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Abstract1

Prediction is an underutilized tool in the social sciences, often for the wrong2

reasons. Many social scientists confuse prediction with unnecessarily compli-3

cated methods or with narrowly predicting the future. This is unfortunate.4

When we view prediction as the simple process of evaluating a model’s ability5

to approximate an outcome of interest, it becomes a more generally applicable6

and disarmingly simple technique. For all its simplicity, the value of prediction7

should not be underestimated. Prediction can address enduring sources of crit-8

icism plaguing the social sciences, like a lack of assessing a model’s ability to9

reflect the real world, or the use of overly simplistic models to capture social10

life. I illustrate these benefits with empirical examples that merely skim the11

surface of the many and varied ways in which prediction can be applied, stak-12

ing the claim that prediction is a truly illustrious ‘free lunch’ that can greatly13

benefit empirical social scientists.14

*All code and publicly available data underlying the analyses in this paper can be found at

https://github.com/MarkDVerhagen/Pragmatist Guide to Prediction.
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Introduction15

Social scientists should start using prediction more often. Prediction is the process of16

generating predicted values of a dependent variable by applying an estimated model17

to a set of explanatory variables. It brings a unique analytical perspective to empirical18

work. Prediction can also help address enduring sources of criticism facing the social19

sciences. Examples are a general lack of assessing research findings in terms of their20

real-world relevance, and the use of overly simplistic models to study the complexities21

of social life. In this article, I address common misconceptions about prediction and22

provide a simple definition that addresses existing barriers to adoption. I then discuss23

and illustrate some of the many benefits that prediction can bring when used as a24

complement to traditional empirical methods. I argue that prediction can and should25

become a fundamental part of the social scientist’s empirical toolkit, but that this first26

requires us to look beyond the current dichotomy between prediction and explanation27

and instead view the two as complementary to one another.28

The current lack of prediction in the social sciences stems from a seeming incom-29

patibility between wanting to explain and wanting to predict, effectively forcing the30

researcher to choose between the two approaches. A case in point is the much-cited31

paper by Galit Shmueli – aptly titled ‘To Predict or to Explain’ – which outlines how a32

social scientist’s empirical workflow differs in terms of data processing, modeling, and33

post-estimation diagnostics when choosing to either predict or explain [1]. Naturally,34

the paper assumes that a researcher would not normally attempt to do both. This is35

an accurate reflection of social science research. The apparent need to dogmatically36

choose between either approach means that, in practice, social scientists tend to stick37

to explanation almost exclusively. Illustratively, the terms “predict” and “prediction”38

are mentioned in less than 5% of abstracts over the last ten years in various flagship39

journals in economics, political science and sociology, and of the papers mentioning40

either term, only 13% proceed to generate actual predictions of the outcome variable41

(Table 1).1,242

So why does this dichotomy exist? In many cases, an unnecessarily narrow inter-43

pretation of prediction is to blame. For example, the type of prediction discussed by44

Shmueli refers to the practice of maximizing predictive power, which is a subset of the45

1In most of the articles that mention the term ‘predict’ or ‘prediction’, the authors use the
commonplace, conceptual meaning term – e.g. ‘we predict that’ or ‘our theory makes several pre-
dictions’. The actual process of making predictions of the outcome variable is virtually non-existent
in the literature cited. Note that the term “explain” or “explanation” only features in about 13% of
abstracts, although this proportion likely does not reflect the proportion of work that is explanatory.
Explanation is the default approach to empirical work, making it less relevant to explicitly mention
the term in the abstract.

2The single sociological paper making predictions in fact generated mortality forecasts [2].
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Table 1. Number of articles mentioning predict or prediction in the abstract, and
actual usage of prediction from six flagship journal in Economics, Political Science,
and Sociology, 2010 to 2021.

Journal Total articles† Mentions
prediction

Actually makes
predictions∗

American Economic
Review

2414 85 12

Quarterly Journal of
Economics

458 47 3

American Journal of
Political Science

800 61 14

American Political
Science Review

743 33 4

American Journal of
Sociology

394 8 0

American Sociological
Review

523 24 1

†Data was collected using the Scopus API using the predict and prediction search queries.
∗Understood as generating predictions of the outcome variable (including forecasting). Papers

generating predicted probabilities by setting explanatory variables to their mean or median

were excluded as such predictions don’t reflect actual observation in the data.

more general practice of making predictions. As a result, prediction is often conflated46

with the use of complex non-linear models like those from the domain of machine47

learning, which have their own unique set of challenges [3]. There is no reason to48

transfer these challenges to the general process of making predictions, which can be49

done with any type of model. Prediction tends to be narrowly understood as forecast-50

ing, which is but one of numerous examples of making predictions [4].3 The biggest51

culprit, however, is the enduring discussion whether prediction and explanation are52

conceptually the same, and whether the latter should imply the former. This philo-53

sophical debate, although interesting, is ultimately irrelevant to applying prediction in54

explanatory research. When viewing prediction as a simple tool to evaluate a model’s55

ability to approximate the outcome of interest, it can be applied without exception56

to most social science questions, rendering a dogmatic choice between prediction or57

explanation unnecessary.58

The more relevant question is what prediction might bring to the table. To illustrate59

just one dimension, take the Fragile Families challenge (FFC), a case which I will60

3Prediction is more commonly encountered in those social science domains that put emphasis
on forecasting and projecting. Typical examples are the analysis of (financial) time-series, but can
also include the prediction of conflicts or rare events [5], network science [6], and demography [7].
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return to throughout this paper [8]. During the FFC, 160 research teams around the61

globe were asked to predict a number of important early-stage life outcomes of general62

interest to social scientists (e.g., eviction and material hardship). The idea was to63

evaluate the general predictability of these outcomes through a common task setup64

[9]. This setup mirrored the popular competition website Kaggle, where datasets with65

some outcome of interest and a number of possible explanatory variables are published66

online. Participants are challenged to estimate models that can accurately predict67

the outcome. These models are then tested on a partition of the data which is kept68

secret. Similar to Kaggle, the FFC made available a rich dataset to generate predictive69

models, while storing an evaluation set against which each team’s predictive model70

was scored. The organizers encouraged the use of prediction-focused algorithms,71

rather than the explanatory methods already applied in hundreds of peer-reviewed72

articles using the same data.73

The conclusions were telling for a number of reasons. First, many teams applied74

methods using flexible functional forms and variable selection techniques not often75

seen in the social sciences. Second, most models were nonetheless poorly able to76

predict life outcomes, although some did improve on benchmark models including77

a curated number of explanatory variables in a standard linear model. Poor over-78

all predictability was thus a feature of both predictive and explanatory techniques.79

Third, and most important, the FFC was a rare occasion where the onus was truly80

on prediction rather than explanation. As a consequence, it put into sharp focus81

the fact that decades of explanatory research into the outcomes of interest had not82

led to much predictive ability. This somewhat awkward finding led the organizers83

to conclude that researchers had to ‘find a way to reconcile a widespread belief that84

understanding has been generated by these data ... with the fact that the very same85

data could not yield accurate predictions of these important outcomes’ [10] (p. 8402).86

