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Given its severe capacity limitations, visual working memory (VWM) can process only a tiny
fraction of the complex visual world. While selection of relevant information from cluttered
scenes is a main topic of research on visual attention, it has not received much research efforts
in the VWM community. Based on knowledge from visual-attention research, we develop a
task that mimics the complexity of real-world scenes while maintaining tight experimental con-
trol over stimulation and allowing for the application of state-of-the-art computational models
and neuroscientific techniques. In two experiments, we provide solid evidence that the distri-
bution of a limited VWM resource is parametrically influenced by saliency (i.e., how much
an object stands out from its immediate surround). Our third experiment demonstrates that –
in contrast to the real world – saliency is virtually maxed out for relevant objects in typical
laboratory studies of VWM, likely yielding a pronounced underestimation of this major influ-
ence on VWM. We discuss various, not necessarily exclusive, mechanisms by which saliency
might influence VWM performance, including saliency-dependent distribution of resources,
encoding efficiency and faster/better filtering of unnecessary information and relate our results
to the Theory of Visual Attention (TVA).
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In light of the constantly changing flow of information en-
tering the eyes and being transmitted to visual cortical ar-
eas, visual working memory (VWM) is thought to provide a
stable percept of the world (Aagten-Murphy & Bays, 2018;
Schneider, 2013; Tsubomi, Fukuda, Watanabe, & Vogel,
2013). Due to the severe capacity limitations of this system,
at each instant, people perceive only a tiny fraction of the
massive amount of available information (Rensink, 2004; Si-
mons & Levin, 1997; Simons & Rensink, 2005). Faced with
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this overwhelming stream of information (Tsotsos, 1990) and
the short time between two eye movements, the visual sys-
tem must somehow manage to focus its resources on only
the most relevant aspects of the scene. Unfortunately, rele-
vant objects are typically presented among a complex mix of
other objects and variable background features (Henderson
& Hollingworth, 1999; Hollingworth, 2008). So, some set of
mechanisms must decide how to distribute the limited VWM
resource quickly. This remains true independent of whether
this means to allocate fixed slots or a flexible resource (see
Cowan, 2001; Luck & Vogel, 2013; Ma, Husain, & Bays,
2014).

In contrast to these real-world affordances on VWM, the
typical VWM paradigm features only a few isolated to-be-
remembered objects within each scene; in the most canon-
ical version, for example, the memory array consists of 2
to 8 colored squares on a gray background (H. R. Liese-
feld, Liesefeld, & Müller, 2019; Luck & Vogel, 1997; Zhang
& Luck, 2008, Fig. 1a). Participants then have to decide
whether one of the squares changed color in a second dis-
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play (change detection) or reproduce the color of a probed
object (continuous report). A wide variety of versions of this
basic paradigm exist, but the focus on isolated objects is com-
mon to virtually all of them, even those that additionally in-
clude a few distracting objects (Allon & Luria, 2019; Jost &
Mayr, 2016; A. M. Liesefeld, Liesefeld, & Zimmer, 2014;
McNab & Klingberg, 2008; Vissers, van Driel, & Slagter,
2016; Vogel, McCollough, & Machizawa, 2005). While pro-
viding tight control over visual stimulation and task affor-
dances, such memory displays clearly lack the complexity
of real-world scenes humans are facing day to day. Thus, to
examine information selection in complex scenes, new tasks
are needed.

Questions regarding the selection of visual information
are at the core of theories of visual attention: It is typically as-
sumed that attention allocation is guided via an abstract spa-
tial representation of the visual scene coding only for the rel-
ative importance at each location (Bisley & Mirpour, 2019;
Bundesen, Habekost, & Kyllingsbæk, 2005, 2011; Fecteau
& Munoz, 2006; Zelinsky & Bisley, 2015). Activation at this
so-called priority map is a combination of top-down (ob-
server inherent) and bottom-up (stimulus inherent) factors
(Chelazzi, Marini, Pascucci, & Turatto, 2019; Gaspelin &
Luck, 2019; H. R. Liesefeld, Liesefeld, Pollmann, & Müller,
2019; H. R. Liesefeld & Müller, 2019b; Wolfe & Horowitz,
2017). While top-down factors have attracted some VWM re-
search (Bundesen et al., 2011; Dube, Emrich, & Al-Aidroos,
2017; Emrich, Lockhart, & Al-Aidroos, 2017; A. M. Liese-
feld et al., 2014; Sauseng et al., 2009; Vogel et al., 2005),
bottom-up factors have been largely ignored.

As an example of the former, Emrich et al. (2017, see also
Dube et al., 2017) directly manipulated the task relevance of
the various to-be-remembered objects in a clever set of ex-
periments. Within each display they indicated via small bars
(cues) how likely each object was to be probed afterwards.
Interestingly, the likelihood of being probed was a much bet-
ter predictor of how well an object’s feature was reported
later on than the number of objects in the display (set size)
that almost all (computational) models of VWM focus on.
Notably, increasing the number of objects, which had pro-
duced performance decrements in so many previous studies,
also decreases the probability that each individual object is
probed proportionally. Thus, an individual object’s priority
might be the major determinant for how much VWM re-
source it receives, producing set-size effects as a by-product.
However, cues like those used by Emrich et al. are unlikely
to appear in real life and, in fact, it is often unclear which
objects turn out to be relevant later on. Among equally rele-
vant objects, priority-dependent allocation of VWM resource
must be determined by other contributors to the priority map,
saliency in particular.

An object is salient if (at least) one of its features stands
out, like the blackness of a black sheep in a flock of white

sheep. More technically, saliency is determined by local fea-
ture contrast (H. R. Liesefeld, Moran, Usher, Müller, & Ze-
hetleitner, 2016; Nothdurft, 2000): via lateral inhibition (i.e.,
at the same hierarchical level of visual processing), neurons
with overlapping tuning curves (i.e., coding similar features)
mutually suppress each other (iso-feature suppression; Li,
2002); the resulting net activity is highest for features that
differ maximally from their immediate surround, because the
respective neuronal activity is not suppressed. All else being
equal, salient objects produce peaks on the attention-guiding
priority map, thus drawing attentional resources.

