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ABSTRACT Nowadays, scholars dedicate a substantial amount of their work to the querying and browsing
of increasingly large collections of research papers on the Internet. In parallel, the recent surge of novel
interdisciplinary approaches in science requires scholars to acquire competencies in new fields for which
they may lack the necessary vocabulary to formulate adequate queries. This problem, together with the
issue of information overload, poses new challenges in the fields of natural language processing (NLP) and
visualization design that call for a rapid response from the scientific community. In this respect, we report
on a novel visualization scheme that enables the exploration of research paper collections via the analysis
of semantic proximity relationships found in author-assigned keywords. Our proposal replaces traditional
string queries by a bag-of-words (BoW) extracted from a user-generated auxiliary corpus that captures the
intentionality of the research. Continuing on the line established by other authors in the fields of Literature
Based Discovery (LBD), NLP and visual analytics (VA), we combine novel advances in the fields of NLP
with visual network analysis techniques to offer scholars a perspective of the target corpus that better fits
their research interests. To highlight the advantages of our proposal, we conduct two experiments employing
a collection of visualization research papers and an auxiliary cross-domain BoW. Here, we showcase how
our visualization can be used to maximize the effectiveness of a browsing session by enhancing the language
acquisition task, which allows an effective extraction of knowledge that is in line with the users’ previous
expectations.

INDEX TERMS academic corpora, digital humanities, document exploration, human-computer interac-
tion, knowledge elicitation, latent semantic analysis, literature-based discovery, visualization

I. INTRODUCTION
A. THE PROBLEM OF INFORMATION OVERLOAD

IN recent times, the adequate planning and scoping of
research efforts has become a key task in academia. For

this reason, scholars from all disciplines spend more time
seeking an adequate strategic position within a research body
that allows them to develop their work according to practical
societal needs and expectations. In this context, the usage
of electronic scientific databases has become a widespread
practice among scholars worldwide. However, this task is
inevitably increasing in difficulty as databases increase in
size. For this reason, there is a current effort within the scien-
tific community to systematize and automate the production
of literature reviews on practically the totality of topics in

science. The purpose of these kinds of publications is to
collect and critically analyze multiple existing studies related
to a given set of research questions to offer an exhaustive
summary of the literature to the interested reader [1], [2].
The main reason for their popularity lies in their ability to
provide scholars with the necessary foundations to start a new
research endeavor, removing the need for performing a read-
ing in full of the existing literature to get insight on a given
discipline. An essential step of literature reviews resides in
the selection of sources that are obtained utilizing textual
queries launched against an online database. An accepted
common approach is that these results are categorized and
kept if they match specific inclusion criteria defined by the
researcher. However, this procedure presents certain flaws
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that we identify at the beginning of our study and we aim to
resolve. Firstly, while online search tools have been greatly
enhanced in recent years and they generally succeed at the
task of retrieving scientific publications from online sources,
the usability of these tools in certain research contexts still
is at stake due to the vast complexity and size of available
collections, which may become overwhelming for the user.
This problematic, known as information overload, is a long-
standing issue in science that we describe here by quoting
words of David M. Blei, one of the creators of the popular
topic model Latent Dirichlet Allocation (LDA) [3]: "As more
information becomes available, it becomes more difficult to
find and discover what we need." In relation to this matter,
the task of fitting results retrieved from online search engines
into a coherent picture is hard to achieve [4]. In our opinion,
this unwanted behavior may be partially due to the high
difficulty of expressing the nuances of the research aim in
a textual query, a fact that limits the browsing experience to
receiving a series of keyhole views of the subject under study
that scholars are left to interpret.

