homogeneity)	of	variances	(homoscedasticity).8	

Note.	Sometimes	you	may	encounter	a	between-subject	one-way	ANOVA	which	compares	
only	two	conditions,	particularly	when	the	paper	is	old.	This	is	essentially	a	t-test,	and	the	
F-statistic	is	just	t-squared.	It	is	preferable	to	report	Cohen’s	d	for	these	tests.	If	you	are	
calculating	the	effect	size	for	such	tests,	it’s	best	to	calculate	Cohen’s	d,	or	convert	the	
provided	eta-squared	to	Cohen’s	d,	as	Cohen’s	d	can	show	the	direction	of	the	effect.	
Subsequent	analyses	(e.g.,	power	analysis)	can	also	be	based	on	Cohen’s	d.	

	

8	There	are	variants	of	ANOVAs	that	can	have	each	of	these	assumptions	violated.	
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It’s	very	easy	to	determine	eta-squared	with	an	F-statistic	and	the	two	degrees	of	freedom	
from	a	one-way	ANOVA	9.	Note	that	in	the	case	of	a	one-way	between-subject	ANOVA,	
eta-squared	is	equal	to	partial	eta-squared.	

10.3.1 Determining degrees of freedom 

Please	refer	to	the	following	table	to	determine	the	degrees	of	freedom	for	ANOVA	effects,	
if	they	are	not	reported	or	if	you	are	doubtful	that	they	have	been	misreported.	

Degrees	of	freedom	 	
Between	subjects	ANOVA	 	
Effect	 𝑘 − 1	
Error	 𝑛 − 𝑘	
Total	 𝑛 − 1	

10.3.2 Calculating eta-squared from F-statistic and degrees of freedom 

Using	the	formula	below,	we	can	calculate	𝜂!	of	an	ANOVA	model	using	the	F-statistic	and	
the	degrees	of	freedom,	

𝜂! =
𝑑𝑓effect × 𝐹

𝑑𝑓effect × 𝐹 + 𝑑𝑓error
.	

In	R,	we	can	use	the	F_to_eta2()	function	from	the	effectsize	package	(Ben-Shachar,	
Lüdecke,	and	Makowski	2020):	

library(effectsize)	
	
n = 154 # number of subjects	
k = 3 # number of groups	
f = 84.3 # F-statistic	
	
df_effect = k - 1	
df_error = n - k	
	
F_to_eta2(f = f,	
          df = df_effect,	
          df_error = df_error,	
          alternative = 'two.sided') # obtain two sided CIs	

Eta2 (partial) |       95% CI	
-----------------------------	
0.53           | [0.42, 0.61]	

	

9	See	this	forum	discussion	for	explanation.	

https://stats.stackexchange.com/a/98998
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10.3.3 Calculating eta-squared from an ANOVA table 

Let’s	use	the	table	from	the	ANOVA	model	in	Section	10.2:	

One-way	ANOVA	table	

	 Df	 Sum	Sq	 Mean	Sq	 F	value	 Pr(>F)	
species	 2	 146864214	 73432107.1	 343.6263	 0	
Residuals	 339	 72443483	 213697.6	 NA	 NA	

From	this	table	we	can	use	the	sum	of	squares	from	the	grouping	variable	(species)	and	the	
total	sum	of	squares	(𝑆𝑆total = 𝑆𝑆effect + 𝑆𝑆error)	to	calculate	the	𝜂!	value	using	the	following	
equation:	

𝜂! =
𝑆𝑆effect
𝑆𝑆total

=
𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error
	

In	R,	we	can	use	the	eta.full.SS()	function	in	the	MOTE	package	(Buchanan	et	al.	2019)	to	
obtain	𝜂!	from	an	ANOVA	table.	

library(MOTE)	
	
eta <- eta.full.SS(dfm = 2,  # effect degrees of freedom	
                   dfe = 339, # error degrees of freedom	
                   ssm = 146864214, # sum of squares for the effect	
                   sst = 146864214 + 72443483, # total sum of squares	
                   Fvalue = 343.6263,	
                   a = .05)	
	
data.frame(eta_squared = apa(eta$eta),	
           etalow = apa(eta$etalow),	
           etahigh = apa(eta$etahigh))	

  eta_squared etalow etahigh	
1       0.670  0.606   0.722	

The	example	code	outputs	𝜂!	=	.67	[.61,	.72].	This	suggests	that	species	accounts	for	67%	of	
the	total	variation	in	body	mass	between	penguins.	

10.3.4 Calculating Cohen’s d for post-hoc comparisons 

In	an	omnibus	ANOVA,	the	p-value	is	telling	us	whether	the	means	from	all	groups	come	
from	the	same	population	mean,	however	this	does	not	inform	us	about	which	groups	differ	
and	by	how	much.	Using	the	same	example	as	before,	let’s	say	we	want	to	answer	a	specific	
question	such	as:	what	is	the	difference	in	body	mass	between	Adelie	penguins	and	Gentoo	
penguins?	To	answer	this	question,	we	can	calculate	the	raw	mean	difference	between	the	
two	groups.	In	R,	we	can	do	that	with	the	following	code:	

Madelie <- mean(penguins$body_mass_g[penguins$species=='Adelie'], na.rm=T)	
Mgentoo <- mean(penguins$body_mass_g[penguins$species=='Gentoo'], na.rm=T)	
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Mgentoo - Madelie	

[1] 1375.354	

Based	on	the	mean	difference,	Gentoo	penguins	are	on	average	1375	grams	heavier	than	
Adelia	penguins	in	total	body	mass.	We	can	also	calculate	a	standardized	mean	difference	
using	the	escalc()	function	in	the	metafor	package	(Viechtbauer	2010).	

library(metafor)	
	
# Means, SDs, and sample sizes for each group	
Madelie <- mean(penguins$body_mass_g[penguins$species=='Adelie'], na.rm=T)	
Mgentoo <- mean(penguins$body_mass_g[penguins$species=='Gentoo'], na.rm=T)	
SDadelie <- sd(penguins$body_mass_g[penguins$species=='Adelie'], na.rm=T)	
SDgentoo <- sd(penguins$body_mass_g[penguins$species=='Gentoo'], na.rm=T)	
Nadelie <- sum(penguins$species=='Adelie', na.rm=T)	
Ngentoo <- sum(penguins$species=='Gentoo', na.rm=T)	
	
summary(	
  escalc(measure = 'SMD',	
         m1i = Mgentoo,	
         m2i = Madelie,	
         sd1i = SDgentoo,	
         sd2i = SDadelie,	
         n1i = Ngentoo,	
         n2i = Nadelie)	
)	

	
      yi     vi    sei      zi   pval  ci.lb  ci.ub 	
1 2.8602 0.0295 0.1716 16.6629 <.0001 2.5237 3.1966 	

The	standardized	mean	difference	between	Adelie	and	Gentoo	penguins	is	𝑑	=	2.86	[2.52,	
3.19],	demonstrating	that	Gentoo	penguins	have	body	mass	2.86	standard	deviations	larger	
than	Adelie	penguins.	

We	can	also	quantify	contrasts	from	summary	statistics	reported	from	the	ANOVA	table	
and	the	within	group	means.	We	can	calculate	the	standardized	mean	difference	using	the	
means	from	both	groups	and	the	mean	squared	error	(𝑀𝑆𝐸)	the	following	equation:	

𝑑 =
𝑀. −𝑀!

√𝑀𝑆𝐸
	

This	method	gives	a	standardized	mean	difference	equivalent	to	the	Cohen’s	𝑑	with	the	
pooled	standard	deviation	in	the	denominator	(see	chapter	on	mean	differences).	
Therefore	if	we	obtain	the	mean	squared	errors	(i.e.,	MS	of	residuals)	from	Section	10.3.3	
and	we	obtain	the	means	(means:	Gentoo	=	5076,	Adelie	=	3701),	we	can	calculate	the	
standardized	mean	difference	as:	HAIJ:/IA.

√!./JKI.J
= ./IH

7J!.!I
= 2.974.	The	discrepency	between	the	
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standardized	mean	difference	provided	by	the	escalc()	function	is	due	to	the	fact	that	the	
function	automatically	applies	a	small	sample	correction	factor	thus	reducing	the	overall	
effect.	

	 Df	 Sum	Sq	 Mean	Sq	 F	value	 Pr(>F)	
species	 2	 146864214	 73432107.1	 343.6263	 0	
Residuals	 339	 72443483	 213697.6	 NA	 NA	

		Beware	the	assumptions.	

Note	that	this	method	is	ONLY	valid	
when	you	are	willing	to	assume	
equal	variances	among	groups	
(homoscedasticity),	and	when	you	
conduct	a	Fisher’s	one-way	ANOVA	
(rather	than	Welch’s).	This	method	
is	also	impractical	if	you	are	
calculating	from	reported	statistics,	
and	MSE	is	not	reported	(which	is	
typically	the	case).	

If	you	are	unwilling	to	assume	
homogeneity	of	variances,	then	
calculate	Cohen’s	d	between	groups	
as	if	there	are	only	two	groups	for	
comparison.	However,	you	should	
know	that	it	also	makes	little	sense	
to	conduct	a	Fisher’s	ANOVA	in	such	
situations.	You	may	want	to	switch	
to	Welch’s	ANOVA,	which	does	not	
assume	homoscedasticity.	If	
variances	differ	greatly,	you	may	
want	to	use	alternative	
standardized	effect	size	measures,	
such	as	Glass’	delta,	and	calculate	
confidence	intervals	using	
bootstrap.	

10.4 One-way repeated measures ANOVA 

One-way	repeated	measures	ANOVA	(rmANOVA)	is	an	extension	of	paired-samples	t-tests,	
with	the	difference	being	it	can	be	used	in	two	or	more	groups.	

10.4.1 Determining degrees of freedom 

Please	refer	to	the	following	table	to	determine	the	degrees	of	freedom	for	repeated	
measure	ANOVA	effects.	
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Degrees	of	freedom	 	
Within-subject	ANOVA	(repeated	measures)	 	
Effect	 𝑘 − 1	
Error-between	 (𝑛 − 1) × (𝑘 − 1)	
Error-within	 (𝑛 − 1) ⋅ (𝑘 − 1)	
Total	(within)	 𝑛 ⋅ (𝑘 − 1)	

10.4.2 Eta-squared from rmANOVA statistics 

Commonly,	we	use	eta-squared	(𝜂!)	or	partial	eta-squared	(𝜂$!)	as	the	effect	size	measure	
for	one-way	rmANOVAs,	for	which	these	two	are	in	fact	equal.	Let’s	construct	an	rmANOVA	
model	use	example	data	from	the	datarium	package	(Kassambara	2019).	The	selfesteem	
data	set	simply	shows	self-esteem	scores	over	three	repeated	measurements	within	the	
same	subjects.	

### load in and re-format data	
library(tidyr)	
data("selfesteem", package = "datarium")	
selfesteem <- tidyr::pivot_longer(selfesteem,cols = c("t1","t2","t3"))	
colnames(selfesteem) <- c("subject","time","self_esteem")	
####	
	
rmANOVA_mdl = aov(formula = self_esteem ~ time + Error(subject),	
                  data = selfesteem)	
summary(rmANOVA_mdl)	

	
Error: subject	
          Df  Sum Sq Mean Sq F value Pr(>F)	
Residuals  1 0.07667 0.07667               	
	
Error: Within	
          Df Sum Sq Mean Sq F value   Pr(>F)    	
time       2 102.46   51.23   63.07 1.06e-10 ***	
Residuals 26  21.12    0.81                     	
---	
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
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There	are	two	tables	displayed	here,	the	table	on	top	displays	the	between	subject	effects	
and	the	table	below	shows	the	within	subject	effects.The	equations	and	functions	to	
calculate	𝜂!	mentioned	in	the	one-way	between-subjects	ANOVAs	section	also	apply	here:	

𝜂! =
𝑑𝑓effect × 𝐹

𝑑𝑓effect × 𝐹 + 𝑑𝑓error-within
,	

𝜂! =
𝑆𝑆effect
𝑆𝑆total

	

Note	that	here	𝑆𝑆total	does	not	include	𝑆𝑆error-between	because	we	are	not	interested	in	it	by	
conducting	a	rmANOVA.	This	analysis	targets	an	effect	that	we	think	should	happen	on	
each	subject,	regardless	of	how	these	subjects	will	vary	from	each	other.	In	other	words,	
between-subjects	variance	can	be	large	or	small,	but	we	do	not	care	about	it	when	we	
examine	whether	there	is	an	effect	or	not	across	repeated	measures.	Therefore	the	total	
sum	of	squares	can	be	defined	as	

𝑆𝑆total = 𝑆𝑆effect + 𝑆𝑆error-within	

Therefore	we	can	calculate	𝜂!	from	the	rmANOVA	table	as,	

𝜂! =
102.46

21.12 + 102.46 = .83	
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We	can	plug	the	rmANOVA	model	into	the	eta_squared()	function	from	the	effectsize	
package	in	R	(Ben-Shachar,	Lüdecke,	and	Makowski	2020)	to	calculate	𝜂!.	

library(effectsize)	
	
eta_squared(rmANOVA_mdl,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Group  | Parameter | Eta2 (partial) |       95% CI	
--------------------------------------------------	
Within |      time |           0.83 | [0.69, 0.89]	

As	expected,	we	find	the	same	point-estimate	from	our	hand	calculation.	To	calculate	𝜂!	
from	the	F-statistic	and	degrees	of	freedom	we	can	use	the	MOTE	package	(Buchanan	et	al.	
2019)	as	we	did	in	Section	10.3.3	

library(MOTE)	
	
eta <- eta.full.SS(dfm = 2,  # effect degrees of freedom	
                   dfe = 26, # error degrees of freedom	
                   ssm = 102.46, # sum of squares for the effect	
                   sst = 102.46 + 21.12, # total sum of squares	
                   Fvalue = 63.07,	
                   a = .05)	
	
data.frame(eta_squared = apa(eta$eta),	
           etalow = apa(eta$etalow),	
           etahigh = apa(eta$etahigh))	

  eta_squared etalow etahigh	
1       0.829  0.644   0.910	

Note	the	discrepency	between	confidence	intervals	returned	by	MOTE	and	effectsize	this	
is	due	to	differences	in	the	calculation.	