Now consider the typical VWM display introduced above
(Fig. 1a, see also Fig. 1c and Fig. 1d): The contrast between
the isolated squares’ colors and the gray background renders
all of them highly salient. Moreover, any variation in saliency
is left to chance: colors vary in contrast to the (often arbitrar-
ily chosen) background and objects mutually provide con-
trast to each other depending on their (often random) spatial
arrangement. Furthermore, if eccentricity is not controlled
for (as is often the case), this provides another source of
variation in saliency (Carrasco, Evert, Chang, & Katz, 1995;
Carrasco & Frieder, 1997). This uncontrolled variation in
saliency might explain some of the apparently random vari-
ation in VWM performance across trials (Fougnie, Suchow,
& Alvarez, 2012; van den Berg, Shin, Chou, George, & Ma,
2012, for a related argument, see Brady & Alvarez, 2015).

Indeed, it has been shown that saliency plays a role in
VWM for icons on maps (Fine & Minnery, 2009) and ob-
jects in photographs or drawings of natural scenes (Pedale &
Santangelo, 2015; Santangelo & Macaluso, 2013; Spotorno,
Tatler, & Faure, 2013; Stirk & Underwood, 2007, for a re-
view, see Santangelo, 2015; Fig. 1b). To quantify saliency,
these researchers analyzed their stimuli with a computational
saliency model (Itti, Koch, & Niebur, 1998). Notwithstand-
ing the potential to gain important insights and the appeal
of the ecological validity, this approach is necessarily cor-
relative in nature (i.e., saliency is not experimentally con-
trolled) and the validity of the employed saliency-model out-
put is not guaranteed. The downside of such correlative ap-
proaches (see also Brady & Alvarez, 2015; Brady & Tenen-
baum, 2013) is that it remains unclear in how far other aspect
of the stimuli influence the results, such as the discriminabil-
ity of the remembered object features or their placement in
the scene (e.g., center bias, Tseng, Carmi, Cameron, Munoz,
& Itti, 2009, decreasing retinal resolution towards the periph-
ery; Curcio, Sloan, Kalina, & Hendrickson, 1990; Legras,
Gaudric, & Woog, 2018; Østerberg, 1935; Park, Chung,
Greenstein, Tsang, & Chang, 2013) or many further poten-
tial influences that are yet to be revealed. Also, the way these
studies measured memory performance (e.g., naming as
many objects as possible) strongly deviates from the typical
laboratory tasks introduced above, thus prohibiting to draw
from the rich set of scientific techniques developed over the



WORKING MEMORY IN COMPLEX SCENES 3

a

ed

cb

f

Figure 1. Various Types of Memory Displays Employed in VWM Tasks
Note. (a) The most canonical VWM memory display; (b-e) Memory displays used in various previous studies that exam-
ined the influence of saliency on VWM performance; (e-f) our displays. (a) Countless studies have examined VWM for
isolated colored squares; (b) A real scene similar to those used in the VWM study by Pedale and Santangelo (2015); (c)
Klink, Jeurissen, Theeuwes, Denys, and Roelfsema (2017) used Gabor gratings and manipulated saliency via the grat-
ings’ contrasts; (d) Bays, Gorgoraptis, Wee, Marshall, and Husain (2011) flashed a bright cue at the end of the encoding
period to increase the a selected object’s saliency; (e-f) Our displays mimic the complexity of real-world scenes while
maintaining a high level of experimental control and allowing a continuous manipulation of saliency (via the relevant
objects’ tilts); (e) Displays contained three target bars of different saliency in Exp. 1 and the mixed condition of Exp. 2
and (f) three target bars of the same saliency in the same condition of Experiment 2.

last two decades for standard VWM tasks (for an overview
see H. R. Liesefeld & Müller, 2019a), including advanced
computational models of VWM performance (e.g., Bays,
2014; Brady & Tenenbaum, 2013; Donkin, Nosofsky, Gold,
& Shiffrin, 2015; Hardman, Vergauwe, & Ricker, 2017;
H. R. Liesefeld, Liesefeld, Pollmann, & Müller, 2019; Ober-
auer & Lin, 2017; Rouder et al., 2008; van den Berg, Awh, &
Ma, 2014; Zhang & Luck, 2008) and neuroimaging markers
of VWM maintenance (Christophel, Klink, Spitzer, Roelf-
sema, & Haynes, 2017; Harrison & Tong, 2009; Sauseng
et al., 2009; Serences, Ester, Vogel, & Awh, 2009; Vogel
& Machizawa, 2004). Furthermore, in “real-world” scenes
there is often no straight-forward way to determine “set size”
and the number of objects typically by far exceeds VWM
capacity in realistic scenes (Bundesen et al., 2005; Cowan,
2001; H. R. Liesefeld, Liesefeld, Pollmann, & Müller, 2019;
Luck & Vogel, 2013; Morey, 2011; Pashler, 1988; Rouder,
Morey, Morey, & Cowan, 2011; Schneider, 2013).

Other studies have directly manipulated saliency in more
controlled VWM tasks. Klink et al. (2017), for example,
had participants remember the orientation of Gabor gratings

and manipulated saliency by changing the contrast (Fig. 1c;
see also Knops, Piazza, Sengupta, Eger, & Melcher, 2014;
Melcher & Piazza, 2011). One downside of this procedure
might be that not only saliency, but also the discriminabil-
ity of the to-be-remembered orientation depends on Ga-
bor contrast. In fact, in psychophysical studies, Gabor con-
trast is typically used to scale discrimination difficulty (e.g.,
Alvarez & Cavanagh, 2008). Furthermore, even medium-
contrast Gabors (i.e., for which the discrimination of orienta-
tions does not become prohibitively difficult) are still isolated
objects clearly standing out from the uniform background so
that these stimuli would allow sampling only the upper range
of saliencies. Others have used an uninformative bright flash
(cue) to transiently increase the saliency at a certain loca-
tion (e.g., Bays et al., 2011; Ravizza, Uitvlugt, & Hazeltine,
2016; Schmidt, Vogel, Woodman, & Luck, 2002, Fig. 1d).
In contrast to what we are aiming at here, it is the cue that
is salient and not the to-be-remembered object itself. In ad-
dition to the concern of sampling only the upper range of
saliencies, inducing saliency via an independent event might
dramatically change the (temporal) dynamics of resource
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allocation in comparison to a manipulation of the object’s
saliency itself and it might be difficult to independently and
gradually manipulate the saliency of various objects in this
way; furthermore, the cue might interfere with processing the
cued object, thus undoing some of the attentional advantage
(Merikle, 1976; Tabi, Husain, & Manohar, 2019).