B. LANGUAGE AND INTERDISCIPLINARITY
Resulting from the increasing specialization of science, many
researchers have turned their attention to other disciplines
seeking help in the solving of research questions in a
great variety of subjects. For these reasons, it has become
more common to find multidisciplinary teams collaborating
towards achieving the same research aim. Therefore, this
particular configuration poses specific challenges that need
to be addressed at all levels of collaboration. Within this
collaboration, the use of language and the acquisition of
communication skills has been identified as key in the devel-
opment of interdisciplinary research. [5]. Therefore, this fact
calls for the application of state-of-the-art linguistic models
to 1. enable meaningful interpretations of vast amounts of
scientific literature at once, and 2. rapidly acquire domain-
specific language that facilitates cross-domain communi-
cation between stakeholders. This problematic provides a
conceptual framework for our work. Our method enables
the extraction of relevant, non-obvious knowledge from a
large document corpus through a high-level query expression
(a bag-of-words) that is supplied by an auxiliary or query
corpus. In the context of multidisciplinary research, it aims
at providing the user with a purposeful perspective of the
target corpus that could be employed as a starting point in
a hypothetical new research effort.

C. ANALYZING THE MEANING OF KEYWORDS
In order to provide a successful automatic implementation
of the ABC model in the domain of the Computer Science
(CS), we rely on a semantic analysis of the author-assigned
keywords in the collection. While probabilistic and predictive
models, such as LDA or word2vec, have been successfully
applied in the past to measure semantic document similarity
through co-citation or co-authorship analyses [6], current
literature is scarce on approaches that model the semantic

space of author-assigned keywords. Subsequently, centering
the analysis task on author-assigned keywords presents its
own challenges that differ from those related to other sorts
of co-occurrence analysis that we aim to address in this
research. For example, keywords are a very sparse feature
of research papers, which implies that only a small portion of
the phenomena is present in each observation. This particu-
larity renders probabilistic and predictive semantic models,
inadequate in the context of narrow-domain research, in
which the reduced size of available literature and the absence
of a gold standard dataset may be limiting factors for the
analysis. Particularly in the case of predictive models, highly
sparse and small-sized corpora may produce overfitting is-
sues that cannot be easily resolved by manual or automatic
means [7]. Moreover, augmenting the size of the corpora
could broaden the scope of the research topic too much in
those contexts, risking the generation of relevant results.

Whereas some other works rely on automatically extracted
addressed by performing an automatic keyword extraction
based on the papers’ abstracts or full texts, in this study we
employ author-assigned keywords as the main input for our
analysis method because 1. We assume that they provide the
best and most concise possible description of the contents
of a paper that can be easily retrieved by automatic means
from a majority of scientific publications and databases; 2.
They effectively retain the original authors’ intentionality
because they are not constrained by any taxonomy imposed
by publishers or other third-parties, which has an immediate
positive impact in the acquisition of fine-grained, domain-
specific language uses; and 3. Author-assigned keywords do
not introduce added complexity (i.e., preprocessing, clean-
ing, extraction, model validation) on the analysis task, which
we felt could fall out of scope for a first approach to the
problem. Regarding this matter, we refer the reader to Section
VI, in which we discuss some futures lines of work that
aim to incorporate automatically generated keywords into our
visualization scheme.

The main contributions of this paper are outlined hereafter:
First, we propose a semantic analysis of author-assigned
keywords found in the primary and auxiliary corpora to form
a set of keyword vector representations from which we derive
proximity data. Second, we provide a method to organize
and visualize proximity data in such a manner that it enables
a meaningful exploration of local structures found in the
proximity data. Finally, we represent the original documents
in the semantic space defined by the keywords, which has
the positive effect of providing a close-loop view of the
target collection to the user. This procedure is explained in
this paper as follows: In section II we introduce relevant
contributions that have inspired our work. Here, we also
introduce Latent Semantic Analysis (LSA), the distributional
semantic model that we employed to generate a vector space
model (VSM) of author-assigned keywords. Section III de-
scribes the auxiliary and main corpora that were used during
our experiments. In IV we describe the transformations and
algorithms that were applied to the data in order to obtain
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a joint visualization of the keywords and documents spaces,
which is exemplified in Section V with two use-cases in the
context of the interdisciplinary field of visualization in the
Digital Humanities (DH). Our contribution is completed by
outlining known limitations of our method and future lines of
work (Section VI) and finally by providing some conclusions
in Section VII.