If prediction had been a more natural tool for social scientists, the main take-away87

of the FFC would likely not have taken so long to materialize. An earlier realization88

of the predictive limits of our knowledge might have stimulated a rigorous evaluation89

of the mechanisms hypothesized, the methods employed, and/or data collected at an90

earlier stage in the dataset’s rich academic career and throughout life course research91

more generally. Importantly, it is unlikely that poor predictability is only a feature92

of life course research. Assessing the ability of our research findings to meaningfully93

predict outcomes we are interested in will most likely spur important debate in many94

other domains as well. The point is that our traditional preference for in-sample95

diagnostics means that we often don’t assess our models ability to approximate the96

outcomes we care about. Prediction can, amongst other things, solve this problem.97
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The FFC is but a single example how prediction can shine a different light on empirical98

work and represents one of many approaches to making and evaluating predictions.99

More generally, this paper argues that prediction can bring the following three key100

virtues to the table of the social scientist:101

1. Prediction provides improved insight into model fit.102

2. Prediction provides a benchmarking tool across modeling domains.103

3. Prediction can help generate insight into the behavior of complicated models.104

These key virtues come in addition to other benefits. Some examples are an improved105

alignment of research findings and policy [3], providing a metric to align scientific106

efforts [11, 12], and improving transparency and the ability to scrutinize estimated107

models [13]. Viewing prediction as a complement to classical methods would also108

ease the incorporation of prediction-focused methods from machine learning into the109

social sciences [14].110

To summarize, with this paper I aim to increase the use of prediction in explanatory111

research by challenging the unnecessary dichotomy between prediction and explana-112

tion, and illustrating the many benefits prediction brings when applied as a comple-113

ment to explanatory analysis. Hopefully, this paper can serve as a pragmatic guide to114

the varied ways in which prediction can be successfully applied in the social sciences.115

The remainder of this paper is structured as follows. First, I will discuss several116

reasons why prediction is currently being underutilized, and provide a definition of117

prediction which should address these obstacles to adoption. I then provide a number118

of ways in which prediction can be operationalized, dependent on the case at hand.119

To showcase the benefits of prediction, I will then present three sets of empirical ex-120

amples – in line with the three virtues outlined above – to illustrate the application of121

prediction. I conclude the paper with a summary and discussion of the main claims122

and findings.123

A new perspective on prediction for the Social Sciences124

The social sciences are currently dominated by a focus on explanation. This often boils125

down to estimating models reflecting some explanatory mechanism and assessing the126

in-sample coefficient estimates of these models. Prediction – which broadly reflects an127

interest in how well the models we estimate are able to approximate the dependent128

variable – plays, at best, an auxiliary role.4 Below, I identify three reasons why129

4Whenever prediction is applied, it is usually in the form of an auxiliary regression, e.g. Heckman
selection methods, 2SLS or Matching methods. These predictions should not be considered as pure
predictions given that they are meant to support standard in-sample evaluation methods and the
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a predictive focus in the social sciences is lacking. Then, I will provide a simple130

definition of prediction which should not suffer from such barriers to adoption.131

Before doing so, it is appropriate to briefly reflect on the intriguing philosophical132

debate whether explanation and prediction are conceptually the same. Some authors133

have forcefully claimed that causal explanation should always have predictive impli-134

cations [4, 15, 16] whereas others (equally strongly) qualify this viewpoint [17]. This135

paper does not seek to wade into this debate for two reasons. First, because the136

debate has been documented extensively elsewhere [4, 18, 19]. Second, and more137

importantly, because the formal (in)equality between prediction and explanation is138

not strictly required to apply prediction for explanatory purposes. Therefore, I do139

not aim to support or assume either view going forward and encourage others to take140

a similarly pragmatic approach when considering to use prediction in their work. In141

that respect, none of the examples I use in this article requires a strong position on142

the above.143

Prediction is often misperceived as deterministic forecasting Prediction is144

underutilized in the social sciences in part due to misperceptions of what prediction145

actually is. Prediction is often understood to deal with predicting outcomes or events146

in the future – i.e., outside of the time frame on which we have current data – and to147

be intrinsically deterministic – i.e., as making statements with certainty. This type148

of prediction is at best a small subset of the general process of making predictions.5149

Predictions need not be made on future events, nor does prediction have to exclusively150

concern time-varying data. A mechanistic theory describing the effect of some variable151

X on an outcome y via some model y = f(X) can lead to predictions in future,152

current, and past cases as long as the data used for prediction is similar to that used153

in estimating the model. For example, predictions can be made for a small partition154

of the dataset collected to study some mechanism, which is set aside and not used for155

model estimation but purely for predictive evaluation. This is the typical approach156

to prediction observed in the field of machine learning [9]. Tellingly, most machine157

learning applications do not concern time-varying events at all [20]. The only thing158

conceptually required to predict is a set of data similar to that used in estimation.159

Accordingly, predictions are made using estimated models and should thus be viewed160

predictions typically are not assessed substantively.
5Similar points have been made within the prediction versus explanation debate in Sociology

[4]. In this particular work, the author implies another possible reason why prediction might be
underutilized by explanatory researchers, noting that ‘explanations will also become less satisfying’
when forced to be predictive (p. 313). In other words, prediction might be actively avoided by
researchers as it restricts the types of explanations one can plausibly argue for.
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from a probabilistic perspective, just like classic techniques like (logistic) regression161

are inherently probabilistic in nature, too. What makes prediction different is an162

explicit focus on the outcome variable. There is no reason to assume determinism163

any more when making predictions using some model, than determinism is involved164

when evaluating the estimated coefficients of that very model.165

Historical limitations limit the use of prediction in the present Histori-166

cally, there were considerable limitations on both data and computational resources167

available to researchers. This still affects the use of prediction in the present. A168

parallel can be drawn to the enduring imbalance between Bayesian and Frequentist169

approaches to inference in the social sciences. Bayesian statistics require a relative170

abundance of computational resources, compared to a Frequentist approach. This171

made the use of fairly simplistic linear models – plugged into exponential family172

probability distributions with computationally convenient properties – the preferred173

methodological approach for social scientists during the latter half of the 20th century174

[21]. This dominance persists up to this very day. Choices which were reasonable and175

necessary at the time have led to an analytical mono-culture today [22].176

Making predictions is similarly expensive: in some cases a part of the dataset has to177

be put aside for evaluation or models have to be estimated many times for robust178

inferences into the predictive performance of a model. Limits on data and com-179

putational resources have thus strengthened a (historical) preference for in-sample180

inferential methods [21]. In a day and age of ever larger datasets and computational181

power, however, these issues are a problem of the past. Just as the increases in both182

data and computational resources have led to a burgeoning growth of methods using183

Bayesian approaches, the use of prediction should no longer be held back by practical184

concerns. Even in small N settings, techniques have been developed that still allow185

the prediction to be applied.6186

Prediction is conflated with the use of convoluted models More recently,187

prediction is approached with hesitance due to the astronomic rise of techniques from188

the domain of machine learning which place a strong emphasis on prediction [1, 11].189

This has led to the risk that the limitations of machine learning methods are blindly190

transferred to prediction in general. To illustrate, reviews discussing the potential of191

machine learning for the social sciences have appeared in various important journals192