To examine how saliency attracts VWM resource in a
bottom-up manner with the same level of experimental con-
trol as in typical laboratory studies while still mimicking the
complexity of real-world scenes, we devised a new VWM
task based on knowledge from the visual-attention literature.
As demonstrated below, this task allows to directly, grad-
ually, and independently manipulate each object’s saliency
across a wide range, while keeping the discriminability of
the to-be-remembered feature and each object’s behavioral
relevance untouched, and enables the use of modern (neuro-
)cognitive models and methods.

Our construction of the memory displays is based on
our previous experience with visual search. In particular,
H. R. Liesefeld et al. (2016) devised visual-search displays
that allowed a gradual manipulation of the search target’s
saliency (see also Nothdurft, 2000; Rangelov, Müller, & Ze-
hetleitner, 2017; van Zoest & Donk, 2006) and showed that
search becomes faster as a continuous function of target
saliency even beyond the point where targets “popped out”
(i.e., where search speed was uninfluenced by the number
of to-be-searched objects), spanning average (target-present)
search times from 400 ms up to 1400 ms. This was achieved
by placing a tilted target bar in a dense array of verti-
cal non-target bars. By adapting the tilt of the target bar
(and therefore the contrast between target and non-targets),
target saliency could be controlled to any desired preci-
sion. H. R. Liesefeld, Liesefeld, Töllner, and Müller (2017)
showed that in this design the most salient object almost in-
evitably captures attention (if top-down influences are kept
constant), even if completely irrelevant to the task (see also
H. R. Liesefeld, Liesefeld, & Müller, 2019; H. R. Liesefeld
& Müller, 2019a).

Thus, the memory displays employed here featured a
dense array of vertical non-target bars into which several
(here: three) tilted target bars were placed (Fig. 1e-f). In or-
der not to make color dominate the contrast (and therefore
determine saliency), all bars were drawn in a random color.
We used target tilts of 12°, 28°, and 45° to achieve a strong
manipulation of target saliency. Note that even the smallest
tilt (12°) produced clear pop out (i.e., very efficient search)
in H. R. Liesefeld et al. (2016). In contrast to previous ex-
perimental approaches to manipulate saliency (see above),
this type of display provides tight control over the stimuli’s
saliencies without messing with the discriminability of the
to-be-remembered feature (color).

To try and demonstrate the viability of our new approach
and to confirm an influence of saliency on VWM encoding in

a more controlled situation, we conducted two experiments
in which participants were instructed to remember the color
of three tilted objects with varying saliency. Our results show
a strong impact of bottom-up saliency on the distribution of
VWM resources to equally relevant objects and provide ad-
ditional insights into the mechanisms determining the alloca-
tion of VWM resources in complex scenes. Furthermore, fit-
ting the data to the standard Zhang and Luck (2008) mixture
model revealed that saliency mainly impacts the probability
that an object is remembered rather than the quality of the
respective memory trace. By comparison, a third experiment
demonstrates how strong the achieved effect of saliency in
our displays is and how salient all objects in typical VWM
displays are.

Experiment 1

Methods

Participants. For each experiment, sample size was de-
termined via sequential testing with Bayes factors, follow-
ing the recommendations by Schönbrodt and Wagenmakers
(2018) with a minimum of 10 and a maximum of 60 partici-
pants. We stopped testing when sufficient evidence for either
the null or the alternative (BF ≥ 6) was reached for each
critical test.

The critical tests determining the stopping rule for Ex-
periment 1 examined whether VWM performance (the mean
absolute angular distance between correct and selected re-
sponse, henceforth: recall error) would decrease with ob-
ject saliency (tilt). This resulted in a sample of 10 healthy
human adults (Mean age: 26.3 ± 3.37, 4 females, all right-
handed) who received either course credits or monetary re-
muneration (9€/h). In this and all following experiments, all
participants provided informed consent prior to the experi-
ment, reported normal or corrected-to-normal visual acuity
and normal color vision and were naïve as to the purpose
of the study, and the experimental procedures were approved
by the ethics committee of the Department Psychology and
Pedagogics at LMU.

Stimuli, procedure & design. Stimuli were displayed
on a 24" TFT-LCD monitor (ASUS VG248QE, 1920×1080
pixels, 60 Hz) at a viewing distance of 70 cm. The test-
ing room was pitch dark and there were between one and
four participants in each testing session. OpenSesame 3.2.7
(Mathôt, Schreij, & Theeuwes, 2012) with the PsychoPy
(Peirce, 2008) backend was used for stimulus presentation.
For CIE L*a*b* conversion to sRGB, the colormath (Taylor,
2017) Python package was used.

Each trial began with the presentation of a central fixation
dot (white, 0.18° radius) against a gray background (L* =
25.3, 14.2 cd/m²). After 1 s, a sample display was presented,
consisting of 33 vertical and 3 tilted (12°, 28° and 45°) col-
ored bars subtending a visual angle of 1.30 × 0.33° each.
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The bars were arranged in three concentric rings (2°, 4° and
6° radius) with respectively 6, 12 and 18 bars on each. The
relevant (tilted) bars were always presented on the middle
ring. Colors were randomly drawn from a circle in a lumi-
nance plane of the CIE 1976 L*a*b* (see Commission In-
ternationale de l’Éclairage [CIE], 2019) color space (L* =
63, center: a* = 9, b* = 27, illuminant: D65, 2° standard
observer) with a radius of 40 (Mean ∆E2000 between two
adjacent colors: 0.43). These parameters were chosen to en-
sure that all colors could be mapped onto the 24-bits sRGB
color space. CIE L*a*b* is a device-independent color space
based on the opponent color theory (Hering, 1905/1964) that
aspires to be perceptually uniform, taking into account the
specificities of the human color vision system (for a more
detailed overview, see Fairchild, 2013).

The memory display was presented for 350 ms, followed
by a delay period of 1 s during which only the fixation dot
was shown. A response display was then presented contain-
ing a randomly in 30°steps rotated color wheel (360 colors)
and outlined placeholder bars at the location of each bar from
the memory display. One of the placeholders was filled in
black to indicate which bar to report (hereafter: probe), and
participants were instructed to report the color they remem-
bered for that bar by using the computer mouse to select a
point on the color wheel. The color wheel had a width of
0.66°and a radius of 8°. While the mouse hovered the color
wheel, the probe dynamically changed color according to the
mouse position.