10.5 Two-Way between-subjects ANOVA 

Two-way	between-subjects	ANOVA	is	used	when	there	are	two	predictor	grouping	
variables	in	the	model.	Note	again	that	between	subjects	means	that	each	group	contain	
different	subjects.	

10.5.1 Determining degrees of freedom 

Please	refer	to	the	following	table	to	determine	the	degrees	of	freedom	for	two-way	ANOVA	
effects	(Morse	2018).	Note	that	𝑘.	is	the	number	of	groups	in	the	first	variable,	and	𝑘!	is	the	
number	of	groups	in	the	second	variable.	

Degrees	of	freedom	 	
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Degrees	of	freedom	 	
Within	subjects	ANOVA	 	
Main	Effect	(of	one	variable)	 𝑘. − 1	or	𝑘! − 1	
Interaction	Effect	 (𝑘. − 1) × (𝑘! − 1)	
Error	 𝑛 − 𝑘. ⋅ 𝑘!	
Total	 𝑛 − 1	

10.5.2 Eta-squared from Two-Way ANOVA statistics 

For	Two-way	ANOVAs	we	can	obtain	𝜂$!	for	each	predictor	in	the	model.	Let’s	construct	our	
ANOVA	model	using	data	from	the	palmerpenguins	dataset	(Horst,	Hill,	and	Gorman	2020).	
In	this	example	we	want	to	see	how	the	species	and	the	sex	of	the	penguin	explains	
variance	in	body	mass.	

library(palmerpenguins)	
	
ANOVA2_mdl <- aov(body_mass_g ~ species + sex + species:sex,	
                  data = penguins)	
	
summary(ANOVA2_mdl)	

             Df    Sum Sq  Mean Sq F value   Pr(>F)    	
species       2 145190219 72595110 758.358  < 2e-16 ***	
sex           1  37090262 37090262 387.460  < 2e-16 ***	
species:sex   2   1676557   838278   8.757 0.000197 ***	
Residuals   327  31302628    95727                     	
---	
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
11 observations deleted due to missingness	
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The	results	show	that	species,	sex,	and	the	interaction	between	the	two	account	for	
substantial	variance	in	body	mass.	We	can	obtain	the	contributions	of	species,	sex,	and	
their	interaction	by	computing	the	partial	eta-squared	value	(𝜂$!).	To	do	this	using	similar	
formulas	to	𝜂!	from	the	one-way	ANOVAs.	The	difference	between	the	formulas	for	𝜂$!	anf	
𝜂!	is	that	𝜂$!	does	not	use	the	total	sum	of	squares	in	the	denominator,	instead	it	uses	the	
residual	sum	of	squares	(𝑆𝑆error)	and	the	sum	of	squares	from	the	effect	of	interest	(𝑆𝑆effect;	
i.e.,	species	or	sex	but	not	both).	For	example,	

$$	\small{\text{For	species:}\;\;\;\;	\eta_p^2=	\frac{SS_\text{effect}}{SS_\text{effect}	+	
SS_\text{error}}	=	\frac{145190219}{145190219+	31302628}	=	.82}	$$	

$$	\small{\text{For	sex:}\;\;\;\;	\eta_p^2=	\frac{SS_\text{effect}}{SS_\text{effect}	+	
SS_\text{error}}	=	\frac{37090262}{37090262	+	31302628}	=	.54}	$$	

$$	\small{\text{For	sex}\times\text{species:}\;\;\;\;	\eta_p^2=	
\frac{SS_\text{effect}}{SS_\text{effect}	+	SS_\text{error}}	=	\frac{1676557}{1676557+	
31302628}	=	.05}	$$	

We	can	also	easily	do	this	in	R	using	the	eta_squared	function	in	the	effectsize	package	
(Ben-Shachar,	Lüdecke,	and	Makowski	2020)	and	setting	the	argument	partial = TRUE.	

library(effectsize)	
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eta_squared(ANOVA2_mdl,	
            partial = TRUE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter   | Eta2 (partial) |       95% CI	
-------------------------------------------	
species     |           0.82 | [0.79, 0.85]	
sex         |           0.54 | [0.48, 0.60]	
species:sex |           0.05 | [0.01, 0.10]	

10.6 Two-way repeated measures ANOVA 

A	two-way	repeated	measures	ANOVA	(rmANOVA)	would	indicate	that	subjects	are	
exposed	to	each	condition	along	two	variables.	

10.6.1 Determing degrees of freedom 

Please	refer	to	the	following	table	to	determine	the	degrees	of	freedom	for	two-way	
rmANOVA	effects	(Morse	2018).	Note	that	𝑘.	is	the	number	of	groups	in	the	first	variable,	
and	𝑘!	is	the	number	of	groups	in	the	second	variable.	

Degrees	of	freedom	 	
Between	subjects	ANOVA	 	
Main	Effect	(of	one	variable)	 𝑘. − 1	or	𝑘! − 1	
Interaction	Effect	 (𝑘. − 1) × (𝑘! − 1)	
Error-between	 (𝑘. ⋅ 𝑘!) − 1	
Error-within	 (𝑛 − 1) × (𝑘. ⋅ 𝑘! − 1)	
Total	 𝑛 − 1	

10.6.2 Eta-squared from Two-way rmANOVA 

For	a	two-way	repeated	measures	ANOVA,	we	can	use	the	weightloss	data	set	from	the	
datarius	package	(Kassambara	2019).	This	data	set	contains	a	diet	condition	and	a	control	
condition	that	tracked	subjects	across	time	(3	time	points)	for	each	of	condition.	

### load in and re-format data	
library(tidyr)	
data("weightloss", package = "datarium")	
weightloss <- tidyr::pivot_longer(weightloss,cols = c("t1","t2","t3"))	
colnames(weightloss) <- c("subject","diet","exercises","time", "weight_loss")	
weightloss <- weightloss[weightloss$diet=='no',] # remove the diet 
intervention trials	
####	
	
rmANOVA2_mdl = aov(formula = weight_loss ~ time + exercises + time:exercises 
+ Error(subject),	
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                   data = weightloss)	
summary(rmANOVA2_mdl)	

	
Error: subject	
          Df Sum Sq Mean Sq F value Pr(>F)	
Residuals 11  20.64   1.877               	
	
Error: Within	
               Df Sum Sq Mean Sq F value   Pr(>F)    	
time            2 129.26   64.63   50.57 3.45e-13 ***	
exercises       1 101.03  101.03   79.05 3.16e-12 ***	
time:exercises  2  92.55   46.28   36.21 9.26e-11 ***	
Residuals      55  70.29    1.28                     	
---	
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	

	

From	the	table	and	graph	above,	we	can	see	that	there	is	substantial	within-person	change	
in	weight	loss	under	the	exercise	condition	and	no	discernible	increase	in	weight	loss	
without	exercising.	This	suggests	that	there	is	a	substantial	interaction	effect.	Like	we	did	
in	the	between-subjects	two-way	ANOVA,	we	can	calculate	the	partial	eta	squared	values	
from	the	ANOVA	table	
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$$	\small{\text{For	time:}\;\;\;\;	\eta_p^2=	\frac{SS_\text{effect}}{SS_\text{effect}	+	
SS_\text{error-within}}	=	\frac{129.26}{129.26+	70.29}	=	.65}	$$	

$$	\small{\text{For	exercise:}\;\;\;\;	\eta_p^2=	\frac{SS_\text{effect}}{SS_\text{effect}	+	
SS_\text{error-within}}	=	\frac{101.03}{101.03	+	70.29}	=	.59}	$$	

$$	\small{\text{For	sex}\times\text{species:}\;\;\;\;	\eta_p^2=	
\frac{SS_\text{effect}}{SS_\text{effect}	+	SS_\text{error-within}}	=	\frac{92.55}{92.55+	
70.29}	=	.57}	$$	

Remember	for	the	partial	eta-squared,	the	denominator	is	not	the	total	sum	of	squares	
rather	it	is	the	effect	sum	of	squares	and	the	error.	In	the	repeated	measures	ANOVA,	the	
error	should	only	be	for	the	within	subject	error	because	the	variance	between	subjects	is	
not	something	we	are	interested	about.	We	can	also	calculate	this	in	R	using	the	
eta_squared()	function	again.	

library(effectsize)	
	
eta_squared(rmANOVA2_mdl,	
            partial = TRUE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Group  |      Parameter | Eta2 (partial) |       95% CI	
-------------------------------------------------------	
Within |           time |           0.65 | [0.49, 0.75]	
Within |      exercises |           0.59 | [0.42, 0.70]	
Within | time:exercises |           0.57 | [0.39, 0.69]	

10.7 Effect Sizes for ANOVAs 

ANOVA	(Analysis	of	Variance)	is	a	statistical	method	used	to	compare	means	across	
multiple	groups	or	conditions.	It	is	mostly	used	when	the	outcome	variable	is	continuous	
and	the	predictor	variables	are	categorical.	Commonly	used	effect	size	measures	for	
ANOVAs	/	F-tests	include:	eta-squared	(𝜂!),	partial	eta-squared	(𝜂$!),	generalized	eta-
squared	(𝜂M!),	omega-squared	(𝜔!),	partial	omega-squared	(𝜔),	generalized	omega-squared	
(𝜔M!),	Cohen’s	𝑓.	

Type	 Description	 Section	
𝜂!	-	eta-squared	 Measures	the	variance	explained	of	the	whole	

ANOVA	model.	
Section	10.7.1	

𝜂$!	-	Partial	eta-
squared	

Measures	the	variance	explained	by	a	specific	factor	
in	the	model.	

Section	10.7.2	

𝜂M! 	-	Generalized	
eta-squared	

Similar	to	𝜂!,	but	uses	the	sum	of	squares	of	all	non-
manipulated	variables	in	the	calculation.	This	allows	
meta-analysts	to	compare	𝜂M 	across	different	
designs.	

Section	10.7.3	
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Type	 Description	 Section	
𝜔!, 𝜔$!, 𝜔M! 	-	Omega	
squared	
corrections	

Corrections	to	bias	observed	in	𝜂!	measures.	Can	be	
interpreted	in	the	same	way	as	𝜂!.	

Section	10.7.4	

𝑓	-	Cohen’s	f	 This	effect	size	can	be	interpreted	as	the	average	
Cohen’s	𝑑	between	each	group.	

Section	10.7.5	

10.7.1 Eta-Squared (𝜂!) 

Eta-squared	is	the	ratio	between	the	between-group	variance	and	the	total	variance.	It	
describes	the	proportion	of	the	total	variability	in	the	data	that	are	accounted	for	by	a	
particular	factor.	Therefore,	it	is	a	measure	of	variance	explained.	To	calculate	eta-squared	
(𝜂!)	we	need	to	first	calculate	the	total	sum	of	squares	(𝑆𝑆total)	and	the	effect	sum	of	
squares	(𝑆𝑆effect),	

𝑆𝑆total =y(𝑦N − 𝑦‾)!
3

NO.

	

Where	𝑦‾	is	the	grand	mean	(i.e.,	the	mean	of	all	data	points	collapsed	across	groups).	To	
calculate	the	sum	of	squares	of	the	effect,	we	can	take	the	predicted	𝑦	values	(𝑦|N).	In	the	
case	of	categorical	predictors,	𝑦|N 	is	equal	to	the	mean	of	the	outcome	within	that	
individual’s	respective	group.	Therefore	the	sum	of	squares	of	the	effect	can	be	calculated	
using	the	following	formula:	

𝑆𝑆effect =y(𝑦|N − 𝑦‾)!
3

NO.

.	