6Increases in data size are a key feature of the past decade, although some of the larger datasets
available to social scientists needn’t be on par in terms of data quality [23]. Small N settings are
not restrictive, as Leave-One-Out prediction – discussed later – still allows a predictive perspective
to be pursued in such cases.
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[11, 24–26]. All these reviews discuss the benefits of machine learning – e.g., increased193

model complexity and the lack of reliance on pre-specified functional forms – as well194

as the key difference: machine learning’s focus on prediction.195

Machine learning methods have various limitations and risks associated with them,196

most notably highly convoluted models with a profound lack of interpretability [27].7197

These risks have little to do with the general process of making predictions. De-198

coupling prediction from black-box methods is crucial to break the misperception199

that predictive accuracy is something which is naturally maximized at the cost of200

interpretability. Predictions can be made as easily using an additive linear model as201

with the complicated non-linear algorithms commonly applied in machine learning.202

That researchers within machine learning almost exclusively predict doesn’t mean203

that prediction is exclusive to machine learning.204

A Simple Definition of Prediction205

Prediction understood as the process of evaluating a model in terms of its ability to206

accurately approximate the outcome should not suffer from the definitional confusion207

outlined above. Prediction simply calls for a renewed emphasis on our model’s abil-208

ity to model the dependent variable in our data. Based on this definition, making209

predictions consists of the following simple steps:210

1. Define an estimation set to fit the model, and an evaluation set to generate211

predictions for;212

2. Estimate the model using the estimation set;213

3. Make predictions of the outcome using the model and the data in the214

evaluation set;215

4. Evaluate the performance of the predictions against the observed outcome.216

Clearly, the above subsumes the more narrow definitions of prediction like forecasting,217

or the use of machine learning, which fall within the confines of this broader definition.218

To make the above more concrete, assume we estimate some functional form fµ(·)219

in order to find evidence for the association of years of education, A, on wages, y –220

an example I will return to later. We include work experience, B, as a control vari-221

able leading to the model y = fµ(y, A,B). Typically, fµ(·) is a linear additive model222

plugged into an exponential family probability distribution with parameter-vector µ,223

7Note that considerable developments in the field of ‘Explainable A.I.’ are advancing the in-
terpretability of complex model spaces, and can be used to inform functional form development in
typical exponential family models as well [28–30].
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although more complicated algorithms can be applied without loss of generality. Pre-224

diction is as simple as estimating f̂µ(·) using information on yestimation, Aestimation, and225

Bestimation from some dataset Destimation and generating predictions using information226

on Aevaluation, and Bevaluation from some dataset Devaluation:227

ŷevaluation = f̂µ(Aevaluation, Bevaluation). (1)

The predictions ŷevaluation can then be evaluated, for example by comparing them228

against the actually observed yevaluation. There are many summary metrics of fit229

available for this purpose – e.g., the Root-Mean-Squared-Error or F1-score – but230

one can also compare (sets of) individual predictions against observed outcomes. Of231

interest is the broad ability of f̂µ(·) to accurately model the outcome.232

Based on this definition, the only decision a researcher has to make is how to define233

the set used for estimating the model, and how to define the set used to evaluate its234

predictive performance. I identify three general approaches which I discuss below.235

In-sample evaluation A first option is to simply use the same data used for es-236

timation to make predictions (Figure 1, Panel A). This choice would effectively lead237

to an in-sample assessment of model fit, and the well-known R2 is an example of ag-238

gregate fit under this choice of evaluation set. In-sample prediction is sometimes also239

applied by researchers interpreting coefficients in non-linear models where the coef-240

ficient estimates lack straightforward interpretation, like categorical outcome models241

([31, 32]).8242

In effect, in-sample evaluation boils down to assessing the fitted values of the model243

estimated in step 2, above. For parametric models with sufficient sample sizes, this244

is an efficient approach as it uses all the available data for both estimation and245

evaluation. The downside is the risk that in-sample predictions can be overfit –246

leading some to argue that predictions should be made exclusively out-of-sample [12].247

Overfitting is the reason why aggregated in-sample fit metrics like the Adjusted R2
248

or information criteria are scaled downwards based on the degrees of freedom in a249

model.9 When evaluating predictions at a lower level of aggregation – e.g., for a subset250

8When researchers use prediction in the context of categorical outcome variables it is more
common to perform simulated prediction, where many covariates are set to their mean or median
values. This approach does not actually reflect the model’s ability to approximate the outcome, as
the data used need not be representative of the true population.

9In the case of parametrized models without shrinkage terms, the correction term of the unex-
plained residuals is N−1−p

N−1 where p is the number of degrees of freedom in the model. This correction
term converges to one quickly for moderately-sized datasets. Therefore practically, in-sample pre-
dictions might suffice for moderate N and small p. Note, however, that this correction is meant to
be applied to the aggregated fit metric and not individual predictions.
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of the data – or when models become more parametrized – e.g., multilevel models or251

when using regularization techniques – using separate estimation and evaluation sets252

is strongly advised.253

Cross Validated evaluation A second approach is to partition the existing dataset254

into disjunct estimation and evaluation sets. This is the typical approach often ob-255

served in machine learning and has the added benefit that any risk of overfitting the256

data is explicitly addressed. Predictions are only ever made for data which was not257

used to estimate the model. The most common such approach is K-fold cross vali-258

dation which consists of dividing the dataset into K equal-sized ‘folds’ – typically, K259

is set to 5 or 10. The model is then estimated K times, each time omitting one of260

the folds from the estimation process and using the omitted fold as the evaluation set261

(Figure 1, Panel B). This ensures that predictions are generated for every observation262

in the dataset, thus maximizing the number of predictions given the available data.263

It does make the routine computationally more expensive as the model has to be fit264

K times. K-fold cross validation also means that estimation is only ever done on265

n− nk data points per run which can lead to a loss in efficiency and precision of the266

estimates.267

There are various alternatives to implementing cross validation. For example, in low268

N situations or when efficiency in estimation is paramount, one could use Leave-269

One-Out (LOO) cross validation which is the special case of K-fold cross validation270

where K is set to N [34]. As the number of folds K approaches N , the loss in271

efficiency decreases although the computational cost of performing the cross validation272

increases. For relatively straightforward estimation like OLS, the overall increase in273

computational time is negligible, but it can become prohibitive if the time required274

to perform a single estimation of the model is already considerable. Beyond varying275

the number of folds K, additional robustness to random variation in splitting the276

data into folds can be incorporated by repeating the entire routine multiple times.10277

Overall, K-fold cross validation remains the most commonly applied approach.278

External evaluation A third and final choice for the evaluation set can be a set of279

data which is completely ‘unseen’ by the researcher (Figure 1, Panel C). For example,280

10Common examples include repeating the cross validation routine M times – so-called Repeated
cross validation. Another variant is Monte Carlo cross validation, where again M runs of cross
validation are done, but each run only uses a single split of the data into estimation and evaluation
sets. Many of these approaches tend to converge to the same results in the limit, see [33] for a review.
For most social science applications, the number of Monte Carlo simulations M can be relatively
low as the evaluation set is typically about 20%-30% in order to accurately reflect the original data.
Therefore, with M around 100 the impact of assigning data to folds should be approximated well.

10



F
ig

u
re

1
.

T
h

re
e

d
iff

er
en

t
st

ra
te

gi
es

to
d

efi
n

e
an

es
ti

m
a
ti

o
n

se
t

a
n

d
a
n

ev
a
lu

a
ti

o
n

se
t.