Each participant completed a total of 600 trials divided
into blocks of 30 trials. Each condition (i.e., tilt of the probe)
was randomly presented 200 times (10 times per block). Af-
ter each response, a feedback line appeared at the correct lo-
cation on the color wheel to show the correct response (and,
by implication, how far off the actual response was) to the
participant.

Analysis. For statistical analyses, JASP 0.10.2 (JASP
Team, 2019; Love et al., 2019) was used with default settings
for the priors. Directed Bayesian t tests (Rouder, Speckman,
Sun, Morey, & Iverson, 2009) were conducted to analyze the
differences between the different tilts. The BF quantifies the
support for a hypothesis (first subscript) over another (second
subscript), regardless of whether these models are correct.
The subscript “0” always refers to the null hypothesis (H0).
When conducting undirected (two-sided) tests, the subscript
“1” refers to the alternative hypothesis (H1). When conduct-
ing directed (one-sided) tests, instead of “1”, the subscripts
“+” or “−” were used depending on the direction of the hy-
pothesis (H+ or H−, respectively). Throughout the results, we
will report the BF for the most favored hypothesis (e.g., if the
null is more probable, BF01 will be reported), as we find it
most intuitive to interpret.

We also conducted the traditional (frequentist) signifi-
cance tests for reference and report effect sizes (dz; Co-

hen, 1988) followed by their respective 95% CIs in brackets.
Finally, as an exploratory analysis, we fitted the data with
MemToolbox (Suchow, Brady, Fougnie, & Alvarez, 2013,
https://memtoolbox.org/) – separately per participants and
condition – to the mixture model of Zhang and Luck (2008)
to determine whether observed effects are better explained by
variation in VWM precision (sd) or variation in the probabil-
ity that the response originated from remembering the probed
item (pmem).1

Results

As expected, our manipulation of saliency had a huge and
reliable impact on VWM performance (see Fig. 2): Recall
error was higher for 12° (M ± SD: 59.07° ± 16.73) than for
28° probes (41.84° ± 14.06), t(9) = 6.56, p < .001, dz = 2.07
[0.93, 3.19], BF+0 = 551.51, and higher for 28° than for 45°
probes (28.14° ± 7.32), t(9) = 4.66, p < .001, dz = 1.47
[0.54, 2.37], BF+0 = 70.6. Effect sizes were so huge that, de-
spite the relatively small sample size (which we had defined
as the minimum in our pre-registration), the Bayes factors
indicated overwhelming evidence for both differences. This
finding demonstrates that saliency is a major determinant for
the distribution of VWM resources.

Fitting to the Zhang and Luck (2008) model revealed that
pmem differed significantly between 12° (44.08% ± 23.36)
and 28° probes (68.89% ± 17.61), t(9) = 6.37, p < .001,
dz = 2.01 [0.89, 3.10], BF10 = 227.57; and between 28° and
45° probes (86.41% ± 8.50), t(9) = 4.10, p = .003, dz = 1.30
[0.42, 2.14], BF10 = 18.18. However, sd did not significantly
differ between 12° (26.93° ± 11.02) and 28° probes (25.99°
± 4.65), t(9) = 0.315, p = .760, dz = 0.10 [0.52, 0.72],
BF01 = 3.10; or between 28° and 45° probes (23.91° ± 2.87),
t(9) = 1.29, p = .230, dz = 0.41 [0.25, 1.04], BF01 = 1.68.

Discussion

Using a novel design, providing high experimental control
over object saliency while mimicking the visual complexity
of real-world scenes, Experiment 1 confirmed that the allo-
cation of a limited VWM resource is strongly and paramet-
rically dependent on saliency. Moreover, fitting a standard
model of VWM performance to the data revealed that this ef-
fect is mainly due to salient objects being remembered more
likely rather than more precisely. Even though we observed
only moderate (BF01 = 3.10) and indecisive (BF01 = 1.68)
evidence for the absence of an effect on precision, it is clear
that potential effects on precision cannot explain the over-

1Due to a technical mistake only the response and the correct
answer were stored for Exp. 2, so that we could not estimate the
impact of other items on the response (swap errors; Bays, Catalao,
& Husain, 2009) or apply other more advanced models (e.g., Brady
& Tenenbaum, 2013; Oberauer & Lin, 2017).

https://memtoolbox.org/
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Figure 2. Summary of Results From all Three Experiments.
Note. For Experiments 1 and 2, Saliency “Low” refers to 12° probes, “Medium” to 28° probes and “High” to 45°-probes.
For Experiment 3, Saliency “Low” refers to 6° eccentricity, “Medium” to 4° eccentricity and “High” to 2° eccentricity.
Error bars represent 95% within-subject CIs (Morey, 2008).

whelming evidence for an effect of saliency on recall error
(BF+0 = 551.51 and BF+0 = 70.6).

Experiment 2

If saliency indeed determines the distribution of the lim-
ited VWM resource (VWM slots), the 45° tilted object re-
ceived particularly much of this resource by virtue of the
other two tilted bars being less salient, and, correspondingly,
the 12° tilted object received particularly little of this re-
source due to the other two tilted bars being more salient. By
contrast, when all targets within a display are equally salient,
the VWM resource should be distributed equally. This means
that each 45°-tilted object in a display with only 45°-tilted
objects among vertical bars (same displays) would receive
less resource and each 12°-tilted object in a display with only
12°-tilted objects would receive more resource compared to
the mixed displays in Experiment 1. To test this prediction of
the hypothesis that saliency determines the allocation of the
limited VWM resource, displays in Experiment 2 contained
either three objects of the same or three objects of different
tilts.

A potential alternative is that saliency determines how
well the resource can be allocated to only the relevant ob-
jects in the scene (rather than being consumed by the irrele-
vant vertical bars, for example). This would predict that even
in displays with only 12°-tilted bars, each 12°-tilted bar re-
ceives less resource than each 45°-tilted bar in displays with
only 45°-tilted bars. In other words, the overall amount of
resource allocated to the relevant (tilted) objects might be
lower for 12°- compared to 45° same displays. These two
possibilities are not mutually exclusive, and, in contrast to
an earlier study (Klink et al., 2017), our results indicate that
both mechanisms are at play in the present design.