Now	we	can	calculate	the	eta-squared	value,	

𝜂! =
𝑆𝑆effect
𝑆𝑆total

	

The	standard	error	of	eta-square	can	be	approximated	from	Olkin	and	Finn	(1995):	

𝑆𝐸P0 = H
4𝜂!(1 − 𝜂!)!(𝑛 + 𝑘 − 1)!

(𝑛! − 1)(3 + 𝑛) 	

The	sampling	distribution	for	𝜂!	is	asymmetric	as	all	the	values	are	bounded	in	the	range,	0	
to	1.	The	confidence	interval	surrounding	𝜂!	will	likewise	be	asymmetric	so	instead	of	
calculating	the	confidence	interval	from	the	standard	error,	we	can	instead	use	a	non-
central	F-distribution	using	the	degrees	of	freedom	between	groups	(e.g.,	for	three	groups:	
𝑑𝑓+ = 𝑘 − 1 = 3 − 1 = 2)	and	the	degrees	of	freedom	within	groups	(e.g.,	for	100	subjects	
and	three	groups:	𝑑𝑓+ = 𝑛 − 𝑘 = 100 − 3 = 97)	to	obtain	the	confidence	intervals.	Another	
option	is	to	use	bootstrapping	procedure	(i.e.,	resampling	the	observed	data	points	to	
construct	a	sampling	distribution	around	𝜂!,	see	Kirby	and	Gerlanc	2013)	and	then	take	the	
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.025	and	.975	quantiles	of	that	distribution.	The	R	code	below	will	compute	the	proper	
confidence	interval.	

Where	𝑛	is	the	total	sample	size	and	𝑘	is	the	number	of	predictors.	In	R,	we	can	calculate	𝜂!	
from	a	one-way	ANOVA	using	the	penguin	data	set	from	the	palmerpenguins	data	package.	
The	aov	function	in	base	R	allows	the	analyst	to	model	an	ANOVA	with	categorical	
predictors	on	the	right	side	(species)	of	the	~	and	the	outcome	on	the	left	side	(body	mass	
of	penguin).	We	can	then	use	the	eta_squared	function	in	the	effectsize	package	to	
calculate	the	point	estimate	and	confidence	intervals.	

# Example:	
# group: species	
# outcome: body mass	
	
library(palmerpenguins)	
library(effectsize)	
	
# One-Way ANOVA	
mdl1 <- aov(data = penguins,	
           body_mass_g ~ species)	
	
eta_squared(mdl1, 	
            partial = FALSE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter | Eta2 |       95% CI	
-------------------------------	
species   | 0.67 | [0.62, 0.71]	

The	species	of	the	penguin	explains	the	majority	of	the	variation	in	body	mass	showing	an	
eta-squared	value	of	𝜂!	=	.67	[.62,	.71].	Let	us	now	do	the	same	thing	with	a	two-way	
ANOVA,	using	both	species	and	sex	as	our	categorical	predictors.	

# Example:	
# group: species and sex	
# outcome: body mass	
	
# Two-Way ANOVA	
mdl2 <- aov(data = penguins,	
           body_mass_g ~ species + sex)	
	
eta_squared(mdl2, 	
            partial = FALSE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter | Eta2 |       95% CI	
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-------------------------------	
species   | 0.67 | [0.62, 0.72]	
sex       | 0.17 | [0.10, 0.24]	

Notice	that	the	𝜂!	does	not	change	for	species	since	the	sum	of	squares	is	divided	by	the	
total	sum	of	squares	rather	than	the	residual	sum	of	squares	(see	partial	eta	squared).	The	
example	shows	an	eta-squared	value	for	species	of	𝜂!	=	.67	[.62,	.72]	and	for	sex	𝜂!	=	.17	
[.10,	.24].	

10.7.2 Partial Eta-Squared (𝜂$!) 

Partial	eta-squared	is	the	most	commonly	reported	effect	size	measure	for	F-tests.	It	
describes	the	proportion	of	variability	associated	with	an	effect	when	the	variability	
associated	with	all	other	effects	identified	in	the	analysis	has	been	removed	from	
consideration	(hence,	it	is	“partial”).	If	you	have	access	to	an	ANOVA	table,	the	partial	eta-
squared	for	an	effect	is	calculated	as:	

𝜂$! =
𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error
	

There	are	two	things	to	take	note	of	here:	

1. In	a	one-way	ANOVA	(one	categorical	predictor),	partial	eta-squared	and	eta-
squared	are	equivalent	since	𝑆𝑆total = 𝑆𝑆effect + 𝑆𝑆error	

2. If	there	are	multiple	predictors,	the	denominator	will	only	include	the	sum	of	
squares	of	the	effect	of	interest	rather	than	the	effect	of	all	predictors	(which	is	the	
case	for	the	non-partial	eta	squared).	

In	R,	let	us	compare	the	partial	eta-squared	values	for	a	one-way	ANOVA	and	a	two-way	
ANOVA	using	the	eta_squared	function	in	the	effectsize	package.	

# Example:	
# group: species	
# outcome: body mass	
	
	
# One-Way ANOVA	
mdl1 <- aov(data = penguins,	
           body_mass_g ~ species)	
	
eta_squared(mdl1, 	
            partial = TRUE,	
            alternative = "two.sided") 	

For one-way between subjects designs, partial eta squared is equivalent	
  to eta squared. Returning eta squared.	

# Effect Size for ANOVA	
	
Parameter | Eta2 |       95% CI	
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-------------------------------	
species   | 0.67 | [0.62, 0.71]	

The	species	of	the	penguin	explains	the	majority	of	the	variation	in	body	mass	showing	a	
partial	eta-squared	value	of	𝜂!	=	𝜂$!	=	.67	[.62,	.71].	Let	us	now	do	the	same	thing	with	a	
two-way	ANOVA,	using	both	species	and	sex	as	our	categorical	predictors.	

# Example:	
# group: species and sex	
# outcome: body mass	
	
# Two-Way ANOVA	
mdl2 <- aov(data = penguins,	
           body_mass_g ~ species + sex)	
	
eta_squared(mdl2, 	
            partial = TRUE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter | Eta2 (partial) |       95% CI	
-----------------------------------------	
species   |           0.81 | [0.78, 0.84]	
sex       |           0.53 | [0.46, 0.59]	

Once	we	run	a	two-way	ANOVA,	the	eta-squared	value	for	species	begins	to	differ.	The	
example	shows	a	partial	eta-squared	value	for	species	of	𝜂$!	=	.81	[.78,	.84]	and	for	sex	𝜂!	=	
.53	[.46,	.59].	

10.7.3 Generalized Eta-Squared (𝜂M! ) 

Generalized	eta-squared	was	devised	to	allow	effect	size	comparisons	across	studies	with	
different	designs,	which	eta-squared	and	partial	eta-squared	cannot	help	with	(refer	to	for	
details).	If	you	can	(either	you	are	confident	that	you	calculated	it	right,	or	the	statistical	
software	that	you	use	just	happens	to	return	this	measure),	report	generalized	eta-squared	
in	addition	to	eta-squared	or	partial	eta-squared.	The	biggest	advantage	of	generalized	eta-
squared	is	that	it	facilitates	meta-analysis,	which	is	important	for	the	accumulation	of	
knowledge.	To	calculate	generalized	eta-squared,	the	denominator	should	be	the	sums	of	
squares	of	all	the	non-manipulated	variables	(i.e.,	variance	of	purely	individual	differences	
in	the	outcome	rather	than	individual	differences	in	treatment	effects).	Note	the	formula	
will	depend	on	the	design	of	the	study.	In	R,	the	eta_squared	function	in	the	effectsize	
package	supports	the	calculation	of	generalized	eta-squared	by	using	the	
generalized=TRUE	argument.	

10.7.4 Omega squared corrections (𝜔!, 𝜔$!) 

Similar	to	Hedges’	correction	for	small	sample	bias	in	standardized	mean	differences,	𝜂!	is	
also	biased.	We	can	apply	a	correction	to	𝜂!	and	obtain	a	relatively	unbiased	estimate	of	the	



	 71	

population	proportion	of	variance	explained	by	the	predictor.	To	calculate	𝜔,	we	need	to	
calculate	the	within	group	mean	squared	errors:	

𝑀𝑆within =
1
𝑛y

(𝑦N − 𝑦|N)!
3

NO.

.	

Where	the	predicted	values	of	the	outcome,	𝑦|N ,	are	the	mean	value	for	the	individual’s	
respective	group.	

𝜔! =
𝑆𝑆effect − (𝑘 − 1) × 𝑀𝑆within

𝑆𝑆total +𝑀𝑆within
	

Where	𝑘	is	the	number	of	groups	in	the	predictor	(effect)	variable.	For	partial	omega-
squared	values,	we	need	the	mean	squared	error	of	effect	and	the	residuals	which	can	
easily	be	calculated	from	their	sum	of	squares:	

𝑀𝑆effect =
𝑆𝑆effect
𝑛 	

𝑀𝑆error =
𝑆𝑆error
𝑛 	

Then	to	calculate	the	partial	omega	squared	we	can	use	the	following	formula:	

𝜔$! =
(𝑘 − 1)(𝑀𝑆effect −𝑀𝑆error)

(𝑘 − 1) × 𝑀𝑆effect + (𝑛 − 𝑘 − 1) × 𝑀𝑆error
	

In	R,	we	can	use	the	omega_squared	function	in	the	effectsize	package	to	calculate	both	
𝜔!	and	𝜔$!.	For	the	first	example	we	will	use	a	one-way	ANOVA.	

# Example:	
# group: species	
# outcome: body mass	
	
library(palmerpenguins)	
	
# One-Way ANOVA	
mdl1 <- aov(data = penguins,	
           body_mass_g ~ species)	
	
# omega-squared	
omega_squared(mdl1, 	
            partial = FALSE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter | Omega2 |       95% CI	
---------------------------------	
species   |   0.67 | [0.61, 0.71]	
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# partial omega-squared	
omega_squared(mdl1, 	
              partial = TRUE,	
              alternative = "two.sided")	

For one-way between subjects designs, partial omega squared is	
  equivalent to omega squared. Returning omega squared.	

# Effect Size for ANOVA	
	
Parameter | Omega2 |       95% CI	
---------------------------------	
species   |   0.67 | [0.61, 0.71]	

The	species	of	the	penguin	explains	the	majority	of	the	variation	in	body	mass	showing	an	
omega-squared	value	of	𝜔!	=	.67	[.61,	.71].	Note	that	the	partial	and	non-partial	omega	
squared	values	do	not	show	a	difference	as	expected	in	a	one-way	ANOVA.	Let	us	now	do	
the	same	thing	with	a	two-way	ANOVA,	using	both	species	and	sex	as	our	categorical	
predictors.	

# Example:	
# group: species and sex	
# outcome: body mass	
	
# Two-Way ANOVA	
mdl2 <- aov(data = penguins,	
           body_mass_g ~ species + sex)	
	
# omega-squared	
omega_squared(mdl2, 	
            partial = FALSE,	
            alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter | Omega2 |       95% CI	
---------------------------------	
species   |   0.67 | [0.62, 0.72]	
sex       |   0.17 | [0.10, 0.24]	

# partial omega-squared	
omega_squared(mdl2, 	
              partial = TRUE,	
              alternative = "two.sided")	

# Effect Size for ANOVA (Type I)	
	
Parameter | Omega2 (partial) |       95% CI	
-------------------------------------------	
species   |             0.81 | [0.78, 0.84]	
sex       |             0.53 | [0.46, 0.58]	
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Once	we	run	a	two-way	ANOVA,	the	eta-squared	value	for	species	diverge.	The	example	
shows	a	partial	eta-squared	value	for	species	of	𝜔$!	=	.81	[.78,	.84]	and	for	sex	𝜔!	=	.53	[.46,	
.58].	

10.7.5 Cohen’s 𝑓 

Cohen’s	𝑓	is	defined	as	the	ratio	of	the	standard	deviations	of	the	group	means	and	the	
common	standard	deviation	within	each	of	the	groups	(note	that	ANOVA	assumes	equal	
variances	among	groups).	Cohen’s	𝑓	is	the	effect	size	measure	asked	for	by	G*Power	for	
power	analysis	for	F-tests.	This	can	be	calculated	easily	from	the	eta-squared	value,	

𝑓 = H
𝜂!

1 − 𝜂!	

or	by	the	𝜔!	value,	

𝑓 = H 𝜔!

1 − 𝜔!	

Cohen’s	𝑓	can	be	interpreted	as	“the	average	Cohen’s	𝑑	(i.e.,	standardized	mean	difference)	
between	groups”.	Note	that	there	is	no	directionality	to	this	effect	size	(𝑓	is	always	greater	
than	zero),	therefore	two	studies	showing	the	same	𝑓	with	the	same	groups,	can	have	very	
different	patterns	of	group	mean	differences.	Note	that	Cohen’s	𝑓	is	also	often	reported	as	
𝑓!.	The	confidence	intervals	for	Cohen’s	𝑓	can	be	computed	from	the	upper	bounds	and	
lower	bounds	of	the	confidence	intervals	from	eta-square	or	omega-square	using	the	

formulas	to	calculate	𝑓	(e.g.,	for	the	upper	bound	𝑓Q, = O P1*
0

.:P1*
0 ).	