T
h

e
fi

rs
t

st
ra

te
g
y

(A
)

u
se

s
th

e
o
ri

g
in

a
l

d
a
ta

a
s

b
o
th

th
e

es
ti

m
a
ti

o
n

se
t

as
w

el
l

as
th

e
ev

al
u

at
io

n
se

t.
T

h
e

se
co

n
d

st
ra

te
gy

(B
)

sp
li

ts
th

e
o
ri

g
in

a
l

d
a
ta

in
to

K
sp

li
ts

.
E

a
ch

sp
li

t
is

u
se

d
o
n
ce

a
s

a
n

ev
a
lu

a
ti

o
n

se
t,

to
ev

a
lu

a
te

th
e

m
o
d

el
es

ti
m

at
ed

to
th

e
re

m
ai

n
in

g
K
−

1
sp

li
ts

.
T

h
e

m
o
d

el
is

th
u

s
es

ti
m

a
te

d
K

ti
m

es
.

T
h

is
st

ep
ca

n
b

e
re

p
ea

te
d
M

ti
m

es
,

le
a
d

in
g

to
re

p
ea

te
d
K

-f
o
ld

cr
o
ss

va
li

d
at

io
n

,
or

M
on

te
C

ar
lo

cr
os

s
va

li
d

at
io

n
in

ca
se

on
ly

a
si

n
g
le

es
ti

m
a
ti

o
n

/
ev

a
lu

a
ti

o
n

cy
cl

e
is

d
o
n

e
p

er
ru

n
in

st
ea

d
o
f
K

[3
3
].

T
h

e
th

ir
d

st
ra

te
g
y

(C
)

u
se

s
th

e
or

ig
in

al
d

at
a

to
es

ti
m

at
e

th
e

m
o
d

el
,

an
d

u
se

s
a

d
iff

er
en

t
d

a
ta

se
t

to
ev

a
lu

a
te

th
e

m
o
d

el
,

w
h

ic
h

ca
n

b
e

a
h

o
ld

o
u

t
se

t
fr

o
m

th
e

sa
m

e
D

a
ta

G
en

er
a
ti

n
g

P
ro

ce
s

(D
G

P
)

b
u

t
p
ar

ti
ti

on
ed

off
p

ri
or

to
an

al
y
si

s,
or

co
ll

ec
te

d
se

p
a
ra

te
ly

.

11



by immediately partitioning off a part of the data into a holdout set which is kept281

separate from the entire estimation process or, ideally, never even shared with the282

researcher(s) – the typical approach in Kaggle-style competitions. This is called the283

‘Holdout’ approach and provides the most truthful assessment of a model’s predictive284

performance. Unfortunately, it is expensive as a sufficient number of observations are285

required to make a sufficient number of predictions and these observations cannot286

be used for estimation. Thus leading to both reduced efficiency in estimation, and a287

reduced number of predictions to evaluate.288

External validation can also be done by assessing model predictions on a completely289

new set of collected data. For example, similar data that was collected at a different290

time – e.g., separate waves of a survey – or place – e.g., regional comparisons. The291

choice of an external evaluation set speaks directly to calls for increased attention to292

the external validity of research findings in empirical work [35, 36], and can be par-293

ticularly useful to assess the transferability of research findings outside of the sample294

used for estimation. By choosing an external validation set, prediction provides a295

simple framework to assess model fit outside of the sample at hand.296

In practice, the choice of splitting the data into estimation and evaluation sets will297

be made on a case-by-case basis. If a parametrized model is estimated with few298

coefficients and a considerable data size – e.g., N > 500 – the risk of overfitting will299

generally be low and in-sample prediction could be considered. When the number of300

parameters in a model increases, it is advisable to use some form of cross validation,301

either Leave-One-Out in case the number of observations is limited, or K-Fold with302

K typically about 10 [37]). If N is sufficiently large that setting aside a portion of303

the data does not meaningfully affect model estimation, the holdout approach can be304

applied where 20%-30% of the data is typically partitioned off as the holdout set.11305

When using prediction to improve model understanding – as most of the examples306

in this paper do – Leave-One-Out cross validation is generally attractive if computa-307

tionally feasible. Prediction is out-of-sample and the maximal number of data points308

(n− 1) are used to estimate the models used for each prediction. However, when the309

goal is to select an optimal predictive model to deploy amongst a set of candidate310

models, one might be interested in the expected prediction error on a completely new311

observation and the variability of this prediction error. In this case, K-Fold cross312

validation is typically a more efficient estimator, although some properties of the es-313

11Fundamentally, the holdout set needs to be large enough to capture the intricacies of the
original data well. Therefore, for low dimensional data with limited variation a small holdout set
might already suffice. Conversely, high dimensional data or clustered data might require considerably
more observation in the holdout to accurately reflect the data of interest. The same rationale holds
when selecting the size of the single evaluation fold in Monte Carlo cross validation.
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timand are not yet completely understood [21].12 The Holdout or External validation314

approach will give the most precise assessment of a model’s ability to accurately pre-315

dict the outcome of new observations, although it is clearly expensive as one has to316

completely set aside a part of the data for evaluation or collect a new dataset. These317

questions are less relevant when using predictions to improve our understanding of318

explanatory models, as is the focus in this paper.319

The Three Virtues of Prediction320

As outlined in the introduction, complementing traditional methods with prediction321

brings three key virtues to the social scientist’s table. In what follows, I illustrate322

these in kind using examples of prior work and novel reproductions.13323

Virtue I: prediction provides improved insight into model fit324

In its most simple form, prediction provides a distinct way to assess model fit on the325

level of the actual outcome variable. Such a perspective provides a renewed focus on326

what one could call predictive consciousness: an understanding how well our models327

are actually able to fit the outcome variable of interest. In practice, a model’s fit is328

often left undiscussed, leading to a broad lack of predictive consciousness in empirical329

work. For example, whether the models we estimate are able to accurately predict330

0.1%, 1% or 50% of the variation in the outcome. Model fit, if it is discussed at331

all, is typically assessed at the aggregate level only.14 We are often left guessing332

what elements in a model contribute most to its ability to predict well. Nor do we333

know whether a model is able to predict all of the data equally well, or just parts334

of it. A renewed appreciation for prediction will improve our assessment of model335

12The general approach to estimating the predictive error of a model is to assess the error of all
the N predictions made using cross validation against their observed values and reporting the mean
and standard deviation. Interestingly, cross validation has been shown to consistently estimate the
expected error of the model fit to a random dataset drawn from the same underlying distribution as
the training set, and not the expected error of the estimated model. In addition, the approach can
lead to overly narrow confidence intervals [38, 39]. The reason is that the errors are not independent,
as each observation is used in both estimation and evaluation. This problem will be minor when the
impact of omitting a specific fold from the estimation process on the estimated model is small – i.e.,
the model is stable across the omission of folds – but can have a serious impact otherwise. Some
solutions have been suggested to correctly scale the CI’s of predictive error for certain families of
models, but research remains ongoing [38].

13All publicly available data and corresponding code underlying the reproductions are archived
in a Zenodo repository accompanying this paper.