Methods

In Experiment 2, the critical tests determining the stop-
ping rule for the sequential testing procedure examined
whether recall error would increase with object saliency (as
in Experiment 1) for both same and mixed displays and (addi-
tionally) whether recall error would differ, for the same probe
tilt, between mixed and same displays, with an increase for
45° and a decrease for 12° probes. This resulted in a sam-
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ple of 31 healthy human adults (Mean age: 26.4 ± 5.44, 25
female, 4 left-handed). Three participants had already par-
ticipated in Experiment 1 and three others had participated
in Experiment 3 (which was run before Experiment 2). Ex-
periment 2 was modeled after Experiment 1 with the main
difference being that one of two types of memory displays
could be presented on each trial:

1. Mixed displays (Fig. 1e) were identical to the displays
of Experiment 1 in all relevant aspects and differed
only in that the fixation dot and the radius of the color
wheel were slightly smaller (0.16° rather than 0.18°,
and 7.8° rather than 8°, respectively).

2. Same displays (Fig. 1f) were similar to mixed displays
except that the tilted bars all shared the same tilt (either
12°, 28° or 45°).

Each participant completed a total of 600 trials divided
into blocks of 30 trials. Each condition (i.e., type of display
× tilt of the probe) was randomly presented 100 times (5
times per block). Experiment 2 was written in JavaScript and
HTML5 and run in Mozilla Firefox (68.0), using the d3.js
(Bostock, Ogievetsky, & Heer, 2011) library for color con-
version.

Results

The mixed condition of Experiment 2 replicated the re-
sults of Experiment 1 (see Fig. 2). Recall error was higher
for 12° (63.77° ± 14.21) than for 28° probes (44.74° ±
13.49), t(30) = 10.57, p < .001, dz = 1.90 [1.30, 2.49],
BF+0 = 1.44e+9, and higher for 28° than for 45° probes
(36.06° ± 11.12), t(30) = 5.83, p < .001, dz = 1.05 [0.60,
1.48], BF+0 = 1.68e+4.

Crucially, and as expected, performance was better for 12°
probes, t(30) = 6.02, p < .001, dz = 1.08 [0.63, 1.52],
BF+0 = 2.69e+4 and worse for 45° probes, t(30) = 2.88,
p = .004, dz = 0.52 [0.89, 0.13], BF−0 = 11.56, in same com-
pared to mixed displays. This difference was only weak and
unreliable for 28° probes (for which we had no specific hy-
potheses as mentioned in our pre-registration), t(30) = 1.57,
p = .128, dz = 0.28 [0.08, 0.64], BF01 = 1.75. Mean re-
call error across tilts was lower in same (45.83° ± 11.35)
compared to mixed (48.19° ± 12.86) displays, t(30) = 3.220,
p = .003, dz = 0.58 [0.19, 0.96], BF10 = 12.25.

Despite the observed convergence in performance for the
different tilts, even in same displays, saliency affected VWM
performance. Recall error was higher for 12°- (54.02° ±
12.93) than for 28° probes (43.29° ± 13.31), t(30) = 7.79,
p < .001, dz = 1.40 [0.90, 1.89], BF+0 = 2.39e+6, and higher
for 28°- than for 45° probes (40.19° ± 14.71), t(30) = 3.10,
p = .002, dz = 0.56 [0.17, 0.93], BF+0 = 18.85 (see
Fig. 2). Replicating Experiment 1, results from the Zhang
and Luck (2008) mixture model again showed that salience

influenced mainly pmem in both mixed and same displays (see
Supplement). In the comparison between mixed and same
displays, the effect for 12° probes was mainly reflected in
pmem and the effect for 45° probes was mainly reflected in sd.

Discussion

Results of Experiment 2 confirm the prediction that the
amount of VWM resource an object receives depends on its
relative saliency with respect to the other objects in the scene.
Furthermore, we found that even when all objects within a
display are of the same saliency, more salient objects still re-
ceive more resource than their less salient counterparts, indi-
cating that in addition to relative saliency, absolute saliency
also plays a role in the distribution or availability of VWM
resources. While the former conclusion is in line with pre-
vious reports that when a salient item is present less-salient
items receive proportionally less VWM resource (see also
Bays et al., 2011; Klink et al., 2017; Melcher & Piazza,
2011; Pedale & Santangelo, 2015; ?), the latter conclusion
might conflict with some of these studies (see the General
Discussion for details).

Experiment 3

Experiment 3 was a more prototypical VWM task in
which we manipulated the eccentricity of probed objects.
This served various purposes: (a) to demonstrate by com-
parison to our design that saliency in typical VWM task is
very high; (b) to demonstrate that some of the variability in
typical VWM displays stems from random variation in seem-
ingly irrelevant display characteristics (eccentricity); and (c)
to demonstrate by comparison that the saliency effect ob-
served in our design is indeed huge.

Regarding (a), typical VWM displays are very simple
in that only a few and only relevant stimuli are shown on
the screen (e.g., H. R. Liesefeld, Liesefeld, Pollmann, &
Müller, 2019; Luck & Vogel, 1997; Zhang & Luck, 2008).
Due to their contrast to the background and the absence
of any other non-target stimuli (that could probably reduce
saliency), these stimuli’s contrast is usually very high. Thus
Experiment 3 serves to demonstrate how strongly the labora-
tory situation differs from the real-world situation in which
relevant objects are shown among many irrelevant objects.

Regarding (b), influential recent work (Brady, Konkle, &
Alvarez, 2011; Fougnie et al., 2012; van den Berg et al.,
2012) has pointed out that the apparently unsystematic vari-
ability of VWM performance across trials is much stronger
than the systematic variability typically examined (e.g., the
effect of set size). One factor that might systematically influ-
ence VWM performance, and that – following the influential
work of Luck and Vogel (1997) – is often not controlled for
in VWM studies, is the probed object’s distance from fixation
(eccentricity). Visual-search studies have repeatedly found
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that – all else being equal – objects further in the periph-
ery are harder to find (Carrasco & Frieder, 1997) and that
objects closer to fixation tend to attract attentional resources
more readily (Woodman & Luck, 1999).

Regarding (c), in addition to attentional factors (which are
probably maxed out in typical VWM displays), VWM repre-
sentations of more eccentric stimuli should have a lower res-
olution due to purely physiological reasons. In particular, as
the density of cone receptors in the retina sharply drops with
eccentricity (Curcio et al., 1990; Legras et al., 2018; Øster-
berg, 1935; Park et al., 2013), color perception – and conse-
quently the detail of information that is initially available to
be transferred to VWM – decreases with eccentricity. Thus,
effects of eccentricity should provide an interesting bench-
mark against which we will compare the strength of saliency
effects examined above.