In	R,	we	can	use	the	cohens_f	function	in	the	effectsize	package	to	calculate	Cohen’s	𝑓.	
We	will	again	use	example	data	from	the	palmerpenguins	package.	

# Example:	
# group: species	
# outcome: body mass	
	
# ANOVA	
mdl <- aov(data = penguins,	
           body_mass_g ~ species)   	
	
cohens_f(mdl,alternative = "two.sided")	

For one-way between subjects designs, partial eta squared is equivalent	
  to eta squared. Returning eta squared.	

# Effect Size for ANOVA	
	
Parameter | Cohen's f |       95% CI	
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------------------------------------	
species   |      1.42 | [1.27, 1.57]	

In	the	example	above,	the	difference	in	body	mass	between	the	three	penguin	species	was	
very	large	showing	a	Cohen’s	𝑓	of	1.42	[1.27,	1.57].	

10.8 Reporting ANOVA results 

For	ANOVAs/F-tests,	you	will	always	need	to	report	two	kinds	of	effects:	the	omnibus	effect	
of	the	factor(s)	and	the	effect	of	planned	contrasts	or	post	hoc	comparisons.	

For	instance,	imagine	that	you	are	comparing	three	groups/conditions	with	a	one-way	
ANOVA.	The	ANOVA	will	first	return	an	F-statistic,	the	degrees	of	freedom,	and	the	
associated	p-value.	Here,	you	need	to	calculate	the	size	of	this	omnibus	factor	effect	in	eta-
squared,	partial	eta-squared,	or	generalized	eta-squared.	Suppose	the	omnibus	effect	is	
significant.	You	now	know	that	there	is	at	least	one	group	that	differs	from	the	others.	You	
want	to	know	which	group(s)	differ	from	the	others,	and	how	much	they	differ.	Therefore,	
you	conduct	post	hoc	comparisons	on	these	groups.	Because	post	hoc	comparisons	
compare	each	group	with	the	others	in	pairs,	you	will	get	a	t-statistic	and	p-value	for	each	
comparison.	For	this,	you	need	to	calculate	and	report	Cohen’s	𝑑	or	Hedges’	𝑔.	

Imagine	that	you	have	two	independent	variables	or	factors,	and	you	conduct	a	two-by-two	
factorial	ANOVA.	The	first	thing	to	do	then	is	look	at	the	interaction.	If	the	interaction	is	
significant,	you	again	report	the	associated	omnibus	effect	size	measures,	and	proceed	to	
analyze	the	simple	effects.	Depending	on	your	research	question,	you	compare	the	levels	of	
one	IV	on	each	level	of	the	other	IV.	You	will	report	d	or	g	for	these	simple	effects.	If	the	
interaction	is	not	significant,	you	look	at	the	main	effects	and	report	the	associated	
omnibus	effect.	You	then	proceed	to	analyze	the	main	effect	by	comparing	the	levels	of	one	
IV	while	collapsing/aggregating	the	levels	of	the	other	IV.	You	will	report	𝑑	or	𝑔	for	these	
pairwise	comparisons.	

Note	that	lower-order	effects	are	not	directly	interpretable	if	higher-order	effects	are	
significant.	If	you	have	a	significant	interaction	in	a	two-way	ANOVA,	you	cannot	interpret	
the	main	effects	directly.	If	you	have	a	significant	three-way	interaction	in	a	three-way	
ANOVA,	you	cannot	interpret	the	main	effects	or	the	two-way	interactions	directly,	
regardless	of	whether	they	are	significant	or	not.	

In	R,	we	can	use	the	summary	function	to	display	the	anova	table.	We	can	also	append	the	
table	to	include,	for	example,	partial	omega	squared	values	and	their	respective	confidence	
intervals	

# ANOVA mdl	
mdl <- aov(data = penguins,	
           body_mass_g ~ species + sex)   	
	
# calculate partial omega-squared values	
omega_values <- omega_squared(mdl, alternative = "two.sided")	
	
# create table of partial omega-squared values	
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omega_table <- data.frame(omega_sq = 
MOTE::apa(c(omega_values$Omega2_partial,NA)),	
                     omega_low = MOTE::apa(c(omega_values$CI_low,NA)),	
                     omega_high = MOTE::apa(c(omega_values$CI_high,NA)))	
	
# append omega values to summary of anova table	
cbind(summary(mdl)[[1]],	
      omega_table)	

             Df    Sum Sq    Mean Sq  F value        Pr(>F) omega_sq 
omega_low	
species       2 145190219 72595109.6 724.2080 3.079053e-121    0.813     
0.781	
sex           1  37090262 37090261.8 370.0121  8.729411e-56    0.526     
0.457	
Residuals   329  32979185   100240.7       NA            NA       NA        
NA	
            omega_high	
species          0.838	
sex              0.585	
Residuals           NA	

11. Differences in Variability 
Occasionally	researchers	would	like	to	compare	the	variations	between	two	conditions	or	
groups	rather	than	the	mean.	Two	commonly	used	are	the	natural	logarithms	of	variability	
ratio	(𝑙𝑛𝑉𝑅)	and	the	coefficient	of	variance	ratio	(𝑙𝑛𝐶𝑉𝑅).	The	latter	of	these	can	be	useful	
when	there	may	be	a	mean-variance	relationship	present	(i.e.,	variances	tend	to	increase	
with	mean	values)	in	order	to	account	for	this.	An	lnVR	or	lnCVR	of	zero	therefore	would	
indicate	no	difference	in	variation	between	the	two	groups,	an	lnVR	or	lnCVR	of	>0	would	
indicate	larger	variance	in	group	1,	and	an	lnVR	or	lnCVR	of	<0	would	indicate	larger	
variance	in	group	2.	There	are	both	independent	and	dependent	versions	of	these	effect	
sizes	(see	Senior,	Viechtbauer,	and	Nakagawa	2020).	To	obtain	confidence	intervals	of	a	the	
lnVR	or	lnCVR	then	we,	for	example	95%	confidence	intervals,	we	merely	multiply	the	
standard	error	for	the	parameter	by	1.96	similarly	to	other	effect	size	statistics,	

𝐶𝐼<3B=/<3-B= = 𝑙𝑛𝑉𝑅 ± 1.96 ⋅ 𝑆𝐸<3B=/<3-B= 	

Here is a table for every effect size discussed in this chapter: 
Type	 Description	 Section	
Variability	Ratios	(VR)	 	 Section	11.1	
𝑙𝑛𝑉𝑅ind	-	Natural	
Logarithm	of	variability	
ratio	for	independent	
groups	

Used	to	compare	the	standard	deviations	(i.e.,	
the	variability)	between	two	groups.	

Section	11.1.1	

𝑙𝑛𝑉𝑅dep	-	Natural	 Used	to	compare	the	standard	deviations	(i.e.,	 Section	11.1.2	
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Type	 Description	 Section	
Logarithm	of	variability	
ratio	for	dependent	
groups	

the	variability)	between	paired	groups	(i.e.,	
repeated	measures	designs).	

Coefficient	of	Variation	
Ratios	(CVR)	

	 Section	11.2	

𝑙𝑛𝐶𝑉𝑅ind	-	Natural	
Logarithm	of	coefficient	
variation	ratio	for	
independent	groups	

Used	to	compare	the	variation	between	two	
groups.	More	useful	than	a	variability	ratio	
(𝑙𝑛𝑉𝑅ind)	when	there	is	a	relationship	
between	the	mean	and	variance.	

Section	11.2.1	

𝑙𝑛𝐶𝑉𝑅dep	-	Natural	
Logarithm	of	coefficient	
variation	ratio	for	
dependent	groups	

Used	to	compare	the	variation	between	paired	
groups	(i.e.,	repeated	measures).	More	useful	
than	a	variability	ratio	(𝑙𝑛𝑉𝑅dep)	when	there	is	
a	relationship	between	the	mean	and	variance.	

Section	11.2.1	

11.1 Variability Ratios 

11.1.1 Natural Logarithm of Variability Ratio for Independent Groups (𝑙𝑛𝑉𝑅ind) 

The	variability	ratio	for	independent	groups	can	be	calculated	by	taking	the	natural	
logarithm	of	the	standard	deviation	within	one	group	divided	by	the	standard	deviation	in	
another	group,	

𝑙𝑛𝑉𝑅ind = ln ]
𝑆0
𝑆-
^ + 𝐶𝐹	

Where	𝐶𝐹	is	a	small	sample	correction	factor	calculated	as,	

𝐶𝐹 =
1

2(𝑛0 − 1)
−

1
2(𝑛- − 1)

	

A	𝑙𝑛𝑉𝑅	of	zero	therefore	would	indicate	no	difference	in	variation	between	the	two	groups,	
a	𝑙𝑛𝑉𝑅	of	>0	would	indicate	larger	variance	in	group	1,	and	𝑙𝑛𝑉𝑅	of	<0	would	indicate	
larger	variance	in	group	2.	The	standard	error	of	the	VR	can	be	calculated	as,	

𝑆𝐸<3B=ind = H
𝑛0

2(𝑛0 − 1)!
+

𝑛-
2(𝑛- − 1)!

	

In	R,	we	can	simply	use	the	metafor	packages	escalc()	function	from	the	metafor	package	
(Viechtbauer	2010)	as	follows:	

# Example:	
# Group 1: standard deviation = 4.5, sample size = 50	
# Group 2: standard deviation = 3.5, sample size = 50	
	
library(metafor)	
	



	 77	

# prepare the data	
SD1 <- 4.5	
SD2 <- 3.5	
n1 <- n2 <- 50	
	
lnVRind <- escalc(	
    measure = "VR",	
    sd1i = SD1,	
    sd2i = SD2,	
    n1i = n1,	
    n2i = n2	
  )	
	
	
lnVRind$SE <- sqrt(lnVRind$vi)	
	
# calculate confidence interval	
lnVRind_low <- lnVRind$yi - 1.96*lnVRind$SE	
lnVRind_high <- lnVRind$yi + 1.96*lnVRind$SE	
	
# print the VR value and confidence intervals	
data.frame(lnVRind = MOTE::apa(lnVRind$yi),	
           lnVRind_low = MOTE::apa(lnVRind_low),	
           lnVRind_high = MOTE::apa(lnVRind_high))	

  lnVRind lnVRind_low lnVRind_high	
1   0.251      -0.029        0.531	

From	the	example,	we	obtain	a	natural	log	variability	ratio	of	𝑙𝑛𝑉𝑅ind	=	0.25	[-0.03,	0.53].	

11.1.2 Natural Logarithm of Variability Ratio for Dependent Groups (𝑙𝑛𝑉𝑅dep) 

The	variability	ratio	for	dependent	groups	can	similarly	be	calculated	by	taking	the	natural	
logarithm	of	the	standard	deviation	within	one	group	divided	by	the	standard	deviation	in	
another	group,	

𝑙𝑛𝑉𝑅dep = ln ]
𝑆0
𝑆-
^	

Note,	the	correction	factor	for	small	sample	size	bias	is	not	relevant	here	as	due	to	its	
calculation	its	value	is	zero.	

𝑆𝐸<3B=dep = H
𝑛

𝑛 − 1 −
𝑟!

𝑛 − 1 +
𝑟7(𝑆0S + 𝑆-S)

2(𝑛 − 1)!𝑆07 + 𝑆-7
	

In	R,	we	can	simply	use	the	metafor	packages	escalc()	function	as	follows:	

# Example:	
# Group 1: standard deviation = 4.5	



	 78	

# Group 2: standard deviation = 3.5	
# Sample size = 50	
# Correlation = 0.4	
	
library(metafor)	
	
# prepare the data	
SD1 <- 4.5	
SD2 <- 3.5	
n <- 50	
r <- 0.4	
	
# use escalc to compute lnVRdep	
lnVRdep <- escalc(	
  measure = "VRC",	
  sd1i = SD1,	
  sd2i = SD2,	
  ni = n1,	
  ri = r	
)	
	
	
lnVRdep$SE <- sqrt(lnVRdep$vi)	
	
# calculate confidence interval	
lnVRdep_low <- lnVRdep$yi - 1.96*lnVRdep$SE	
lnVRdep_high <- lnVRdep$yi + 1.96*lnVRdep$SE	
	
# print the VR value and confidence intervals	
data.frame(lnVRdep = MOTE::apa(lnVRdep$yi),	
           lnVRdep_low = MOTE::apa(lnVRdep_low),	
           v_high = MOTE::apa(lnVRdep_high))	

  lnVRdep lnVRdep_low v_high	
1   0.251      -0.005  0.508	

11.2 Coefficient of Variation Ratios 

11.2.1 Natural Logarithm of Coefficient of Variation Ratio for independent groups (lnCVR_) 

The	coefficient	of	variation	ratio	for	independent	groups	can	be	calculated	by	taking	the	
natural	logarithm	of	the	coefficient	of	variation	within	one	group	divided	by	the	coefficient	
of	variation	in	another	group,	

𝑙𝑛𝐶𝑉𝑅ind = ln ]
𝐶𝑉0
𝐶𝑉-

^ + 𝐶𝐹	
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Where	𝐶𝑉0 = 𝑆0/𝑀0 ,	𝐶𝑉- = 𝑆-/𝑀- ,	and	𝑀	indicates	the	mean	of	the	respective	group.	The	
correction	factor,	𝐶𝐹,	is	a	small	sample	size	bias	correction	factor	that	combines	that	from	
the	lnRR	(presented	earlier)	and	the	lnVR	calculated	as,	

𝐶𝐹 =
1

2(𝑛0 − 1)
−

1
2(𝑛- − 1)

+
𝑆0!