14Typically, the in-sample R2 has been used for the purpose of evaluating explanatory power. The
measure has various limitations in often encountered empirical setups, for instance when modeling
ordered outcomes or estimating other non-linear models. In those cases, information criteria are
typically reported although these tend to defy an intuitive interpretation of the models ability to fit
the outcome.
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fit, as predictions are made for every single observation in the evaluation set. As a336

consequence, a (disaggregated) assessment of fit on the scale of the outcome comes337

naturally.338

Predictive performance is also intuitive to understand and will help the implementa-339

tion of research findings in the real-world. Its intuitive nature promotes acceptance340

and understanding of research findings by both policymakers and the public. Aca-341

demically, a general sense of predictive accuracy is equally important to further a342

research agenda: if predictive performance (strongly) underperforms expectations,343

it prompts reflection of whether we are actually missing important determinants or344

perhaps our preferred functional form is not able to capture the mechanisms in oper-345

ation. Finally, making and evaluating predictions beyond the aggregate level can also346

provide additional transparency into the academic process. By reporting on model347

fit at lower levels of aggregation, consumers of empirical research become better able348

to critically assess what a model can and cannot do in terms of fitting the data.349

As a first example of the above, consider the FFC which was introduced earlier [8].350

The FFC challenged research teams to accurately predict life outcomes at age 15351

based on a rich set of data using the Holdout approach – i.e., setting aside a parti-352

tion of the data.15 As part of the challenge, the organizers calculated a benchmark353

performance using models constructed by domain experts. As a consequence, the low354

predictive power of the models typically estimated in this domain already became355

quite obvious from the outset (Figure 2, panel A). For many of the life outcomes of356

interest measured at age 15, a model including the hand-picked variables and a lagged357

version of the variable at age 9 did not substantially improve predictive accuracy rel-358

ative to a null model predicting the overall mean of the outcome. This is a sobering359

finding putting into perspective the supposedly large amount of understanding that360

had been generated regarding these outcomes [10].361

Perhaps the outcomes of interest to the FFC are inherently noisy and difficult to362

predict, as the organizers also note [10, 11]. Regardless of the question why predictive363

ability was low within the FFC, the very insight and subsequent discussion it provoked364

are essential for the field to develop. The FFC illustrates how predictive consciousness365

can be crucial to instigate a critical reflection on the state of knowledge in a field and366

can spur important debate. Accordingly, the key take-away of the FFC is that the367

type of discussion which a predictive focus triggered should not have taken so long368

to materialize. Likely, a predictive consciousness is equally relevant for many other369

social science research fields. More consistent reporting of predictive accuracy would370

15The Holdout approach was chosen due to the competitive nature of the challenge: organizers
were interested in finding the best predictive model amongst the participants.
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Figure 2. Panel A shows the predictive R2 of the linear benchmarks chosen by domain
experts relative to a null model for the FFC. Each model includes four explanatory variables
and a lagged version of the outcome [10]. Panel B shows individual predictions of the GPA
outcome in the FFC using only the domain expert variables (top) and when including
the lagged version of the outcome (bottom). Panel C shows the performance of logistic
regression models predicting whether a mortgage application was successful using various
sets of explanatory variables. Performance is shown disaggregated for White (green) and
Non-White (blue) applicants, showing that the performance is considerably lower for the
latter. Panel D shows the performance of models predicting students’ track levels using
various sets of explanatory variables but different models. Performance of the categorical
model is substantially higher than the linear model. The performance of both models
strongly increases when including school variation. Panel E shows the performance of
various models in explaining hourly wage in the US. Predictive power is assessed for each
year using the same model but re-estimated to that year’s data (triangles) or using the
model estimated in the year 1973 (stars). Initially, the latter model performs well on the
first couple of subsequent waves, but deteriorates from 1983 onwards. Confidence intervals,
where present, reflect 95% confidence bounds of the estimated predictive accuracy across
the various evaluation folds.
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guarantee that the type of reflection resulting from the FFC becomes more likely to371

occur throughout the social sciences.372

Predictions can also diagnose model performance at different levels of detail or ag-373

gregation. As an example, take the individual predictions rather than the overall374

predictive accuracy of the benchmark model for the GPA outcome in the FFC. We375

can visualize the predicted GPA against the observed GPA for each observation in376

the evaluation set and can do so for different models (Figure 2, panel B). Taking377

such a disaggregated approach to model fit, we observe that both models struggle to378

structure the outcome well, but this is especially so for students performing below379

average. A nuance which provides pointers for future avenues of research. In other380

words, prediction’s ability to interrogate model fit on a disaggregated level provides381

a different vantage point than summary metrics of model fit.382

In addition to individual predictions, they can also be assessed i) at the group level383

or ii) using completely different models and/or sets of explanatory variables. As an384

example, consider a reproduction of the influential 1996 study from the Federal Re-385

serve Bank of Boston regarding discrimination in mortgage lending [40]. The authors386

– amongst other things – found evidence of discrimination against Non-Whites based387

on a logistic regression including a Race dummy and conditioning on various objective388

characteristics of the application. By complementing their analysis with a predictive389

perspective, additional nuances emerge (Figure 2, panel C).16390

For example, most individuals are successful in their mortgage application and a null391

model already correctly predicts 88% of the data (by predicting successes for every-392

one). Including variables like objective score measures and household characteristics393

further increases the model’s performance. However, aggregate fit is somewhat mis-394

leading, as there is a considerable gap in the model’s ability to predict outcomes395

for Non-White applicants compared to White applicants (77% versus 92%). The396

inclusion of a Race indicator only marginally improves the gap. In other words, Non-397

Whites are modeled considerably less accurately than Whites. This could imply that398

additional sources of heterogeneity are present for the former – for example if bias is399

multimodal and depends on other factors like the employee reviewing the application400

– or some other reason is present why Non-Whites are modeled considerably less well.401

Another illustration where prediction provides additional understanding of model fit is402

a recent study assessing teacher bias in educational tracking – the process of assigning403

students to ability levels – in the Netherlands. In the paper, prediction is explicitly404

16Repeated K-Fold stratified cross validation was applied, ensuring similar proportions of Whites
and Non-Whites in each fold, with K = 5 and M = 100. Predictive accuracy was thus estimated
for a total of 500 folds.
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applied to understand the relative importance of different sets of explanatory variables405

as well as modeling assumptions [41] (Figure 2, panel D).17 This predictive perspective406

led to a number of important nuances to the existing knowledge on teacher bias.407

First, a predictive approach showed that commonly studied bias factors like parental408

education – although statistically significant – mattered little for the model’s fit of409

the data, improving the predictive R2 by a mere 0.1%. When allowing for separate410

intercepts per school – typically perceived as a control variable – the improvement411

on model fit was considerably more impactful, increasing the predictive R2 by almost412

3%. Second, using a non-linear categorical model strongly improved the model’s fit413

of the data, when compared to the simpler linear model traditionally estimated in414

the field.18415

Both nuances have important substantive implications for research on teacher bias,416

which were not picked up in pre-existing work that focused on traditional inference.417

For example, school effects were typically evaluated through the estimated variance418

term of the random intercept. They were not typically compared to the other variable419

in the model in their substantive ability to model the outcomes. As a consequence, a420

considerable source of variation in tracking had been neglected. Similarly, traditional421

fit metrics would only indicate an objective preference for the categorical model, but422

did not provide a normative reflection of the extent to which model fit improves.423

Importantly, changing to the categorical model also considerably affected the size of424

estimated biases in tracking [41].425

A final advantage of using prediction as a measure of model fit is that it can be used426

as an approach to address questions of external validity. A recurring question in the427

social sciences is the persistence of research findings outside of the particular sample428

used to estimate a model. Prediction makes such assessments more natural than in-429

sample methods do. For example, consider the following puzzle in Labour Economics.430

A growing literature is studying the reasons underlying an increase in the amount of431

residual variance over time when explaining logged hourly wages using a similar set of432

explanatory variables: education, age, and their interactions [43]. This example lends433

itself well for an illustration of how the external validity of a model can be assessed434

from a predictive perspective. By estimating the model on one of the survey years435

– the first wave, 1973, in this illustration – the performance of the original model436

17The authors applied stratified Monte Carlo cross validation with M = 250. The evaluation set
represented a stratified 25% of the total data, ensuring similar proportions of students from each
school in the estimation and evaluation sets. Predictive accuracy was thus estimated for a total of
250 folds.