Methods

In Experiment 3, the critical tests determining the stop-
ping rule for the sequential testing procedure examined
whether recall error would increase with object eccentricity.
The sequential testing procedure resulted in a sample of 34
healthy human adults (Mean age: 24.4 ± 4.44, 27 female, 2
left-handed). Experiment 3 was modelled after Experiment 1
with the following differences: Rather than tilted bars among
irrelevant vertical bars, to-be-remembered targets were three
isolated squares subtending a visual angle of 0.65 × 0.65°
each as in prototypical VWM tasks (Luck & Vogel, 1997;
Zhang & Luck, 2008). The squares were arranged in three
concentric rings (2°, 4° and 6° radius) with one square at each
eccentricity in each display, thus implementing a paramet-
ric within-display manipulation comparable to Experiment 1
and the mixed displays of Experiment 2. On each ring, the
square was randomly placed at one of 6, 12 or 18 positions,
respectively. The positions on the middle ring were identical
to those in Experiments 1 and 2. Each participant completed
a total of 600 trials divided into blocks of 30 trials. Each
target eccentricity was randomly probed 200 times (10 times
per block).

Results and Discussion

As expected, our manipulation of eccentricity influenced
VWM performance (see Fig. 2). Recall error was higher for
objects on the outer (33.24° ± 8.19) than on the middle ring
(31.33° ± 7.55), t(33) = 2.56, p = .008, dz = 0.44 [0.08,
0.79], BF+0 = 6.04, and higher for objects on the middle than
on the inner ring (27.58° ± 6.96), t(33) = 4.78, p < .001,
dz = 0.82 [0.43, 1.21], BF+0 = 1308.45. As evident from
Figure 2, this effect was much weaker than our direct ma-
nipulation of saliency in Experiments 1 and 2. Effects of tilt
and effects of eccentricity are, of course, not directly com-
parable, but linearly extrapolating from the present results,
one would need eccentricities far beyond the typical range

used in VWM tasks and beyond the retinal area that provides
color vision (12° into the periphery) to reach similar-sized
effects as with our tilt manipulation. A comparison with data
combined across Experiments 1 and 2 (Recall error: 46.04° ±
11.90°) indicated much better average performance in Exper-
iment 3 (30.72° ± 6.90), t(65.94) = 6.95, p < .001, dz = 1.58
[1.04, 2.10], BF+0 = 3.61e+6, even if analysis was restricted
to the middle ring2 (31.34° ± 7.56; the exact same eccentric-
ity as in Experiments 1 and 2), t(68.69) = 6.48, p < .001, dz
= 1.47 [0.95, 1.99], BF+0 = 7.52e+5.

Respective analyses on the Zhang and Luck (2008) model
parameters (see Supplement) revealed that the difference be-
tween outer and middle ring was mainly explained by sd,
whereas the difference between middle and inner ring was
mainly explained by pmem. Importantly, the difference in per-
formance between Experiments 1 and 2 on the one and Ex-
periment 3 on the other hand was almost exclusively ex-
plained by pmem.

General Discussion

We set out to demonstrate an influence of saliency on per-
formance in a VWM task that mimics the complexity of real-
world scenes while providing high experimental control and
comparability to the main thrust of laboratory VWM stud-
ies. In Experiments 1 and 2, we showed that the distribu-
tion of the limited VWM resource depends on object salien-
cies in that (a) more salient objects receive more resource
then less salient objects, (b) salient objects receive more re-
source if presented among less salient objects rather than
among equally salient objects, and (c) the overall amount
of resource allocated to relevant objects is higher for salient
than less salient objects. Experiment 3 served to demon-
strate that (d) objects in the traditionally employed, simple
displays are highly salient, (e) eccentricity also modulates
VWM performance, and (f) the effect of saliency observed
in Experiments 1 and 2 is huge in comparison. The major
additional insight from applying the Zhang and Luck (2008)
mixture model to these data was that effects of saliency and
the difference in performance between our design (Experi-
ments 1 and 2) and a more traditional VWM design (Ex-
periment 3) were almost exclusively explained by differ-
ences in the probability that the probed objects was in mem-
ory (pmem). That the same model parameter (pmem) explains
within-experiment effects of saliency and the superior perfor-
mance in the more prototypical Experiment 3 supports our
hypothesis that the between-experiment difference is due to
differences in saliency and that in typical VWM experiments
saliency is (unrealistically) high.

Pedale and Santangelo (2015) observed that when objects
much more salient than the rest were present in a scene, over-

2Both t tests are Welch’s t test (Welch, 1947) as variances were
unequal.



WORKING MEMORY IN COMPLEX SCENES 9

all performance declined, indicating that high-saliency ob-
jects exhaust VWM resources (see also Krüger, Tünnermann,
& Scharlau, 2017). “Exhausting resources” when saliencies
are highly heterogeneous within a display could mean one of
two (nonexclusive) things: First, resources are re-distributed
in that salient objects capture more resource, leaving less
for the remaining ones, or second, some resource is indeed
wasted in that less information is stored in total. Due to their
binary measure of whether an object was later on reported
or not, Pedale and Santangelo could not differentiate be-
tween these two possibilities: in line with the first option, re-
distribution might have pushed some medium-saliency items
below some reporting threshold and memory for the most
salient objects was anyway so far above that threshold, so
that the extra boost did not impact its recall. As a conse-
quence observed results would mimicking those predicted by
the second option. Owing to the sensitivity of the continuous-
report task for fine changes in the distribution of VWM re-
source our data provide evidence for the second option (with-
out excluding the first): overall performance was higher in
the same (= homogeneous) than in the mixed (= heteroge-
neous) condition of Experiment 2, indicating that less over-
all resource was allocated to relevant objects in 12° same dis-
plays compared to 45° same displays. This could mean that
either less resource was available or that resource was more
likely allocated to non-targets.

The latter assumption of improved selection efficacy for
salient objects is more intuitive to us, because it allows as-
suming that the amount of available VWM resource is con-
stant. Interpreting our results in terms of improved selection
efficacy would also explain the apparent discrepancy to ear-
lier findings. In particular, Klink et al. (2017) found that the
effect of saliency vanished completely when all relevant ob-
jects within a display were of the same saliency (see also
Bays et al., 2011, Exp. 4). As discussed in more detail above
and similar to most VWM studies, Klink et al. had partic-
ipants remember isolated objects (Gabor patches on a gray
background, Fig. 1c). Thus, in contrast to the present study
and in contrast to real-world scenes, Klink et al. displays did
not contain any irrelevant objects that could potentially draw
VWM resource.