2(𝑛0𝑀0
!) +

𝑆-!

2(𝑛-𝑀-
!)	

In	R,	we	can	simply	use	the	escalc()	function	from	the	metafor	package	as	follows:	

# Example:	
# Group 1: mean = 22.4, standard deviation = 4.5, sample size = 50	
# Group 2: mean = 20.1, standard deviation = 3.5, sample size = 50	
	
library(metafor)	
	
# prepare the data	
M1 <- 22.4	
M2 <- 20.1	
SD1 <- 4.5	
SD2 <- 3.5	
n1 <- n2 <- 50	
	
lnCVRind <- escalc(	
  measure = "CVR",	
  m1i = M1,	
  m2i = M2,	
  sd1i = SD1,	
  sd2i = SD2,	
  n1i = n1,	
  n2i = n2	
)	
	
lnCVRind$SE <- sqrt(lnCVRind$vi) 	
	
# calculate confidence interval	
lnCVRind_low <- lnCVRind$yi - 1.96*lnCVRind$SE	
lnCVRind_high <- lnCVRind$yi + 1.96*lnCVRind$SE	
	
# print the VR value and confidence intervals	
data.frame(lnCVRind = MOTE::apa(lnCVRind$yi),	
           lnCVRind_low = MOTE::apa(lnCVRind_low),	
           lnCVRind_high = MOTE::apa(lnCVRind_high))	

  lnCVRind lnCVRind_low lnCVRind_high	
1    0.143       -0.147         0.433	
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11.2.2 Natural Logarithm of Coefficient of Variation Ratio for independent groups (𝑙𝑛𝐶𝑉𝑅dep) 

The	coefficient	of	variation	ratio	for	dependent	groups	can	be	similarly	calculated	by	taking	
the	natural	logarithm	of	the	coefficient	of	variation	within	one	group	divided	by	the	
coefficient	of	variation	in	another	group,	

𝑙𝑛𝐶𝑉𝑅dep = ln ]
𝐶𝑉0
𝐶𝑉-

^ + 𝐶𝐹	

Where	𝐶𝑉0 = 𝑆0/𝑀0 ,	𝐶𝑉- = 𝑆-/𝑀- 	and	CF	is	a	small	sample	size	bias	correction	factor	that	
combines	that	from	the	𝑙𝑛𝑉𝑅	(presented	earlier)	and	the	𝑙𝑛𝑉𝑅	(note	again	for	dependent	
cases	this	is	zero	and	so	omitted)	calculated	as,	

𝐶𝐹 =
𝑆0!

2𝑛𝑀0
! −

𝑆-!

2𝑛𝑀-
!	

The	standard	error	of	the	𝑙𝑛𝐶𝑉𝑅dep	can	be	calculated	as,	

$$	\small{SE_{lnCVR_\text{dep}}	=	\sqrt{\frac{S^2_T}{n	M_T^2}	+	\frac{S^2_T}{nM_T^2}	
+	\frac{S^4_T}{2n^2	M_T^4}	+	\frac{S^4_T}{2n^2	M_T^4}	+	\frac{2rS_CS_T}{n	M_C	M_T}	+	
\frac{r^2S^2_T	S^2_C	(M^4_T	+	M^4_C)}{2n^2M_T^4M^4_C}}}	$$	

In	R,	we	can	simply	use	the	metafor	packages	escalc()	function	as	follows:	

# Example:	
# Group 1: standard deviation = 4.5	
# Group 2: standard deviation = 3.5	
# Sample size = 50	
# Correlation = 0.4	
library(metafor)	
	
# prepare the data	
M1 <- 22.4	
M2 <- 20.1	
SD1 <- 4.5	
SD2 <- 3.5	
n <- 50	
r <- 0.4	
	
lnCVRdep <- escalc(	
  measure = "CVRC",	
  m1i = M1,	
  m2i = M2,	
  sd1i = SD1,	
  sd2i = SD2,	
  ni = n1,	
  ri = r	
)	
	
lnCVRdep$SE <- sqrt(lnCVRdep$vi)	
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# calculate confidence interval	
lnCVRdep_low <- lnCVRdep$yi - 1.96*lnCVRdep$SE	
lnCVRdep_high <- lnCVRdep$yi + 1.96*lnCVRdep$SE	
	
# print the CVR value and confidence intervals	
data.frame(lnCVRdep = MOTE::apa(lnCVRdep$yi),	
           lnCVRdep_low = MOTE::apa(lnCVRdep_low),	
           lnCVRdep_high = MOTE::apa(lnCVRdep_high))	

  lnCVRdep lnCVRdep_low lnCVRdep_high	
1    0.143       -0.120         0.406	

12. Non-Parametric Tests 
Sometimes	the	assumptions	of	parametric	models	(e.g.,	normality	of	model	residuals)	are	
suspect.	This	is	often	the	case	in	psychology	when	using	ordinal	scales.	In	these	cases	a	
“non-parametric”	approach	may	be	helpful.	A	statistical	test	being	non-parametric	means	
that	the	parameters	(i.e.,	mean	and	variance	for	“normal”	Gaussian	model)	are	not	
estimated;	despite	popular	belief	the	data	themselves	are	never	non-parametric.	
Additionally,	these	tests	are	not	tests	of	the	median	(Divine	et	al.	2018).	Rather	one	can	
consider	than	as	rank	based	or	proportional	odds	tests.	If	the	scores	you	are	analyzing	are	
not	metric	(i.e.,	ordinal)	due	to	the	use	of	a	Likert-Scale	and	you	still	use	parametric	tests	
such	as	t-tests,	you	run	the	risk	of	a	high	false-positive	probability	(e.g.,	Liddell	and	
Kruschke	(2018)).	

If	the	scores	you	are	analyzing	are	not	metric	(i.e.,	ordinal)	due	to	the	use	of	a	Likert	scale	
and	you	still	use	parametric	tests	such	as	t-tests,	you	run	the	risk	of	a	high	false-positive	
probability	(e.g.,	Liddel	&	Kruschke,	2018).	Note	that	in	German,	scale	anchors	have	been	
developed	that	are	very	similar	to	Likert	scale	but	can	be	interpreted	as	metric	(e.g.,	
Rohrmann,	1978).	

We	will	briefly	discuss	here	two	groups	of	tests	that	can	be	applied	to	the	independent	and	
paired	samples	then	present	3	effect	sizes	that	can	accompany	these	tests	as	well	as	their	
calculations	and	examples	in	R.	

Here is a table for every effect size discussed in this chapter: 
Type	 Description	 Section	
Rank-Biserial	
Correlation	

	 Section	12.3.1	

𝑟'+	(dependent	groups)	
-	Rank-biserial	
correlation	on	
dependent	groups	

A	measure	of	dominance	between	dependent	
groups	(i.e.,	repeated	measure	designs).	

Section	12.3.1.1	

𝑟'+	(independent	
groups)	-	Rank	Biserial	

A	measure	of	dominance	between	two	
independent	groups.	

Section	12.3.1.1	
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Type	 Description	 Section	
Correlation	on	
independent	groups	
Concordance	
Probability	

	 Section	12.3.2	

𝑝T 	-	Concordance	
probability	

A	simple	transformation	of	the	rank-biserial	
correlation	and	it	represents	the	probability	of	
superiority	in	one	group	relative	to	the	other	
group.	This	section	shows	R	code	for	both	
independent	and	dependent	samples.	

Section	12.3.2	

Wilcoxon-Mann-
Whitney	Odds	

	 Section	12.3.3	

𝑂UVU	-	Wilcoxon-
Mann-Whitney	Odds	

Also	known	as	the	Generalized	Odds	Ratio,	it	
transforms	the	concordance	probability	to	an	
Odds	Ratio.	This	section	shows	R	code	for	both	
independent	and	dependent	samples.	

Section	12.3.3	

12.1 Wilcoxon-Mann-Whitney tests 

A	non-parametric	alternative	to	the	t-test	is	the	Wilcoxon-Mann-Whitney	(WMW)	group	of	
tests.	When	comparing	two	independent	samples	this	is	called	a	Wilcoxon	rank-sum	test,	
but	sometimes	referred	to	as	a	Mann-Whitney	U	Test.	When	using	it	on	paired	samples,	or	
one	sample,	it	is	a	signed	rank	test.	These	are	generally	referred	to	as	tests	of	“symmetry”	
(Divine	et	al.	2018).	

# Paired samples ---- 	
	
data(sleep)	
	
# wilcoxon test	
wilcox.test(extra ~ group,	
            data = sleep,	
            paired = TRUE)	

	
    Wilcoxon signed rank test with continuity correction	
	
data:  extra by group	
V = 0, p-value = 0.009091	
alternative hypothesis: true location shift is not equal to 0	

# Two Sample ------	
# data import from likert	
data(mass, package = "likert")	
df_mass = mass |>	
  as.data.frame() |>	
  janitor::clean_names() 	
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# function needs input as a numeric	
# ordered factors can be converted to ranks	
# Again, the warning can be ignored	
wilcox.test(rank(math_relates_to_my_life) ~ gender,	
            data = df_mass)	

	
    Wilcoxon rank sum test with continuity correction	
	
data:  rank(math_relates_to_my_life) by gender	
W = 23, p-value = 0.1104	
alternative hypothesis: true location shift is not equal to 0	

12.2 Brunner-Munzel Tests 

Brunner-Munzel’s	tests	can	be	used	instead	of	the	WMW	tests.	The	primary	reason	is	the	
interpretation	of	the	test	(Munzel	and	Brunner	2002;	Brunner	and	Munzel	2000;	Neubert	
and	Brunner	2007).	Recently,	Karch	(2021)	argued	that	the	Mann-Whitney	test	is	not	a	
decent	test	of	equality	of	medians,	distributions	or	stochastic	equality.	The	Brunner-Munzel	
test,	on	the	other	hand,	provides	a	sensible	approach	to	test	for	stochastic	equality.	

The	Brunner-Munzel	tests	measure	a	rank	based	“relative	effect”	or	“stochastic	superiority	
probability”.	The	test	statistic	(𝑝̂)	is	essentially	the	probability	of	a	value	in	one	condition	
being	greater	than	other	while	splitting	the	ties10.	However,	Brunner-Munzel	tests	can	not	
be	applied	to	the	single	group	or	one-sample	designs.	

𝑝̂ = 𝑃(𝑋 < 𝑌) +
1
2 ⋅ 𝑃

(𝑋 = 𝑌)	

These	tests	are	relatively	new	so	there	are	very	few	packages	offer	Brunner-Munzel.	
Moreover,	Karch	(2021)	argues	that	the	stochastic	superiority	effect	size	(𝑝̂)	offers	a	
nuanced	way	to	interpret	group	differences	by	visualizing	observations	as	competitors	in	a	
contest.	Propounded	by	scholars	like	Cliff	(1993)	and	Divine	et	al.	(2018),	it	views	each	
observation	from	one	group	in	a	duel	with	every	observation	from	another.	If	an	
observation	from	the	first	group	surpasses	its	counterpart,	it	“wins,”	and	the	group	garners	
a	point;	tied	observations	yield	half	a	point	to	each	group.	This	concept	can	be	further	
elucidated	through	a	bubble	plot,	where	placement	above,	below,	or	on	the	diagonal	
indicates	the	dominance	of	one	group’s	observation	over	the	other.	Other	interpretations,	
like	transforming	p	to	the	Wilcoxon-Mann-Whitney	(WMW)	odds	or	Cliff’s	δ	offer	deeper	
insights.	There	are	implementations	of	the	Brunner-Munzel	test	in	a	few	packages	in	R	
(i.e.	lawstat,	rankFD,	and	brunnermunzel).	Karch	(2021)	recommends	the	

	

10	Note,	for	paired	samples,	this	does	not	refer	to	the	probability	of	an	increase/decrease	in	
paired	sample	but	rather	the	probability	that	a	randomly	sampled	value	of	X	will	be	
greater/less	than	Y.	This	is	also	referred	to	as	the	“relative”	effect	in	the	literature.	
Therefore,	the	results	will	differ	from	the	concordance	probability.	
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brunnermunzel.permutation.test	function	from	the	brunnermunzel	package.	The	TOSTER	
R	package	can	also	provide	coverage	(Läkens	2017;	Caldwell	2022).	