II. RELATED WORK
Our work is inspired by other previous research in the ar-
eas of information science, NLP, interactive exploration of
research paper collections and visualization of proximity data
derived from LSA models. Below, we introduce a selection of
past contributions in these areas that have greatly influenced
the work presented in this paper.

A. LITERATURE-BASED DISCOVERY
At the beginning of our study, we identified Literature-Based
Discovery (LBD) as a potential solution to the problems of
information overload and interdisciplinary vocabulary acqui-
sition previously presented. LBD is a widespread knowledge
extraction technique that was introduced in the 1980s by
Don R. Swanson, an American information scientist who
made important contributions in the biomedical domain. The
main idea behind this form of discovery, namely the ABC
Model, is not to generate new knowledge through laboratory
experiments, but rather it seeks to unveil existing connections
in a body of literature that were previously unknown to the
scientific community. The procedure employs a syllogism
to identify potential knowledge associations in two disjoint
bodies of scientific literature. Given two concepts A and C
pertaining to the two bodies respectively, the model finds A
and C are related if they both relate to another intermediate
concept B. Swanson employed this simple technique to make
several relevant medical discoveries, such as the effectiveness
of fish oil as a treatment for Raynaud’s disease (a circulatory
disorder) [8], among others [9]. The ABC model supports
two variants for open and closed discovery (Figure 1). In the
open discovery mode, the process is started with an initial
user-provided term to detect interesting term associations
B and C and it is often employed to generate hypothesis.
Conversely, in the closed variant the user initially defines two
concepts, A and C, and the model reveals hidden associations
(B-concepts). This second approach is generally used for
hypothesis testing and validation [10], [11]. Our proposal
aims to enhance the first variant of the ABC model and
tries to go beyond typical co-word analysis by incorporating
semantic analysis techniques. Throughout the rest of this
paper, we will refer to A, B and C terms as query, link, and
target, respectively.

While LBD was initially performed by manual means,
different computational and semantic analysis techniques
have been applied in the past to automate the process. Among
these contributions, we highlight two that are specially rele-
vant to this study: the works by Gordon and Dumais [12]
and Cameron et al. [13]. In the first case, the authors employ
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FIGURE 1. Open and closed discovery models in Swanson’s ABC Model [8].
Our proposed visualization scheme enables automatic open LBD in
narrow-domain research contexts. (Figure adapted from [11]).

LSA to drive the LBD process in a collection of Medline
documents. In the second case, the authors make use of
graph-based approaches to generate bridging or link terms
under the close variant of LBD. In this contribution, we draw
from similar graph filtering and representation techniques of
proximity data (Section II-C) to propose a visually-enabled
LBD in the CS realm, as opposed to a majority of past
contributions that were limited to the biomedical domain.
Furthermore, and in contrast to the works presented in this
section, our work seeks to enhance the LBD process by
proposing visualizations that assist the user in the task of
jointly learning an embedding (Section IV).

