Self-Supervised Robot Learning

Chelsea Finn

Levine*, Finn*, Darrell, Abbeel. End-to-End Training of Deep Visuomotor Policies. JMLR'16

We have a **big** problem.

Learn one task in one environment, starting from scratch

Can we build more general robot learning systems?

People accumulate & learn from broad experiences

Simple, yet **general**, manipulation skills are beyond the scope of current methods.

How is this the case?

It turns out — the **simpler** and **broader** capabilities are **really hard**. (Moravec's Paradox)

This lecture: self supervised robot learning.

object classification

supervised learning

iid data

large labeled, curated dataset

well-defined notions of success

object manipulation

sequential decision making

action affects next state

how to collect data? what are the labels?

what does success mean?

Collect diverse data by "playing"

In contrast to task learning: no notions of progress or success!

Contrast to:

Models capture **general purpose** knowledge about the world

Use **all** of the available supervision signal.

Also: No assumptions about task representations.

Prediction is a supervised learning problem.

Larger models -> better predictions.

How to predict video?

deep neural network trained with supervised learning

Planning to accomplish goals

- Consider potential action sequences
- Predict the future for each action sequence
- 3. Execute the best plan
- Iteratively replan

"visual model-predictive control" (visual MPC)

Which future is the best one?

Human specifies a goal by:

Selecting where pixels should move.

Providing an image of the goal.

Providing a few examples of success.

Finn & Levine ICRA '17 Ebert, Lee, Levine, Finn CoRL '18 Xie, Singh, Levine, Finn CoRL '18

How it works

Specify goal

Visual MPC w.r.t. goal

Visual MPC execution

How it works

Given 5 examples of success

infer goal classifier

visual MPC w.r.t. goal classifier

Visual MPC with learned objective

Algorithm Recap

- 1. run base policy $\pi_0(\mathbf{a}_t|\mathbf{o}_t)$ (e.g., random policy) to collect $\mathcal{D} = \{(\mathbf{o}, \mathbf{a}, \mathbf{o}')_i\}$
- 2. learn model $f_{\phi}(\mathbf{o}, \mathbf{a})$ to minimize $\sum_{i} ||f_{\phi}(\mathbf{o}_{i}, \mathbf{a}_{i}) \mathbf{o}'_{i}||^{2}$
- 3. use model $f_{\phi}(\mathbf{o}, \mathbf{a})$ to optimize action sequence
- 4. execute the first planned action, observe resulting state \mathbf{o}'
- 5. append $(\mathbf{o}, \mathbf{a}, \mathbf{o}')$ to dataset \mathcal{D}

Planning with a single, self-supervised model for many tasks

Video speed: 2x

Some remaining questions

Why is the robot so slow?

Can we scale these models to broader data?

How can humans help?

Optimizing a policy $\pi(a \mid s)$ instead of actions.

Using a more targeted dataset

Rafailov*, Yu*, Rajeswaran, Finn. Offline Reinforcement Learning from Images with Latent Space Models, L4DC '21

Some remaining questions

Why is the robot so slow?

Can we scale these models to broader data?

How can humans help?

What is the bottleneck for handling large, diverse datasets?

Ground truth RoboNet videos

Predictions from SVG' model (Villegas et al. NeurIPS '19)

Bottleneck: underfitting

Ruben Villegas et al. High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks. NeurIPS '19.

How can we scale dynamics models?

Thought 1: Can we learn to model only what matters?

(1a) learn a representation using task supervision e.g. standard state estimation

Xiang, Schmidt, Narayanan, Fox. RSS'18

e.g. Hafner et al. Learning Latent Dynamics for Planning from Pixels. ICML '19

- + works well if you can get **a lot** of supervision
- requires significant supervision/ engineering per task

(1b) learn a representation tailored to provided goal image

Nair, Savarese, Finn. Goal-Aware Prediction: Learning to Model What Matters. ICML '20

+ no supervision required + can successfully redistribute model errors

- more research needed :)

How can we scale dynamics models?

One practical bottleneck: GPU memory

Old trend: Layer-wise training of neural networks

Hinton, Osindero, Teh. A fast learning algorithm for deep belief nets. Neural Computation '06.

Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou. Stacked denoising autoencoders. JMLR '10

Greedy training reduces memory costs!

How can we scale dynamics models?

Greedy training of video prediction models

High-level bits:

- train modules sequentially
- optimize each w.r.t. evidence lower bound
- encoder compresses spatial dimensions to prevent correlations in latent variable

Do these models lead to better downstream planning?

Success rate on tasks with unseen objects

Method	Test Task Success Rate	
	Pick&Wipe	Pick&Sweep
GHVAEs	90.0%	87.5%
SVG	50.0%	50.0%

Some remaining questions

Why is the robot so slow?

Can we scale these models to broader data?

How can humans help?

Example form of guidance: demonstrating to the robot how to use a tool.

Xie, Ebert, Levine, Finn. Improvisation through Physical Understanding, RSS '19

Fit model of behaviors $p(a_{t:t+H}|I_t)$ to the demonstration data.

Example multi-task demonstrations:

Samples from behavior model:

How it works

Specify goal

Guided visual planning w.r.t. goal

Executing actions

Kie, Ebert, Levine, Finn. Improvisation through Physical Understanding, RSS '19

Planning with a **single model** for many tasks

solve new tasks

unseen tools

decide when to use a tool...

out-of-reach objects

unseen unconventional tools

...and when not to

Takeaways

If we want robots to generalize broadly, train them with broad data.

-> self-supervised learning

How?

- (1) train **generative models** of the data
- (2) solve tasks via **planning** in this model

Frontiers:

- offline policy optimization
- scaling to larger models
- incorporating human guidance

Suraj Nair

Alex Nam Sudeep Dasari Frederik Ebert Sergey Levine Kostas Daniilidis

Annie Xie

Bohan Wu Karl Schmeckpeper Oleh Rybkin Roberto Martin-Martin Fei-Fei Li