# Install package for data cleaning	
# install.packages('janitor')	
library(janitor)	
	
# Paired samples	
library(TOSTER)	
data(sleep)	
	
# When sample sizes are small	
# a permutation version should be used.	
# When this is done a seed should be set.	
set.seed(2124)	
brunner_munzel(extra ~ group,	
               data = sleep,	
               paired = TRUE,	
               perm = TRUE)	

	
    Paired Brunner-Munzel permutation test	
	
data:  extra by group	
t = -3.7266, df = 9, p-value = 0.003906	
alternative hypothesis: true relative effect is not equal to 0.5	
95 percent confidence interval:	
 0.1233862 0.3866138	
sample estimates:	
p(X<Y) + .5*P(X=Y) 	
             0.255 	

# Two Sample	
# data import from likert	
data(mass, package = "likert")	
df_mass = mass |>	
  as.data.frame() |>	
  clean_names() 	
	
# function needs input as a numeric	
# ordered factors can be converted to ranks	
# Again, the warning can be ignored	
set.seed(24111)	
TOSTER::brunner_munzel(	
  rank(math_relates_to_my_life) ~ gender,	
  data = df_mass,	
  paired = FALSE,	
  perm = TRUE	
)	
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    two-sample Brunner-Munzel permutation test	
	
data:  rank(math_relates_to_my_life) by gender	
t = -2.1665, df = 17.953, p-value = 0.0642	
alternative hypothesis: true relative effect is not equal to 0.5	
95 percent confidence interval:	
 0.04761905 0.54961243	
sample estimates:	
p(X<Y) + .5*P(X=Y) 	
         0.2738095 	

12.3 Rank-Based Effect Sizes 

Since	the	mean	and	standard	deviation	are	not	estimated	for	a	WMW	or	Brunner-Munzel	
test,	it	would	be	inappropriate	to	present	a	standardized	mean	difference	(e.g.,	Cohen’s	d)	
to	accompany	these	tests.	Instead,	a	rank	based	effect	size	(i.e.,	based	on	the	ranks	of	the	
observed	values)	can	be	reported	to	accompany	the	non-parametric	statistical	tests.	

12.3.1 Rank-Biserial Correlation 

The	rank-biserial	correlation	(𝑟'+)	is	considered	a	measure	of	dominance.	The	correlation	
represents	the	difference	between	the	proportion	of	favorable	and	unfavorable	pairs	or	
signed	ranks.	Larger	values	indicate	that	more	of	𝑋	is	larger	than	more	of	𝑌,	with	a	value	of	
(−1)	indicates	that	all	observations	in	the	second,	𝑌,	group	are	larger	than	the	first,	𝑋,	
group,	and	a	value	of	(+1)	indicates	that	all	observations	in	the	first	group	are	larger	than	
the	second.	

12.3.1.1 Dependent Groups 
1. Calculate	difference	scores	between	pairs:	

𝐷 = 𝑋! − 𝑋.	

2. Calculate	the	positive	and	negative	rank	sums:	

When	𝐷N > 0,  𝑅⊕ =y −
NO.

1 ⋅ sign(𝐷N) ⋅ rank(|𝐷N|)	

When	𝐷N < 0,  𝑅⊖ =y −
NO.

1 ⋅ sign(𝐷N) ⋅ rank(|𝐷N|)	

3. We	can	set	a	constant,	𝐻,	to	be	-1	when	the	rank	positive	rank	sum	is	greater	than	or	
equal	to	the	negative	rank	sum	(𝑅⊕ ≥ 𝑅⊖)	or	we	can	set	𝐻	to	1	when	the	rank	
positive	rank	sum	is	less	than	the	negative	rank	sum	(𝑅⊕ < 𝑅⊖).	

𝐻 = �
−1 𝑅⊕ ≥ 𝑅⊖
1 𝑅⊕ < 𝑅⊖

	

4. Calculate	rank-biserial	correlation:	
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𝑟'+ = 4𝐻 × �
minW𝑅⊕, 𝑅⊖X − .5 × W𝑅⊕ + 𝑅⊖X

𝑛(𝑛 + 1) �	

5. For	paired	samples,	or	one	sample,	the	standard	error	is	calculated	as	the	following:	

𝑆𝐸'%) = H
2(2𝑛/ + 3𝑛! + 𝑛)

6(𝑛! + 𝑛) 	

6. The	confidence	intervals	can	then	be	calculated	by	Z-transforming	the	correlation.	

𝑍'+ = arctanh(𝑟'+)	

7. Calculate	the	standard	error	of	the	Z-transformed	correlation	

𝑆𝐸@%) =
𝑆𝐸'%)
1 − 𝑟'+!

	

8. Then	the	confidence	interval	can	be	calculated	and	then	back-transformed.	

𝐶𝐼'%) = tanhW𝑍'+ ± 1.96 ⋅ 𝑆𝐸@%)X	

In	R,	we	can	use	the	ses_calc()	function	in	TOSTER	package	(Läkens	2017).	For	the	
following	example,	we	will	calculate	the	rank-biserial	correlation	in	the	sleep	dataset:	

# Dependent groups	
	
data(sleep)	
library(TOSTER)	
	
# When sample sizes are small	
# a permutation version should be used.	
# When this is done a seed should be set.	
set.seed(2124)	
ses_calc(extra ~ group,	
         data = sleep,	
         paired = TRUE)	

                           estimate lower.ci  upper.ci conf.level	
Rank-Biserial Correlation 0.9818182 0.928369 0.9954785       0.95	

The	example	shows	a	rank-biserial	correlation	is	𝑟'+	=	.982	[.938,	.995].	This	suggests	that	
nearly	every	individual	in	the	sample	showed	an	increase	in	condition	2	relative	to	
condition	1.	As	you	can	see	from	the	figure	below,	only	one	individual	showed	a	decline	
(individual	shown	in	red).	
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12.3.1.2 Independent Groups 
1. Calculate	the	ranks	for	each	observation	across	all	observations	of	in	group	1	and	2	

𝑅 = rank(𝑋)	

2. Calculate	the	rank	sums	from	each	group	

𝑈. = �y𝑅.N

3,

NO.

�− 𝑛. ⋅
𝑛. + 1
2 	

𝑈! = �y𝑅!N

30

NO.

�− 𝑛! ⋅
𝑛! + 1
2 	

3. Calculate	rank	biserial	correlation	

𝑟'+ =
𝑈.
𝑛.𝑛!

−
𝑈!
𝑛.𝑛!

	

4. For	independent	samples,	the	standard	error	is	calculated	as	the	following:	
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𝑆𝐸'+ = H
𝑛. + 𝑛! + 1
3𝑛.𝑛!

	

5. The	confidence	intervals	can	then	be	calculated	by	transforming	the	estimate.	

𝑍'+ = arctanh(𝑟'+)	

6. Calculate	the	standard	error	of	the	Z-transformed	correlation	

𝑆𝐸@%) =
𝑆𝐸'%)
1 − 𝑟'+!

	

7. Then	the	confidence	interval	can	be	calculated	and	then	back-transformed.	

𝐶𝐼'%) = tanhW𝑍'+ ± 1.96 ⋅ 𝑆𝐸@%)X	

In	R,	we	can	use	ses_calc	in	the	TOSTER	package	can	be	utilized	to	calculate	𝑟'+ .	

# Two Sample	
# install the janitor package for data cleaning	
# clean and import data from likert	
data(mass, package = "likert")	
df_mass = mass |>	
  as.data.frame() |>	
  janitor::clean_names() 	
	
# function needs input as a numeric	
# ordered factors can be converted to ranks	
# Again, the warning can be ignored	
set.seed(24111)	
ses_calc(	
  rank(math_relates_to_my_life) ~ gender,	
  data = df_mass,	
  paired = FALSE	
)	

                           estimate   lower.ci   upper.ci conf.level	
Rank-Biserial Correlation -0.452381 -0.7831567 0.07794462       0.95	

The	example	shows	a	rank-biserial	correlation	is	𝑟'+	=	-.45	[-.78,	.08].	

12.3.2 Concordance Probability 

In	the	two	sample	case,	concordance	probability	is	the	probability	that	a	randomly	chosen	
subject	from	one	group	has	a	response	that	is	larger	than	that	of	a	randomly	chosen	subject	
from	the	other	group.	In	the	two	sample	case,	this	is	roughly	equivalent	to	the	statistic	of	
the	Brunner-Munzel	test.	In	the	paired	sample	case,	it	is	the	probability	that	a	randomly	
chosen	difference	score	(𝐷)	will	have	a	positive	(+)	sign	plus	0.5	times	the	probability	of	a	
tie	(no/zero	difference).	The	concordance	probability	can	go	by	many	names.	It	is	also	
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referred	to	as	the	c-index,	the	non-parametric	probability	of	superiority,	or	the	non-
parametric	common	language	effect	size	(CLES).	

The	calculation	of	concordance	can	be	derived	from	the	rank-biserial	correlation.	The	
concordance	probability	(𝑝T)	can	be	converted	from	the	correlation.	

𝑝T =
𝑟'+ + 1
2 	

In	R,	we	can	use	the	ses_calc()	function	again	along	with	the	sleep	data	set.	For	repeated	
measures	experiments,	the	concordance	probability	in	dependent	groups	can	be	calculated	
utilizing	the	paired=TRUE	argument	in	the	ses_calc()	function:	

# Dependent Groups	
library(TOSTER)	
	
data(sleep)	
	
ses_calc(extra ~ group,	
         data = sleep,	
         paired = TRUE,	
         ses = "c")	

             estimate  lower.ci  upper.ci conf.level	
Concordance 0.9909091 0.9641845 0.9977392       0.95	

For	two	independent	groups,	the	concordance	probability	can	be	calculated	similarly	
without	specifying	the	paired	argument:	

# Independent Groups	
# data import from likert	
data(mass, package = "likert")	
df_mass = mass |>	
  as.data.frame() |>	
  janitor::clean_names()	
	
ses_calc(rank(math_relates_to_my_life) ~ gender,	
         data = df_mass,	
         ses = "c")	

             estimate  lower.ci  upper.ci conf.level	
Concordance 0.2738095 0.1084217 0.5389723       0.95	

12.3.3 Wilcoxon-Mann-Whitney Odds 

The	Wilcoxon-Mann-Whitney	odds	(O’Brien	and	Castelloe	2006),	also	known	as	the	
“Generalized	Odds	Ratio”(Agresti	1980),	essentially	transforms	the	concordance	
probability	into	an	odds	ratio.	

The	odds	can	be	converted	from	the	concordance	by	taking	the	logit	of	the	concordance.	
This	will	provide	the	log	odds.	



	 90	

𝑂UVU = exp[logit(𝑝T)]	

The	exponential	value	of	the	log-odds	will	provide	the	odds	on	a	more	interpretable	scale.	
Taking	just	the	logit	of	the	concordance	probability	would	give	us	the	log	odds	such	that,	

log(𝑂UVU) = logit(𝑝T)	

In	R,	we	can	calculate	𝑂UVU	by	using	the	ses_calc()	function	from	the	TOSTER	package:	

# Dependent Groups	
	
data(sleep)	
	
TOSTER::ses_calc(extra ~ group,	
                       data = sleep,	
                       paired = TRUE,	
                 ses = "odds")	

         estimate lower.ci upper.ci conf.level	
WMW Odds      109 26.92087 441.3305       0.95	

We	can	also	calculate	𝑂UVU	in	independent	groups	using	the	same	function:	

# Independent Groups	
	
# data import from likert	
data(mass, package = "likert")	
df_mass = mass |>	
  as.data.frame() |>	
  janitor::clean_names()	
	
TOSTER::ses_calc(  rank(math_relates_to_my_life) ~ gender,	
  data = df_mass,	
                 ses = "odds")	

          estimate  lower.ci upper.ci conf.level	
WMW Odds 0.3770492 0.1216064 1.169067       0.95	

13. Regression 
Regression	is	a	method	of	predicting	an	outcome	variable	from	one	or	more	predictor	
variables.	

13.1 Regression Overview 

In	a	simple	linear	regression	there	is	only	one	predictor	(𝑥)	and	one	outcome	(𝑦)	in	the	
regression	model,	

𝑦 = 𝑏A + 𝑏.𝑥 + 𝑒	
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We	can	visualize	this	model	by	showing	data	from	the	palmer	penguins	data	package:	

	

where	𝑏A	is	the	intercept	coefficient,	𝑏.	is	the	slope	coefficient,	and	𝑒	is	the	error	term	that	
is	normally	distributed	with	a	mean	of	zero	and	a	variance	of	𝜎!.	For	a	simple	linear	
regression	we	can	obtain	an	unstandardized	regression	coefficient	by	finding	the	optimal	
value	of	𝑏A	and	𝑏.	that	minimizes	the	variance	in	𝑒,	namely,	𝜎!.	In	a	multiple	regression	we	
can	model	𝑦	as	a	function	of	multiple	predictor	variables	such	that,	