18In practice, most researchers studying tracking in The Netherlands have assumed the outcome
to be continuous and estimate a simple linear model [42]. As the authors point out, this is predom-
inantly a convenience assumption, as it yields easer-to-interpret coefficient estimates [41].
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in terms of fitting the data can be explicitly assessed for datasets collected at later437

waves.438

As the results show (Figure 2, panel E), the 1973 model tracks the performance of439

models which are retrained to each year quite closely for the first 5 to 10 years,440

but then starts to deviate.19 This is insightful for two reasons. First, it provides441

an indication of the stability of the findings from the 1973 model outside of that442

sample. Second, it points at a shift in estimated model coefficients from the year443

1983 onward, possibly providing additional pointers into the original puzzle. As the444

models use many interactions, leading to more than 100 coefficients, these differences445

in the model’s fit to separate datasets would be close to impossible to learn from446

studying the in-sample coefficients of each model in isolation.447

Virtue II: prediction provides a benchmarking tool across modeling do-448

mains449

Although social life is known to be complex to study, simple linear additive models450

are still the bread-and-butter methods used throughout the social sciences for this451

very purpose. The reason might be that we have grown accustomed to fitting such452

models for so long now, that we are reluctant to believe more complicated functional453

forms are appropriate. A more likely reason is that simple models allow for a more454

straightforward interpretation of results, which is usually not the case in complicated455

non-linear models even if they are objectively better at capturing reality. A key456

problem is that we often don’t know whether our models are in fact too simple, pro-457

longing the use of simplistic models in practice. Through benchmarking, prediction458

provides a way to assess whether the level of complexity in our models is appropriate,459

as predictive accuracy can be used as a holistic metric of model fit for any type of460

empirical model [22, 41]. Therefore, it can be used to compare parametrized models461

with flexible alternatives.462

For example, model complexity was a key motivation of the FFC and many research463

teams heeded this call by innovating extensively on the methods applied.20 In other464

words, the heterogeneity in modeling approaches was considerable. As a consequence,465

conventional model diagnostics would not have sufficed to allow comparisons of the466

19All independent variables were normalized such that mean difference in average wages across
time would not distort the predictive performance of the model fitted in 1973.

20Note that the data was mainly appropriate for methods exploiting some form of variable se-
lection. Methods like neural nets should not be recommended as the FFC contained only 4,000
observations, but more than 12,000 variables. This means that the ‘curse of dimensionality’ would
be a serious issue without variable selection or regularization techniques [44]. Similarly, limited N
might be one of the most important reasons for the lack of predictive improvement observed in the
FFC.
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various modeling approaches chosen by the research teams.21 Opting for prediction467

on a holdout set solved this problem. As an illustration, the predictive performance468

of every single submission to the FFC has been visualized in Figure 3 (Panel A).22469

For some outcomes, considerable improvements in predictive accuracy were obtained470

relative to the benchmark models – e.g., for the GPA outcome – although for most,471

improvements were negligible – e.g., for the Job Training outcome.472

Many of the top performing submissions made use of complex, flexible models but473

prediction made them directly comparable to the linear benchmarks [45]. This is true474

at the level of the various submissions (Fig 3, Panel A), but a direct comparison can475

also be done for a single submission (Fig 3, Panel B). Here, the individual predictions476

of the top submission for the GPA outcome are visualized together with those from477

the benchmark model. As can be seen by the LOESS fit, the top submission is slightly478

better in predicting the extremes of the distribution correctly. That said, the plot479

also shows that both models still struggle to predict the low-end of the distribution480

well.481

The role of benchmarking is arguably most important to identify functional form482

misspecification. Comparing the fit of a functional form hypothesized by a researcher483

with that of a flexible alternative fit to the same data provides an assessment whether484

the model might miss complexity. This can for example be used to to verify whether485

the assumption of linear additivity is reasonable. As a concrete example, consider the486

following simulation study assessing the predictive performances of various Mincerian487

wage equations [30]. In these models, the effect of additional years of schooling488

on wages is of central interest. These so-called ‘returns to schooling’ are typically489

estimated by relating information on years of education to observed wages while490

controlling for years of work experience [46].491

The Mincerian wage equation is an interesting case because the complexity of the492

functional form has been innovated upon over the past decades. The functional form493

started out as a simple linear additive model where log wages were regressed on years494

of work experience and years of education. In the 80s and 90s, higher order terms on495

the effect of work experience were proposed and, more recently, a step function in the496

effect of education has been included into the functional form [46, 47]. In other words,497

the functional relationship between outcome and explanatory variables was found to498

21Traditional information criteria and goodness-of-fit measures are often dependent on pre-defined
functional forms to correct for the degrees of freedom in the model. When including models from
different paradigms of modeling, information criteria lack comparability.

22By default, teams submitted the predictions of a null model unless they submitted their own
predictions for an outcome, which is why there is considerable density around an improvement of
0% as many teams choose to focus on a select number of outcomes.
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Figure 3. Panel A shows the predictive performance of all submissions to the FFC. The
horizontal bars reflect the performance of the benchmark. Blue submissions outperformed
the benchmark. Predictive accuracies of 0% indicate that a team did not submit a sub-
mission for that specific outcome [10]. Panel B shows the individual predictions of the
best performing submission to the FFC for the GPA outcome (yellow) versus the individual
predictions of the OLS benchmark (green). GPA was observed in 0.25 point intervals, and
have been spread horizontally for illustrative purposes. The dashed horizontal line indicates
the mean of the outcome and the dotted diagonal line indicates perfect predictions. The
R2 of the best submission was nearly double (0.19) that of the benchmark (0.11). Panel C
shows the predictive accuracy for three simulated datasets using three pre-specified linear
functional forms and a flexible non-linear algorithm (XGBoost). The flexible algorithm
converges on the true functional form for all three datasets, whereas only the Linear II and
Linear III model had the appropriate complexity to fit Dataset II well, and only Linear III
had the appropriate complexity to fit Dataset III well [30].
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be underspecified and lacking in complexity. Benchmarking can help identify such499

lack of complexity by comparing a model’s performance to that of a flexible alternative500

which does not constrain the functional form in a particular way. If a flexible model501

using the exact same covariates strongly outperforms a linear additive model, there502

is likely a lack of functional form complexity [21, 30].23503

This rationale is illustrated in Figure 3 (Panel C). Three datasets were simulated504

that include the same explanatory variables on age, years of education and years of505

work experience. However, the outcome variable – log wages – is simulated according506

to a different functional form for each dataset. Specifically, the outcome of the first507

dataset follows a linear additive function (Linear I), the second a linear additive508

function including a squared term for the effect of work experience (Linear II), and509

the third further includes a step function for the effect of education (Linear III).24 All510

three outcomes included white noise proportional to about 10% of the total variation511