B. VISUAL ANALYTICS OF SCIENTIFIC LITERATURE
Visual exploration of scientific literature collections is a
topic that has been addressed extensively in the past by
several different means, being the analysis of multivariate
data one of the most popular approaches taken by scholars
in this field [1], [2]. Many of these contributions propose
interaction techniques to filter, aggregate and browse a cor-
pus of research papers employing derived metadata such as
publication year, affiliation, authors and keywords, to name a
few. Employing these techniques, in [14], [15] the authors
propose VA systems to support and disseminate literature
reviews. Going beyond the display and filtering of metadata,
current literature is also abundant on examples of document
exploration supported by network analysis techniques, which
mainly rely on the construction of co-occurrence matrices
from authorship [16], citation [17] and keyword data in the
corpus. In the simplest cases, the exploration of the co-
occurrence matrix is enabled by covariance studies [18] of
the events in consideration with the goal of unveiling the
underlying patterns of interest in the data. Whereas these
kinds of statistical analysis may be useful enough to pro-
duce quantitative mappings and visual displays of scientific
corpora, scholars must rely on ad-hoc interpretations of the
results obtained, which may be prone to bias and error. This
issue is usually addressed by more complex NLP techniques
that facilitate the understanding of the underlying semantics
of the collection. In this regard, CiteRivers [19] demonstrates
the advantages of entropy analysis in the discovery of ci-
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tation patterns. Similarly, [20] combines network analysis
techniques with a textual importance index to produce den-
drograms and graph visualizations of citation patterns. Metro
Maps [4] measures coherence and coverage on documents
to produce visual summaries of query results in an online
scientific database. One major drawback we detected in these
proposals is that they rely on the usage of a single text query
to obtain their initial results. In our approach, this simple
query string is replaced by an entire auxiliary corpus that is
used as a complex query expression through which the target
collection can be seen.

Continuing with the analysis of scientific literature via
linguistic models, the surge of novel linguistic models such as
Latent Dirichlet Allocation (LDA) [3] or Skip-gram Negative
Sampling (SGNS) [21] has also had a profound impact on the
design of visual document exploration tools. ParallelTopics
[22] utilizes LDA to enable users to interactively explore a
collection of research papers. Termite [23] allows the interac-
tive refinement of topic models in a dataset comprising more
than 14,000 publications. UTOPIAN [24] achieves similar
results through Non-negative Matrix Factorization (NMF)
of keywords, documents, and topics, producing embeddings
that are ultimately projected in a 2D space node-link dia-
grams. Notably, cite2vec [25] achieves a joint projection of
keywords and documents by capturing citation contexts in
word vector embeddings. Among these works, it is a common
practice to employ dimensionality reduction techniques such
as T-SNE to project the semantic high-dimensional space into
the 2D plane producing general perspectives of the dataset.
Despite T-SNE is able to preserve many interesting qualities
of the semantic space, projecting the entire keyword space
into the same display makes the appreciation of details in
proximity data a harder task to achieve, even if the appro-
priate interaction techniques are correctly applied. Rather,
our approach focuses on producing visualizations in which
overlapping or redundant terms are removed while preserving
interesting qualities of the topology of the semantic space
that the user is interested in exploring. In this way, we focus
on the display of local structures found in proximity data
derived from the semantic space, which has a positive effect
on the understanding of subtopics and other fine-grained
information.

C. VISUALIZATION OF PROXIMITY DATA
The visualization of proximity data has also been addressed
extensively in the literature. Worth noting is the graph-
based psychometric scaling technique known as Pathfinder
Network Scaling [26]. Pathfinder Network Scaling aims to
reveal structural patterns in proximity data by means of a
graphical network representation known as Pathfinder Net-
work (PFNET). PFNETs have been successfully employed
in a great variety of contexts such as Geoscience [27],
Biomedicine [28] or Software Engineering [29], to name a
few. Other authors have found the adequacy of PFNETs to
represent different cognitive structures and mental models to
explain and enhance the learning process at undergraduate

and expert levels [30]–[32]. The use of PFNETs to create
visual science maps is also well documented in the literature.
The majority of these studies rely on the construction of
co-citation networks by different means that are ultimately
visualized in a PFNET. The authors in [33], [34] combine
co-citation and PFNETs to support the process of literature
review with the aim of identifying new research opportu-
nities. In a similar approach to ours, the authors in [35],
[36] employ LSA and PFNETs to construct visualizations
of academic corpora. PFNETs, however, focus on providing
a general picture of the similarity matrix, producing large
visualizations that may not be adequate to jointly explore
keywords and documents as we propose in this research.
Although we draw some concepts from PFNETs such as the
use of force-directed layout algorithms to visualize proximity
data, our solution is specifically designed to resolve the chal-
lenges of interdisciplinary research by producing a coherent
joint projection of keywords and documents found in local
structures, rather than providing general overviews.