Notwithstanding the above, participants’ ability to select
relevant information as measured with other tasks (filtering
ability) is correlated with performance in standard VWM
tasks, even if only a handful of isolated, all relevant objects
is presented (Gaspar, Christie, Prime, Jolicœur, & McDon-
ald, 2016; A. M. Liesefeld et al., 2014; McNab & Kling-
berg, 2008). This has been interpreted as indicating that some
VWM resource is wasted on other aspects of the environment
(Awh & Vogel, 2008) or mind wandering (Adam, Mance,
Fukuda, & Vogel, 2015). Examining to which degree the ver-
tical bars in our design are processed might provide a means
to quantify the former consumption of VWM resource by

irrelevant aspects of the visual environment in future studies.
Having established an effect of saliency on the distribu-

tion of VWM resource, we may speculate on the reasons for
this effect, also drawing from the exploratory mixture-model
analysis: One possibility is that all objects are processed in
parallel but with faster processing rates for more salient ob-
jects, so that by the time the display vanishes (from iconic
memory) more information has been accumulated for more
salient objects and these are therefore represented more pre-
cisely (Bays et al., 2011; Magnussen, Greenlee, & Thomas,
1996; Wilken & Ma, 2004). This idea would, however, pre-
dict an effect of saliency on sd rather than the observed ef-
fect on pmem (see below for a parallel-processing theory that
predicts an effect on pmem). While this mismatch might alter-
natively indicate that the applied model is invalid, our results
do at least not strongly support this possibility.

Another possibility in line with an effect on pmem and
based on a serial-processing model is that the more strongly
tilted objects are found and attended earlier, so that they are
more likely processed and/or consolidated (see Gegenfurtner
& Sperling, 1993; Shibuya & Bundesen, 1988; Vogel, Wood-
man, & Luck, 2006; Woodman & Vogel, 2005). Indeed, it has
been shown that saliency determines the order of attention
allocations if all attended objects are task-relevant (Christie,
Spalek, & McDonald, 2018; Woodman & Luck, 1999) and
sometimes even if the more salient object is task-irrelevant
(H. R. Liesefeld et al., 2017). As a consequence, time might
have often been insufficient to attend and process the lower-
saliency objects at all, thus producing an effect on pmem.

In line with a temporal bottleneck, previous studies have
found that effects of saliency decrease and eventually vanish
with prolonged encoding times (Bays et al., 2011; Klink et
al., 2017). Future studies examining this issue with our de-
sign should keep in mind that effects of encoding time would
also be predicted if the initial influence of bottom-up factors
is overcome by top-down factors after a while (Theeuwes,
2004; Ye et al., 2017) and that with long encoding durations
the influence of categorical (probably non-visual) represen-
tations might increase (Bae & Luck, 2019; Hardman et al.,
2017). In any case, the 350 ms employed here are about as
much if not more than a typical fixation lasts, so that our task
would mimic the temporal limits on VWM encoding typical
in real life (Aagten-Murphy & Bays, 2018; Schneider, 2013).

These temporal limitations are also typical for the bulk of
previous VWM studies, so that the apparently unsystematic
variation across trials prominently pointed out before (Foug-
nie et al., 2012; van den Berg et al., 2012) might, in fact,
be in large part due to variations in saliency. The small ef-
fects in Experiment 3 showed that variation in eccentricity
does likely not contribute much to this variability. However,
if not manipulated systematically, variation in color (that is
necessary when VWM for color is probed) might result in
strong variation in saliency due to variation in contrast to
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the background and due to interactions between adjacent ob-
jects. This possible contribution of uncontrolled variation in
saliency to variation in VWM performance needs to be ad-
dressed in future studies.

The probably most comprehensive account of our results
comes from the Theory of Visual Attention (TVA, Bundesen,
1990; Bundesen et al., 2005, 2011; Schneider, 2013), which
is compatible with our findings to a surprisingly high de-
gree (given that we did not set out to test the TVA). Indeed,
with its central notion of a priority map determining the rate
of processing, TVA provides an excellent framework to in-
terpret the data from our newly devised task: According to
TVA, the rate of processing during a parallel race determines
whether an object gets one of the limited slots that hold ob-
jects in VWM. As the number of relevant objects in our study
(3) is below the number of memory slots assumed by the
TVA (4), the critical bottleneck here is likely not the over-
all available amount of VWM resource (slots) but the time
it takes to fill each individual slot (to distribute the VWM
resource). Previous TVA studies have estimated processing
capacity for highly overlearned and categorical letter stim-
uli at around 60 Hz (objects/s) (parameter C; Krüger, Tün-
nermann, & Scharlau, 2016; Krüger et al., 2017; Nordfang,
Dyrholm, & Bundesen, 2013). Thus, if only relevant objects
were processed and if processing was equally fast, the avail-
able time would be sufficient to process all objects (only 50
ms would be needed). This would indicate that processing
capacity is lower for the continuous color of objects (the fea-
ture that was probed here, and in many typical VWM stud-
ies) compared to the letter identity probed in typical TVA
studies. Furthermore, the irrelevant, vertical bars might also
consume processing capacity or VWM slots (as already spec-
ulated above). Future studies will have to examine the impact
of irrelevant non-salient objects and the interaction between
saliency and the temporal dynamics of loading VWM.
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Supplement

The analyses in the main article focus on the raw recall
error. Another approach to analyze this type of data (which
is not without critiques, see Ma, 2018) is to fit a model to
the data to disentangle the sources of recall error. One par-
ticular model (Zhang & Luck, 2008) assumes that the recall
error arises from two sources represented by two parameters.
The first parameter is the probability that the probed object is
present in memory (pmem). If the probed object is in memory,
the second parameter reflects the precision of its representa-
tion (sd); higher sds indicating lower precision. If the probed
object is not in memory, the response will be made randomly.
Statistical analyses on the parameters of this model (using the
MemToolbox; Suchow et al., 2013, https://memtoolbox.org/)
are described in the paper for Experiment 1, and given here
for Experiment 2 and Experiment 3.