𝑦 = 𝑏A + 𝑏.𝑥. + 𝑏!𝑥!+. . . +𝑒	

Where	the	coefficients	are	all	optimized	jointly	to	minimize	the	error	variance.	The	line	
produced	by	the	regression	equation	is	our	predicted	values	of	𝑦N ,	however	it	can	also	be	
interpreted	as	the	mean	of	𝑦	given	some	value	of	𝑥.	In	a	regression	equation	we	can	
construct	more	complex	models	that	include	non-linear	terms	such	as	interactions	or	
polynomials	(or	any	sort	of	function	of	𝑥).	For	example,	we	can	create	a	model	where	we	
include	a	main	effect,	𝑥.,	a	quadratic	polynomial	term,	𝑥.!	and	an	interaction	term,	𝑥.𝑥!,	

𝑦N = 𝑏A + 𝑏.𝑥. + 𝑏!𝑥!! + 𝑏!𝑥.𝑥! + 𝑒N 	

13.2 Effect Sizes for a Linear Regression 

If	we	want	to	calculate	the	variance	explained	in	the	outcome	by	all	the	predictor	variables,	
we	can	compute	an	𝑅!	value.	The	𝑅!	value	can	be	interpreted	one	of	two	ways:	
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1. the	variance	in	𝑦	explained	by	the	predictor	variables	
2. the	square	of	the	correlation	between	predicted	𝑦	values	and	observed	(actual)	𝑦	

values	

Likewise	we	can	also	take	the	square	root	of	𝑅!	to	get	the	correlation	between	predicted	
and	observed	𝑦	values.	We	can	construct	an	linear	regression	model	quite	easily	in	base	R	
using	the	lm()	function.	We	will	use	the	palmerpenguins	dataset	for	our	example.	

library(palmerpenguins)	
	
	
mdl <- lm(bill_length_mm ~ flipper_length_mm + bill_depth_mm, 	
          data = penguins)	
	
summary(mdl)	

	
Call:	
lm(formula = bill_length_mm ~ flipper_length_mm + bill_depth_mm, 	
    data = penguins)	
	
Residuals:	
     Min       1Q   Median       3Q      Max 	
-10.8831  -2.7734  -0.3268   2.3128  19.7630 	
	
Coefficients:	
                   Estimate Std. Error t value Pr(>|t|)    	
(Intercept)       -28.14701    5.51435  -5.104 5.54e-07 ***	
flipper_length_mm   0.30569    0.01902  16.073  < 2e-16 ***	
bill_depth_mm       0.62103    0.13543   4.586 6.38e-06 ***	
---	
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
	
Residual standard error: 4.009 on 339 degrees of freedom	
  (2 observations deleted due to missingness)	
Multiple R-squared:  0.4638,    Adjusted R-squared:  0.4607 	
F-statistic: 146.6 on 2 and 339 DF,  p-value: < 2.2e-16	

We	will	notice	that	the	linear	regression	summary	returns	two	𝑅!	values.	The	first	one	is	
the	traditional	𝑅!	and	the	other	is	the	adjusted	𝑅!.	The	adjusted	𝑅adj! 	applies	a	correction	
factor	since	𝑅!	it	is	often	bias	when	there	are	more	predictor	variables	and	a	smaller	
sample	size.	If	we	want	to	know	the	contribution	for	each	term	in	the	regression	model,	we	
can	also	use	semi-partial	𝑠𝑟!	values	that	are	similar	to	partial	eta-squared	in	the	ANOVA	
section	of	this	book.	In	R,	we	can	calculate	𝑠𝑟!	with	the	r2_semipartial()	function	in	the	
effectsize	package	(Ben-Shachar,	Lüdecke,	and	Makowski	2020):	

library(effectsize)	
	
r2_semipartial(mdl,alternative = "two.sided")	
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Term              |  sr2 |       95% CI	
---------------------------------------	
flipper_length_mm | 0.41 | [0.33, 0.49]	
bill_depth_mm     | 0.03 | [0.01, 0.06]	

A	standardized	effect	size	for	each	term	could	also	be	calculated	from	standardizing	the	
regression	coefficients.	Standardized	regression	coefficients	are	calculated	by	re-scaling	the	
predictor	and	outcome	variables	to	be	z-scores	(i.e.,	setting	the	mean	and	variance	to	be	
zero	and	one,	respectively).	

stand_mdl <- lm(scale(bill_length_mm) ~ scale(flipper_length_mm) + 
scale(bill_depth_mm), 	
                data = penguins)	
	
summary(stand_mdl)	

	
Call:	
lm(formula = scale(bill_length_mm) ~ scale(flipper_length_mm) + 	
    scale(bill_depth_mm), data = penguins)	
	
Residuals:	
    Min      1Q  Median      3Q     Max 	
-1.9934 -0.5080 -0.0599  0.4236  3.6199 	
	
Coefficients:	
                           Estimate Std. Error t value Pr(>|t|)    	
(Intercept)              -2.328e-15  3.971e-02   0.000        1    	
scale(flipper_length_mm)  7.873e-01  4.899e-02  16.073  < 2e-16 ***	
scale(bill_depth_mm)      2.246e-01  4.899e-02   4.586 6.38e-06 ***	
---	
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
	
Residual standard error: 0.7344 on 339 degrees of freedom	
  (2 observations deleted due to missingness)	
Multiple R-squared:  0.4638,    Adjusted R-squared:  0.4607 	
F-statistic: 146.6 on 2 and 339 DF,  p-value: < 2.2e-16	

Alternatively,	we	can	use	the	standardise	function	in	the	effectsize	package:	

standardise(mdl)	

	
Call:	
lm(formula = bill_length_mm ~ flipper_length_mm + bill_depth_mm, 	
    data = data_std)	
	
Coefficients:	
      (Intercept)  flipper_length_mm      bill_depth_mm  	
        4.335e-16          7.873e-01          2.246e-01  	
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13.3 Pearson correlation vs regression coefficients in simple linear regressions 

A	slope	coefficient	in	a	simple	linear	regression	model	can	be	defined	as	the	covariance	
between	predictor	𝑥	and	outcome	𝑦	divided	by	the	variance	in	𝑥,	

𝑏. =
Cov(𝑥, 𝑦)

𝑆Y!
	

Where	𝑆Y	is	the	standard	deviation	of	𝑥	(the	square	of	the	standard	deviation	is	the	
variance).	A	Pearson	correlation	is	defined	as,	

𝑟 =
Cov(𝑥, 𝑦)
𝑆Y𝑆Z

	

We	can	see	that	these	formulas	are	quite	similar,	in	fact	we	can	express	𝑟	as	a	function	of	𝑏.	
such	that,	

𝑟 = 𝑏.
𝑆Y
𝑆Z
	

Which	means	that	if	𝑆Y = 𝑆Z	then	𝑟 = 𝑏..	Furthermore,	if	the	regression	coefficient	is	
standardized	this	would	make	the	outcome	and	predictor	variable	to	both	have	a	variance	
of	1,	thus	making	𝑆Y = 𝑆Z = 1.	Therefore	a	standardized	regression	coefficient	is	equal	to	a	
pearson	correlation.	

13.4 Multi-Level Regression models 

We	can	allow	the	regression	coefficients	such	as	the	intercept	and	slope	to	vary	randomly	
with	respect	to	some	grouping	variable.	For	example,	lets	say	we	think	that	the	intercept	
will	vary	between	the	different	species	of	penguins	when	we	look	at	the	relationship	
between	body	mass	and	bill	depth.	Using	the	lme4	package	in	R,	we	can	construct	a	model	
that	allows	the	intercept	coefficient	to	vary	between	species.	

library(palmerpenguins)	
library(lme4)	
	
	
ml_mdl <- lmer(bill_length_mm ~ 1 + flipper_length_mm + (1 | species),	
            data = penguins)	
summary(ml_mdl)	

Linear mixed model fit by REML ['lmerMod']	
Formula: bill_length_mm ~ 1 + flipper_length_mm + (1 | species)	
   Data: penguins	
	
REML criterion at convergence: 1640.6	
	
Scaled residuals: 	
    Min      1Q  Median      3Q     Max 	
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-2.5568 -0.6666  0.0109  0.7020  4.7678 	
	
Random effects:	
 Groups   Name        Variance Std.Dev.	
 species  (Intercept) 20.06    4.479   	
 Residual              6.74    2.596   	
Number of obs: 342, groups:  species, 3	
	
Fixed effects:	
                  Estimate Std. Error t value	
(Intercept)        1.81165    4.97514   0.364	
flipper_length_mm  0.21507    0.02113  10.177	
	
Correlation of Fixed Effects:	
            (Intr)	
flppr_lngt_ -0.854	

Note	in	the	table	that	we	have	random	effects	and	fixed	effects.	The	random	effects	shows	
the	grouping	(categorical)	variable	that	the	parameter	is	allowed	to	vary	on	and	then	it	
shows	the	parameter	that	is	varying,	which	in	our	case	is	the	intercept	coefficient.	It	also	
includes	the	variance	of	the	intercept,	which	is	the	extent	to	which	the	intercept	varies	
between	species.	For	the	fixed	effect	terms,	we	see	the	intercept	displayed	as	well	as	the	
slope,	this	shows	the	mean	of	the	intercept	across	species	and,	since	the	slope	is	equal	
across	species,	the	slope	is	just	a	single	value.	Let’s	visualize	how	this	model	looks:	
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Notice	that	in	the	plot	above	the	slopes	are	fixed	and	equal	between	each	species	and	only	
the	intercepts	(i.e.,	the	vertical	height	of	each	line)	differs.	We	can	also	allow	the	slope	to	
vary	if	we	may	choose	by	editing	the	formula:	

library(palmerpenguins)	
library(lme4)	
	
	
ml_mdl <- lmer(bill_length_mm ~ 1 + flipper_length_mm + (1 + 
flipper_length_mm | species),	
            data = penguins)	

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
:	
unable to evaluate scaled gradient	

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, 
:	
Model failed to converge: degenerate Hessian with 1 negative eigenvalues	

summary(ml_mdl)	

Linear mixed model fit by REML ['lmerMod']	
Formula: bill_length_mm ~ 1 + flipper_length_mm + (1 + flipper_length_mm |  	
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    species)	
   Data: penguins	
	
REML criterion at convergence: 1638.2	
	
Scaled residuals: 	
    Min      1Q  Median      3Q     Max 	
-2.6326 -0.6657  0.0083  0.6843  4.9531 	
	
Random effects:	
 Groups   Name              Variance  Std.Dev. Corr 	
 species  (Intercept)       3.0062118 1.73384       	
          flipper_length_mm 0.0007402 0.02721  -0.61	
 Residual                   6.6886861 2.58625       	
Number of obs: 342, groups:  species, 3	
	
Fixed effects:	
                  Estimate Std. Error t value	
(Intercept)        1.56035    4.32870   0.360	
flipper_length_mm  0.21609    0.02623   8.237	
	
Correlation of Fixed Effects:	
            (Intr)	
flppr_lngt_ -0.863	
optimizer (nloptwrap) convergence code: 0 (OK)	
unable to evaluate scaled gradient	
Model failed to converge: degenerate  Hessian with 1 negative eigenvalues	

Varying	the	slope	will	include	flipper_length_mm	in	the	random	effects	terms.	Also	note	
that	the	summary	returns	the	correlation	between	random	effect	terms,	which	may	be	
useful	to	know	if	there	is	a	strong	relationship	between	the	intercept	and	slope	across	
species.	Now	we	see	that	the	random	effects	terms	now	include	the	slope	coefficient	
corresponding	to	the	flipper_length_mm	predictor	variable.	Let’s	visualize	
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The	plot	above	shows	slight	variation	in	the	slope	between	the	three	species,	however	the	
slope	does	not	vary	all	that	much.	For	multi-level	models	we	can	compute	a	conditional	𝑅!	
and	a	marginal	𝑅!	which	are	each	described	below	

• Marginal	𝑅!:	the	variance	explained	solely	by	the	fixed	effects	
• Conditional	𝑅!:	the	variance	explained	in	the	whole	model,	including	both	the	fixed	

effects	and	random	effects	terms.	

In	R,	we	can	use	the	MuMIn	package	(Bartoń	2023)	to	compute	both	the	marginal	and	
conditional	𝑅!:	

library(MuMIn)	
	
r.squaredGLMM(ml_mdl)	

           R2m       R2c	
[1,] 0.2470201 0.8210591	
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14. Artifacts and Bias in Effect Sizes 

14.1 Resources 

Effect	size	estimates	such	as	correlation	coefficients	and	Cohen’s	𝑑	values	can	be	severely	
biased	due	to	various	statistical	artifacts	such	as	measurement	error	and	selection	effects	
(e.g.,	range	restriction).	Methods	have	been	developed	to	correct	for	the	bias	in	effect	sizes	
and	thus	these	corrections	are	called	“artifact	corrections”.	Artifact	correction	formulas	can	
be	complex	and	therefore	readers	are	referred	to	other	resources	listed	below:	

• Jané	(2023)	:	An	open-access	textbook	that	contains	equations	and	R	code	for	
various	types	of	artifact	corrections.	Not	yet	released.	