– thus capping the potential R2 at 0.9. These three datasets reflect the functional512

form development of the Mincerian wage equation observed over the past decades.513

Four models were fit to each of the datasets, the first being a linear additive model,514

the second allowing a squared effect for work experience, and the third included the515

step function. In other words, all three models have the appropriate complexity516

to fit the first dataset, but only the second and third have sufficient complexity to517

model the second dataset well, and only the third model can fit the final dataset518

appropriately. The fourth model was a vanilla XGBoost algorithm, a highly flexible519

tree-based Machine Learning algorithm.25520

All four models were used to make predictions on a holdout set of the data.26 The521

results show that all four models fit the first dataset well – as should be expected.522

For the second dataset including the squared term, the first functional form strongly523

underperforms the alternatives since it cannot model the full complexity in the data.524

The same holds for the first two functional forms when fitted to the final dataset,525

23The matter-of-fact comment by Efron and Hastie regarding the use of Random Forests – a
flexible machine learning technique – in their 2016 handbook ‘Computer Age Statistical Inference’
is instructive here: ‘if the Random Forest does much better [than a traditional parametrized model],
you probably have some work to do’ ([21], p. 347).

24The models were estimated using a synthetic dataset of 50,000 observations based on the ob-
served age, work experience, and schooling in the 2018 General Social Survey. For the construction
of the synthetic sample and exact functional forms underlying the three datasets, see the original
study from which this example has been taken which included a fourth functional form where each
coefficient varied by sex [30].

25The XGBoost algorithm iteratively estimates shallow decision trees to the data, giving more
weight to less accurately fit observations after each iteration. Decision trees are non-linear by design,
making the XGBoost model able to fit complicated patterns, whilst requiring no a-priori specified
functional form [20].

26To generate predictions, a holdout set was partitioned off equal to 20% of the total dataset.
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which included the step function. Importantly, the flexible algorithm converges on526

the ‘true’ model’s performance in each of these cases. It thus identifies the need527

for additional model complexity without requiring the researcher to formulate a pre-528

specified functional form. Prediction is the key benchmarking metric that allows this529

comparison of fit across modeling domains.27,28530

Virtue III: Prediction can help generate insights into complicated models531

Perhaps the most important reason why prediction is traditionally underutilized in532

the social sciences is its supposed lack of explanatory ability. Often, predictions are533

merely assumed to be useful at the descriptive level at best. However, prediction534

can actually be used as a method to improve the interpretability of models. First,535

as a way to make coefficient estimates in non-linear models as interpretable as those536

from standard linear models by intervening on observed variables and comparing the537

effects of such an intervention on the predictions. This is especially relevant when538

dealing with categorical outcome models [31, 32, 41]. Second, a predictive analysis539

is amenable to more substantial interventional reasoning. For example, to assess the540

impact of changing a coefficient – as mentioned above – but also to compare the541

effect of estimating separate models on subsets of the data. Assessing these types of542

differences by comparing in-sample coefficient alone is practically unfeasible.29543

To illustrate the first point, consider the mortgage application introduced in Figure 2544

(Panel C). Logistic regression models were estimated, making the interpretation of the545

coefficient estimates less straightforward than a standard linear model which would546

simply reflect the increase in the value of the outcome when increasing the covariate547

by one point. This ease-of-interpretation is not available for the logistic regression548

model. However, prediction provides a way to obtain a similarly intuitive effect size.549

This is illustrated for the Race coefficient in the mortgage example by comparing the550

predicted probabilities of success when intervening on the observed Race variable –551

i.e., changing the observed Race from White to Non-White or vice-versa (Figure 4,552

Panel A).30 As can be seen, the average probability of success decreases by 8.4% for553

27To understand the type of complexity which is missing, recent developments in the field of
Explainable A.I. can be used [48]. For the example of the Mincerian Wage Equation shown here,
such methods accurately recovered the underlying functional forms used to generate the data [30].

28Akin to benchmarking, prediction provides a common metric for researchers to align their
research efforts [11, 12]. The astonishing improvements in machine learning methods can in part be
attributed to such an alignment on a common goal: improving the predictive accuracy on benchmark
sets.

29Note that prediction is understood here as a tool to help interpret estimated model coefficients.
Prediction does not make model results causally interpretable. Causal interpretation is encoded in
the research design and model estimation, whereas prediction is a tool to assess the model post-
estimation [49].

30A single 5-fold cross validation run was used to generate a full set of predictions.
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Figure 4. Panel A shows predicted probabilities (left) and outcomes (right) of success-
ful mortgage applications for Whites and Non-Whites in the data. Green values indicate
predictions on the original data, whereas purple values show predictions when interven-
ing on the Race variable: i.e. changing the observed Race from Non-White to White and
vice-versa. The average predicted probability of success increases by 11.2% for Non-Whites
when changing the observed Race, and decreases by 8.4% for Whites when doing so. The
predicted number of successes increases from 84% to 92.8% for Non-Whites and decreases
from 98% to 94.8% for Whites. Panel B shows the predicted proportion of students in each
of the five track levels for students of High Parental Education (top) and Low Parental
Education (bottom) when using a model fit to students of High Parental Education (red)
or Low Parental Education (blue). The average predicted track level is depicted using the
dashed red line when predicting using the High Parental Education model, and by the
dashed blue line when predicting using the Low Parental Education model. Confidence
intervals, where present, reflect 95% bounds based on variation in the predictive accuracy
or number of predicted classes across the evaluated folds.
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Whites and increases by 11.2% for Non-Whites when intervening on the Race vari-554

able. This type of do-style reasoning is easy to implement when making predictions,555

and improves on the common practice of simulating predictions by setting other ob-556

servables to their mean or median values. A predictive approach uses the actual data557

which is considerably more informative.558

Instead of using predicted probabilities, it is also possible to assess the effect of a559

variable in terms of the actual outcome. An increase in the probability of success560

does not automatically reflect a similar increase in the expected number of successful561

applications. Probabilities will yield predictions anywhere between 0 and 1, whereas562

predicted outcomes will always consists of either 0 (failure) or 1 (success). The563

outcome-focused equivalent of the mortgage example – where the predicted prob-564

abilities are rounded – is given in Figure 4, Panel B.31 The results illustrate how565

intervening on the Race variable would increase the share of predicted successes from566

84% to 92.8% for Non-Whites, while decreasing the number of predicted successes567

from 98% to 94.8% for Whites.32 The differences in the number of actual successes568

reflect that most Whites already have a high predicted probability of success prior to569

intervening on the Race variable. Whether to use predicted outcomes or the under-570

lying predicted probabilities will typically depend on the particular use case.571

To illustrate the use of prediction to ask more complex interventional questions, I572

return to the study introduced earlier concerning teacher bias in tracking (Figure573

2, Panel D). Pre-existing work chose to model the outcome – track levels – as a574

continuous variable, allowing for a straightforward interpretation of the estimated575

coefficients. The study illustrated earlier used an hierarchical Ordered Probit model576

(H-OPM) leading to difficult to interpret coefficient estimates. However, by using the577

same interventional reasoning as outlined above, an intuitive assessment of the impact578

of bias features like Parental Education could easily be generated [41]. This reasoning579

was then taken a step further by assessing whether the effect of Parental Education580

could reasonably be captured by the coefficient on a dummy-coded variable, or might581

manifest itself through the entire model – i.e. whether students of Low Parental582

Education are assessed differently on observables.583

To this effect, separate models were estimated for students with Low and High584

31The same Repeated Cross Validation routine from Figure 2 (Panel C) was used for the predicted
outcomes.