Experiment 2

In mixed displays (Table S1, S3), the results for pmem repli-
cated those of Experiment 1, with the pmem for 12° probes
being lower than for 28° probes and pmem for 28° probes be-
ing significantly lower than for 45° probes. However, while
no significant effect on sd was observed in Experiment 1,
here we found a significant difference in sd between 28°
probes and 45° probes (this effect was non-significant and
Bayesian evidence was indecisive in Exp. 1). Notwithstand-
ing this small effect, the results also clearly show that the
huge effect in response error reported in the main text is
largely due to an effect on the probability that the probed
object was in memory rather than an effect on the precision
of this representation.

For same displays (Table S1, S4), the only significant dif-
ference was in pmem between 12° and 28° probes. Although
the effect on pmem between 12° and 28° probes was non-
significant and inconclusive, it was still clearly larger than
the respective effect in sd. In fact, we found moderate evi-
dence in favor of the null hypothesis suggesting that there
was no difference in sd either between 12° and 28° probes or
between 28° and 45° probes.

When comparing the two types of displays (Table S1, S5),
there was a significant and highly convincing difference for
pmem in 12° displays and a significant difference (moderately
convincing) for sd in 45° displays. Finally, there was moder-
ate evidence for the null hypotheses for pmem in 28° displays
and for sd both in 12° displays and 28° displays.

Table S1
Estimated Model Parameters for Experiment 2.

95% CI
Param − Tilt Display Mean SD Lower Upper

pmem − 12° Mixed 40.09% 20.67 32.95 47.22
Same 52.51% 18.71 45.38 59.65

pmem − 28° Mixed 66.41% 19.41 59.28 73.55
Same 68.39% 21.67 61.25 75.52

pmem − 45° Mixed 75.02% 15.53 67.88 82.16
Same 71.82% 21.94 64.68 78.95

sd − 12° Mixed 29.75° 12.95 26.56 32.94
Same 26.53° 8.60 23.34 29.71

sd − 28° Mixed 27.84° 10.43 24.65 31.02
Same 27.74° 8.30 24.56 30.93

sd − 45° Mixed 23.63° 4.65 20.44 26.81
Same 26.76° 6.52 23.58 29.95

Experiment 3

For Experiment 3 (Table S2, S6), there was a significant
difference in pmem between the middle and the inner ring.
There was also a significant difference in sd between the
outer and the middle ring. Finally, there was moderate ev-
idence for the null hypothesis of no difference in pmem be-
tween the outer and the middle ring.

Finally, when comparing the pooled results from Exper-
iment 1 and 2 to the results from Experiment 3 (Table S7),
pmem was significantly higher in Experiment 3 but sd did not
differ reliably. This holds true even if the pooled results were
compared to the middle ring (the eccentricity on which the
tilted bars were presented) of Experiment 3.

Table S2
Estimated Model Parameters for Experiment 3.

95% CI
Param − Ring Mean SD Lower Upper
pmem − Outer 81.04% 10.92 77.87 84.21

pmem −Middle 81.94% 9.53 78.77 85.11
pmem − Inner 86.25% 6.72 83.08 89.42
sd − Outer 26.64° 4.17 25.10 28.17

sd −Middle 24.58° 4.02 23.04 26.11
sd − Inner 23.59° 5.10 22.05 25.12

https://memtoolbox.org/
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Table S3
Paired Samples t Tests on Model Parameters for Mixed Displays

Test statistic df p dz
pmem 12° pmem 28° Student’s t 9.66 30 < .001 1.73 [1.17, 2.29]

BF10 9.83e+7
pmem 28° pmem 45° Student’s t 4.71 30 < .001 0.85 [0.43, 1.25]

BF10 456.21
sd 12° sd 28° Student’s t 0.87 30 .390 0.16 [−0.20, 0.51]

BF01 3.68
sd 28° sd 45° Student’s t 2.41 30 .023 0.43 [0.06, 0.80]

BF10 2.26

Table S4
Paired Samples t Tests on Model Parameters for Same Displays

Test statistic df p dz
pmem 12° pmem 28° Student’s t 6.84 30 < .001 1.23 [0.75, 1.69]

BF10 1.11e+5
pmem 28° pmem 45° Student’s t 1.83 30 .077 0.33 [−0.04, 0.69]

BF01 1.19
sd 12° sd 28° Student’s t −0.68 30 .504 −0.12 [−0.47, 0.23]

BF01 4.23
sd 28° sd 45° Student’s t 0.73 30 .468 0.13 [−0.22, 0.48]

BF01 4.07

Table S5
Paired Samples t Tests on Model Parameters for Mixed vs Same Displays

Mixed Same Test statistic df p dz
pmem 12° pmem 12° Student’s t 4.38 30 < .001 0.79 [0.38, 1.19]

BF10 201.01
pmem 28° pmem 28° Student’s t −0.73 30 .472 0.13 [−0.48, 0.22]

BF01 4.09
pmem 45° pmem 45° Student’s t 1.36 30 .185 0.24 [−0.12, 0.60]

BF01 2.27
sd 12° sd 12° Student’s t 1.04 30 .307 0.19 [−0.17, 0.54]

BF01 3.19
sd 28° sd 28° Student’s t 0.04 30 .969 0.01 [−0.35, 0.36]

BF01 5.22
sd 45° sd 45° Student’s t −2.26 30 .012 −0.48 [−0.85,−0.10]

BF10 3.70

Table S6
Paired Samples t Tests on Model Parameters for Experiment 3

Test statistic df p dz
Outer pmem Middle pmem Student’s t 0.83 33 .413 0.14 [−0.20, 0.48]

BF01 3.96
Middle pmem Inner pmem Student’s t 3.60 33 .001 0.62 [0.25, 0.98]

BF10 31.12
Outer sd Middle sd Student’s t 3.51 33 .001 0.60 [0.23, 0.96]

BF10 25.24
Middle sd Inner sd Student’s t 1.89 33 .067 0.32 [−0.02, 0.67]

BF01 1.11
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Table S7
Independent Samples t Test on Model Parameters for Experiments 1 & 2 vs. Experiment 3

All rings Test statistic df p Cohen’s d
pmem Welch’s t 6.90 58.44 < .001 1.55 [1.01, 2.08]

BF10 1.01e+6
sd Welch’s t −0.84 70.85 .403 −0.20 [−0.65, 0.26]

BF01 3.08
Middle ring

pmem Welch’s t 6.29 64.53 < .001 1.42 [0.90, 1.93]
BF10 1.47e+5

sd Welch’s t −1.10 71.14 .277 −0.25 [−0.71, 0.20]
BF01 2.49
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