• Hunter	and	Schmidt	(1990)	:	Classic	textbook	on	the	topic	of	artifact	corrections.	
Hunter	and	Schmidt	pioneered	the	methodology	for	artifact	correction	style	meta-
analyses.	

• Wiernik	and	Dahlke	(2020)	:	A	paper	that	serves	as	a	condensed	version	of	Hunter	
and	Schmidt’s	book.	It	contains	most	of	the	equations	necessary	to	correct	effect	
sizes.	

• Dahlke	and	Wiernik	(2019)	:	An	R	package	for	conducting	artifact	correction	meta-
analyses.	Contains	all	the	functions	one	would	need	to	correct	effect	sizes	for	
artifacts	in	R.	

14.2 Correcting for Measurement Error 

If	we	have	reliability	estimates	of	the	variables	of	interest,	we	can	correct	a	Pearson	
correlation	or	a	standardized	mean	difference	(Cohen’s	𝑑)	for	measurement	error.	Non-
differential	measurement	error	attenuates	Pearson	correlations	and	Cohen’s	𝑑	therefore	
we	can	apply	correction	factors	to	adjust	for	this	bias.	For	a	pearson	correlation,	we	can	use	
the	correction	for	attenuation	first	developed	by	Spearman	(1904),	

𝑟T =
𝑟obs

P𝑟YY[𝑟ZZ[
  (14.1)	

where	𝑟T 	is	the	corrected	correlation,	𝑟obs	is	the	observed	correlation,	𝑟YY[	is	the	reliability	of	
𝑥,	and	𝑟ZZ[	is	the	reliability	of	𝑦.	reliability	coefficients	can	be	estimated	a	number	of	
different	ways	however	the	two	of	the	most	common	estimators	is	Cronbach	Alpha	and	
Test-retest	reliability.	Alpha	measures	the	internal	consistency	of	a	set	of	sub-component	
measurements	(e.g.,	question	responses	on	a	questionnaire)	while	test-retest	reliability	
measures	the	stability	over	time.	

A	Cohen’s	𝑑	can	be	corrected	similarly	to	a	correlation	coefficient,	however	since	it	only	has	
one	continuous	variable	we	can	just	correct	for	reliability	in	the	continuous	variable	

𝑑T =
𝑑obs
P𝑟ZZ[
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However	in	the	case	of	a	Cohen’s	d,	it	is	important	that	𝑟ZZ[	is	the	pooled	within-group	
reliability	(calculate	pooled	reliability	the	same	way	you	calculate	the	pooled	standard	
deviation	for	denominator	of	Cohen’s	𝑑).	If	all	you	have	is	the	total	sample	reliability	(more	
commonly	reported)	you	can	follow	this	three	step	process	(Wiernik	and	Dahlke	2020),	

1. Convert	the	d	value	to	a	point-biserial	correlation	(see	section	on	conversions)	
2. Correct	the	point-biserial	correlation	using	Equation	14.1	(setting	𝑟YY[ = 1)	
3. Convert	it	back	to	a	Cohen’s	𝑑	

Note	that	confidence	intervals	for	𝑟T 	and	𝑑T 	must	also	be	corrected.	For	example,	a	pearson	
correlation	would	need	to	be	corrected	such	that,	

𝐶𝐼'2 = U
𝑟lower-bound
P𝑟YY[𝑟ZZ[

,
𝑟upper-bound
P𝑟YY[𝑟ZZ[

V	

14.3 Correcting for Range Restriction 

Range	restriction	corrections	can	be	quite	complex	depending	on	the	selection	process.	The	
process	for	correcting	Pearson	correlations	and	Cohen’s	𝑑	for	range	restriction	is	laid	out	in	
table	3	of	Wiernik	and	Dahlke	(2020).	

15. Converting to Cohen’s 𝑑 

15.1 From Independent Samples 𝑡-statistic 

To	calculate	a	between	subject	standardized	mean	difference	(𝑑$,	i.e.,	pooled	standard	
deviation	standardizer),	we	can	use	the	sample	size	in	each	group	(𝑛.	and	𝑛!)	as	well	as	the	
𝑡-statistic	from	an	independent	sample	t-test	and	plug	it	into	the	following	formula:	

𝑑$ = 𝑡H
1
𝑛.
+
1
𝑛!
	

Using	the	t_to_d	function	in	the	effectsize	package	we	can	convert	𝑡	to	𝑑$.	

# Example:	
# unpaired t-statistic = 3.25	
# n1 = 50, n2 = 40	
	
library(effectsize)	
	
t <- 3.25	
n1 <- 50	
n2 <- 40	
	
t_to_d(t, df_error = n1+n2-2, paired = FALSE)	
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d    |       95% CI	
-------------------	
0.69 | [0.26, 1.12]	

15.2 From Paired Sample 𝑡-statistic 

To	calculate	a	within-subject	standardized	mean	difference	(𝑑& ,	i.e.,	difference	score	
standardizer),	we	can	use	the	sample	size	in	each	group	(𝑛.	and	𝑛!)	as	well	as	the	𝑡-statistic	
from	an	paired	sample	t-test	and	plug	it	into	the	following	formula:	

𝑑& =
𝑡
√𝑛
	

Using	the	t_to_d	function	in	the	effectsize	package	we	can	convert	𝑡	to	𝑑& .	

# Example:	
# paired t-statistic = 3.25	
# n = 50	
	
t <- 3.25	
n <- 50	
	
t_to_d(t, df_error = n-1, paired = TRUE)	

d    |       95% CI	
-------------------	
0.46 | [0.17, 0.76]	

15.3 From Pearson Correlation 

If	a	Pearson	correlation	is	calculated	between	a	continuous	score	and	a	dichotomous	score,	
this	is	considered	a	point-biserial	correlation.	The	point-biserial	correlation	can	be	
converted	into	a	𝑑$	value	using	the	following	formula:	

𝑑$ =
𝑟

√1 − 𝑟!
H
𝑛. + 𝑛! − 2

𝑛.
+
𝑛. + 𝑛! − 2

𝑛!
	

Or	if	sample	sizes	within	each	group	are	unknown	(or	equal),	the	equatio	simplifies	to	be	
approximately,	

𝑑$ ≈
𝑟√4

√1 − 𝑟!
	

Using	the	r_to_d	function	in	the	effectsize	package	we	can	convert	𝑟	to	𝑑$.	

# Example:	
# r = 3.25	
# n1 = 50, n2 = 40	
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r <- .50	
n1 <- 50	
n2 <- 40	
	
r_to_d(r = r, n1 = n1, n2 = n2)	

[1] 1.148913	

15.4 From Odds-Ratio 

An	odds-ratio	from	a	contingency	table	can	also	be	converted	to	a	𝑑$.	Note	that	this	formula	
is	an	approximation:	

𝑑$ =
log(𝑂𝑅)√3

𝜋 	

Using	the	oddsratio_to_d	function	in	the	effectsize	package	we	can	convert	𝑂𝑅	to	𝑑$.	

# Example:	
# OR = 1.62	
	
OR <- 1.46	
	
oddsratio_to_d(OR = OR)	

[1] 0.2086429	

16. Converting to Pearson Correlation 

16.1 From 𝑡-statistic 

From	a	𝑡	statistic	calculated	from	a	correlational	test,	we	can	calculate	the	correlation	
coefficient	using	the	following	formula:	

𝑟 = H 𝑡!

𝑡! + 𝑛 − 2	

Using	the	t_to_r	function	in	the	effectsize	package	we	can	convert	𝑡	to	𝑟.	

# Example:	
# t = 4.14, n = 50	
	
library(effectsize)	
	
t <- 4.14	
n <- 50	
	
t_to_r(t = t, df = n-2)	
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r    |       95% CI	
-------------------	
0.51 | [0.28, 0.67]	

16.2 From Cohen’s 𝑑 

From	a	between	groups	Cohen’s	𝑑	value	(𝑑$),	we	can	calculate	the	correlation	coefficient	
from	the	following	formula:	

𝑟 =
𝑑$

O𝑑$! +
𝑛. + 𝑛! − 2

𝑛.
+ 𝑛. + 𝑛! − 2𝑛!

	

Using	the	d_to_r	function	in	the	effectsize	package	we	can	convert	𝑑$	to	𝑟.	

# Example:	
# d = 0.60, n1 = 50, n2 = 70	
	
d <- 0.60	
n1 <- 50	
n2 <- 70	
	
d_to_r(d = d, n1 = n1, n2 = n2)	

[1] 0.2858532	

16.3 From Odds-Ratio 

The	correlation	coefficient	from	an	odds	ratio	can	be	calculated	with	the	following	formula:	

𝑟 =
log(𝑂𝑅) × √3

𝜋O3log(𝑂𝑅)
!

𝜋! + 𝑛. + 𝑛! − 2𝑛.
+ 𝑛. + 𝑛! − 2𝑛!

	

Using	the	oddsratio_to_r	function	in	the	effectsize	package	we	can	convert	𝑂𝑅	to	𝑟.	

# Example:	
# OR = 2.21, n1 = 50, n2 = 70	
	
OR <- 2.21	
n1 <- 50	
n2 <- 70	
	
oddsratio_to_r(OR=OR, n1 = n1, n2 = n2)	

[1] 0.2124017	
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17. Converting to Odds Ratio 

17.1 From Cohen’s 𝑑 

We	can	calculate	an	odds-ratio	from	a	between	groups	cohen’s	𝑑	(𝑑$):	

𝑂𝑅 = exp ]
𝑑$𝜋
√3

^	

Where	exp(⋅)	is	an	exponential	transformation	(this	inverses	the	logarithm).	Using	the	
d_to_oddsratio	function	in	the	effectsize	package	we	can	convert	𝑑	to	𝑂𝑅.	

# Example:	
# d = 0.60, n1 = 50, n2 = 70	
	
library(effectsize)	
	
d <- 0.60	
n1 <- 50	
n2 <- 70	
	
d_to_oddsratio(d = d, n1 = n1, n2 = n2)	

[1] 2.969162	

17.2 From a Pearson Correlation 

We	can	calculate	an	odds	ratio	from	a	Pearson	correlation	using	the	following	formula:	

𝑂𝑅 = exp

⎝

⎛
𝑟𝜋O𝑛. + 𝑛! − 2𝑛.

+ 𝑛. + 𝑛! − 2𝑛!
P3(1 − 𝑟!)

⎠

⎞	

When	sample	sizes	are	equal,	this	equation	can	be	simplified	to	be	approximately,	

𝑂𝑅 = exp Q
𝑟𝜋√4

P3(1 − 𝑟!)
R	

Using	the	r_to_oddsratio	function	in	the	effectsize	package	we	can	convert	𝑑	to	𝑂𝑅.	

# Example:	
# r = .50, n1 = 50, n2 = 70	
	
r <- .40	
n1 <- 50	
n2 <- 70	
	
r_to_oddsratio(r = r, n1 = n1, n2 = n2)	
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[1] 4.870584	

18. Conclusion 

18.1 Limitations and Future Directions 

While	this	guide	covers	a	wide	range	of	effect	size	and	confidence	interval	methods,	there	
are	some	limitations	to	note.	First,	our	instructions	focus	specifically	on	applications	in	
behavioral,	cognitive,	and	social	science	research.	The	techniques	may	need	to	be	adapted	
for	other	scientific	domains.	Second,	we	only	cover	free	and	open	source	options,	so	
proprietary	software	packages	are	not	discussed.	Finally,	as	new	methods	and	R	packages	
arise,	the	guide	will	need	to	be	continually	updated,	perhaps	in	a	similar	manner	as	Parsons	
et	al.	(2022)	Open	Scholarship	terms	after	publication.	

In	the	future,	we	aim	to	expand	the	guide	by	collaborating	with	experts	in	other	fields	to	
include	discipline-specific	recommendations.	We	also	plan	to	incorporate	new	R	packages	
and	techniques	as	they	emerge.	Readers	are	encouraged	to	consult	the	cited	packages’	
documentation	and	peer-reviewed	sources	to	further	explore	limitations	and	assumptions	
of	the	covered	techniques.	

18.2 Conclusion 

Robust	quantification	of	study	results	is	a	central	pillar	of	open	and	reproducible	science.	
With	this	collaborative	collection	of	applied	instructions,	our	guide	aims	to	make	
calculating	effect	sizes	and	confidence	intervals	more	accessible.	We	hope	these	resources	
empower	both	young	researchers	and	experienced	scholars	across	a	variety	of	disciplines	
to	incorporate	these	crucial	statistical	practices	into	their	workflows.	In	our	view,	more	
widespread	and	thoughtful	adoption	of	these	methods	will	greatly	strengthen	the	collective	
rigor,	transparency,	and	impact	of	scientific	research.	
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