32The confidence intervals show that, depending on the fold used for evaluation, the observed
percentage of successes in the fold can be higher or lower than the overall mean. This follows
from the fact that the data size was limited – especially for Non-White applicants – leading to more
variability in the baseline [40]. Note that the intervals should not be assessed to reflect the statistical
significance of the race coefficient, but rather variability in the observed pre-intervention probability
of the White or Non-White applicants in a specific fold.
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Parental Education. This led to one model fitted to students of Low Parental Educa-585

tion, which could be used to make predictions for observations ‘as if they were Low586

Parental Education students’ and another model which could do the equivalent but587

then for High Parental Education students. By making predictions using both models588

– i.e. predicting outcomes twice – for both the Low and High Parental Education589

subsets in the data, the implied difference between the two models could be assessed590

(Figure 4, Panel C).33 As can be seen, high parental education students on average591

obtain a track level of 2.81 when assessed as high parental education students. How-592

ever, when assessed as if they were low parental education students, this average track593

level drops by about 0.25. Conversely, low parental education students gain about594

0.12 track levels when assessed as high parental education students. Determining595

these differences by comparing the two estimated models would not have been trivial,596

as multiple coefficients would have to be taken into account jointly including random597

effects and the cutoff points which are estimated as part of the H-OPM.598

Taking Stock599

This paper set out to change the underutilization of prediction in the social sciences,600

where prediction barely features in empirical work. This underutilization occurs for601

the wrong reasons. Many social scientists confuse the general concept of prediction602

with more narrow applications, like forecasting, or using predictive accuracy as an603

optimization measure. Yet, prediction is a much broader and simpler analytical per-604

spective of evaluating models in terms of their ability to accurately fit the outcome605

of interest. Viewed in this manner, prediction becomes a logical complement to and606

enrichment of the methods we have grown accustomed to using throughout the so-607

cial sciences. Importantly, there is absolutely no need to sacrifice traditional models608

when including prediction in empirical work – contrary to the sometimes dogmatic609

nature of the philosophical discussion concerning prediction and explanation. Both610

explanatory and predictive perspectives to analysis can and should be combined.611

The benefits that prediction can bring when incorporated into the typical empirical612

workflow of social scientists are plenty and this paper illustrates but a few. For613

instance: how basic predictive consciousness can spur important debate in a research614

field (Figure 2, Panel A), but also how predictions allow for a more detailed assessment615

of model fit. For example by assessing the fit of individual predictions (Figure 2,616

Panel B), comparing predictive performance by subsets of the data (Figure 2, Panel617

33This approach is similar in intuition to decomposition methods that decompose overall group
differences in some outcome into compositional differences and effect differences [50]. However,
composition methods are often used within the typical linear additive framework which can be
restrictive. Exploiting prediction allows a wider variety of modeling approaches to be applied.
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C), using different models (Figure 2, Panel D), or testing our models on completely618

new data (Figure 2, Panel E). Prediction also provides a measure allowing social619

scientists to compare the fit of wildly varying methodological approaches (Figure 3,620

Panels A-B). This includes models from different paradigms – like flexible machine621

learning models – which opens the way to benchmarking our models against flexible622

alternatives. This provides social scientists with a way to assess whether the models623

we estimate have the appropriate complexity to fit the data well (Figure 3, Panel C).624

Finally, prediction is amenable to do-style reasoning and allows us to obtain intuitive625

associations between variables in non-linear models (Figure 4, Panels A-B), but also626

to take this interventional reasoning a step further and compare how models estimated627

to subsets of the data differ in modeling the outcome of interest (Figure 4, Panel C).628

In practice, the way in which prediction is applied fundamentally depends on the case629

at hand. There will be empirical settings where interest in the ability to predict an630

outcome is less natural than for example in the case of the FFC.34 Generally speaking,631

this paper identifies three broad virtues were identified: i) using prediction as a de-632

scriptive tool to improve our understanding into the fit of a model, ii) using prediction633

to normatively compare different models, and iii) to help generate understanding into634

(complex) model behavior by interventional reasoning. These benefits help address635

criticisms plaguing the social sciences, like a lack of appreciation for the real-world636

relevance of research findings, and the use of overly simplistic models to study social637

life. At the same time, the cynic might question what we exactly gain from adding638

prediction to empirical work. Can’t we identify predictive ability by measures like the639

R2? Or use fit metrics like the AIC or BIC to compare models? Aren’t there speci-640

fication tests to diagnose serious misspecification, and can’t we identify associations641

in non-linear models, if we really tried?642

The answer to all of these questions is: yes, although there are various nuances643

that make prediction preferred. For example, existing fit metrics are in-sample and644

can suffer from overfitting. The R2 measure does not work well in every design645

and gives no insights into heterogeneity in a model’s fit. Non-parametric regression646

techniques and non-linear models are relatively complex to estimate and, without647

a way to illustrate their necessity, most empirical work will remain wedded to the648

simple linear additive model. There are many more subtle nuances. The broader649

34Examples could include stylized lab experiments, or research designs like Difference-in-
Differences, Regression discontinuity or Matching setups, as either the outcome is less intuitive
or interest is fundamentally into an estimated coefficient. Nonetheless, many of the key benefits of
prediction which have been illustrated in this paper will be equally relevant to understand the extent
to which the model fits the data, irrespective of whether the outcome itself is of central substantive
interest or this is less the case.
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point is that predictions are disarmingly simple to understand and generate, and650

can serve multiple goals at the same time as the examples in this paper illustrate.651

Predictions also improve transparency by inviting a more rigorous assessment of a652

model’s ability to fit the data than most aggregated in-sample metrics. Requiring653

researchers to make predictions is a much better way to diagnose model limitations654

than allowing researchers to (cherry-)pick their own robustness checks or descriptives.655

Finally, prediction paves the way for exciting methods from other domains, like that of656

machine learning, into the workflow of social scientists. Methods that should become657

complementary to the social sciences.658

Hopefully, this paper can help social scientists decouple prediction from some of659

the field’s most intriguing and sometimes heated discussions. For example whether660

explanation should imply prediction or what the role of machine learning should be in661

the social sciences. Although interesting, they are ultimately a distraction from what662

prediction as an analytical tool has to offer the social sciences. In sum, prediction’s663

complete lack of complexity, transparency, intuitive nature, and flexibility to build664

on the methods we have used for decades – rather than forcing researchers into new665

techniques – are all substantial assets, that come at virtually no price to include into666

our work. In other words, prediction is truly one of those illustrious free lunch buffets667

which social scientists continue to ignore at their own peril.668
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