D. LATENT SEMANTIC ANALYSIS
In previous sections, we discussed some of the properties
of author-assigned keywords and the reasons why we chose
them as the basis for our study. Given the inadequacy of
generative and predictive models, we selected Latent Seman-
tic Analysis (LSA), a distributional semantic model (DSM)
to define a semantic space of keywords. LSA is a theory
of language and distributional semantic model that extracts
and represents the contextual-usage meaning of words by
applying statistical calculations to a corpus of text [37].
LSA (or LSI, for Latent Semantic Indexing, as it is known
in the information retrieval community) assumes that the
occurring patterns of words in a variety of contexts are able
to determine the degree of similarity among such words [38].
LSA is a fully unsupervised method that, unlike the case
of predictive semantic models, does not employ any knowl-
edge base or human-generated dictionary. Rather, it relies
solely on the analysis of raw text. Because LSA originated
in the psychology community, since its beginnings it was
thoroughly evaluated to measure its accuracy in replicating
human judgments of meaning similarity [39]. The similarity
estimates derived by LSA are not based on simple contiguity
frequencies or co-occurrence, but rather they depend on a
deeper statistical analysis that extracts the underlying seman-
tics from a corpus. This kind of analysis has the positive
effect of producing results that are conceptually similar in
meaning to a given query term even if these results do not
share specific words with the search criteria. Beyond that,
some authors have stressed the role of LSA as a fundamental
computational theory of the acquisition and representation of
knowledge that is closely related to the inductive property
of learning, for which people seem to acquire much more
knowledge than appears to be available in experience [40].
Although previous visualization schemes have been proposed
to better understand LSA models [41], ours is, to the best of
our knowledge, the first to apply these techniques in com-
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bination to Swanson’s ABC model introduced in previous
sections.

1) Singular Value Decomposition
To produce a semantic analysis of the words in a corpus,
LSA makes use of a well-known linear algebra matrix de-
composition method called Singular Value Decomposition
(SVD) that we briefly summarize for the reader hereafter:
SVD is used to decompose a given matrixM into the product
of three matrices UΣV T , where U and V are orthonormal
(UTU = V TV = I) and Σ is a diagonal matrix of sorted
singular values of the same rank r as the input matrix. Let
Σk, where k < r, the diagonal formed by the k first singular
values of Σ and let Uk and Vk be the matrices that result from
keeping only the first k columns in U and V . The matrix
M̂ = UkΣkV

T
k is the rank k matrix that minimizes the

Frobenius norm between the input matrix M and any other
rank-k matrix, i.e. M̂ ∈ argmin‖M −M̂‖F . This is, the re-
sulting matrix is the best k-dimensional approximation to the
original in the least-squares sense (minimizing covariance).
Lately, SVD has again gained interest in the NLP community
due to recent studies [42] that prove that dense word vectors
resulting from this factorization have similar properties to
those obtained from the word embedding optimization of pre-
dictive models [21]. Furthermore, these vectors have proven
to excel in word-similarity tasks while minimizing hyper-
parameter tuning [7], [43], which is another controversial
feature of predictive models [42].

III. DATASETS
Before we continue to explain our proposed visualization
scheme, in this section we comment on two document collec-
tions that were employed during our experiments. In the first
sections, we discussed some of the problems related to the
selection of an appropriate query string during the extraction
phase of mapping studies and literature reviews, which we
aimed to leverage in this work. To this end, we replace this
query string with a bag-of-keywords (BoW) obtained from an
auxiliary corpus. This first BoW represents the intentionality
of the research; this is, it provides a high-level semantic
expression that is representative of the kind of knowledge the
researcher is interested in extracting from the target corpus.
We construct this hypothetical situation in the context of two
inherently interdisciplinary bodies of knowledge, DH and
visualization, which we introduce below:

A. QUERY CORPUS: DIGITAL HUMANITIES
VISUALIZATION PAPERS
DH is an interdisciplinary area of scholarly in which com-
putational methods are applied in the resolution of research
questions related to traditional humanities disciplines such as
history, philosophy, linguistics, literature, art, archaeology,
music, cultural studies and social sciences. This process
usually involves the "application of developed computational
methods" [44] in a variety of fields of computer science, such
as topic modeling, digital mapping, text mining, information

retrieval, digital publishing or visualization, in "novel and
unexpected ways" [44]. Particularly, in recent years visual-
ization has become a hot topic in DH as evidenced by the
increasing number of visualization-related submissions to the
annual DH conference. This surge has also had an impact
on the visualization community, who have turned their at-
tention to the DH as a vibrant new area of application for
novel visualization techniques. An excellent example of this
recent interest is the Workshop on Visualization for the DH
(VIS4DH) 1, which has taken place as a parallel session to the
IEEE Vis Conference since its first edition in 2016. One of
the recurrent discussions of this workshop has orbited around
the idea of how to produce significant visualization advances
in the context of the DH. Whereas visualization techniques
have been showcased in a large number of computing prob-
lems related to the humanities, some authors have warned of
an increasing tendency in the DH visualization community
to apply standard visualization techniques (such as force-
directed graph layouts or word clouds) to the resolution of
intrinsically distinct research questions. This tendency, as
these authors note, might be impeding the production of
valuable visualization research in the humanities [45], [46]
and therefore they stress the need to incorporate appropriate
methodologies and evaluation techniques into the design
process of the humanities.

According to the context presented in the previous para-
graphs, the first dataset was constructed from metadata de-
scribing papers published in the DH conferences between
years 2015-2018 [47]–[49]. Given the broad range of themes
present in this conference, we limited our search to papers
that fell in the domain of visualization, i.e., papers that con-
tained the word "visualization" either on its title, subject or
any of its keywords. We also completed this data with author
keywords associations extracted from papers presented in the
three editions of the Workshops on Visualization for the DH
between years 2016-2018. This composition ensures that we
have a varied and rich BoW to query a larger, general-purpose
target corpus. The humanities-visualization dataset accounts
for 257 documents, containing 728 unique keywords that
appear a total of 1131 times, which gives an average of 4.40
keywords per paper. In Figure 2 a histogram showing the
frequency of the 20 most keywords is presented.

B. TARGET CORPUS: DATA VISUALIZATION
RESEARCH PAPERS
The second document collection is related to the general topic
of visualization. Visualization is a major research theme in
computer science that relates to the generation of graphics,
diagrams, images and animations that help to enhance the
comprehensibility of the underlying data and computational
algorithms at play in a broad range of computer-related
domains. For these reasons, visualization research papers
provide a rich and variate set of keyword associations to
explore and to connect to other different knowledge domains

1http://vis4dh.dbvis.de/

VOLUME 4, 2016 5



Benito-Santos and Therón Sánchez: Cross-domain Visual Exploration of Academic Corpora

FIGURE 2. 20 most used author keywords in the query
humanities-visualization dataset. Rank-based stop word detection is not trivial
in this case given that some informative keywords (#4 "text analysis", #5
"network analysis") have higher ranks than some stop word candidates (#7
"information visualization" or #12 "visual analytics").

(e.g. the humanities). The dataset comprises of meta-data
from more than 3000 research papers presented at the IEEE
Visualization set of conferences: InfoVis, SciVis, VAST and
Vis from 1990-2018 and it was recently compiled by a group
of experts in visualization [50]. The dataset is publicly acces-
sible 2 and actively maintained and updated by its authors.
Data visualization research papers represent a rich corpus
with multiple connections to other fields of modern science
such as astronomy, sports, humanities, biology and machine
learning, among others. To date, the dataset contains 3102
research papers, of which 2123 contain author keywords. The
number of unique keywords in this dataset is 5108, appearing
a total of 9877 times, which results in an average of 4.64
keywords per paper.

IV. METHOD
Our document exploration method comprises two main
phases: The first involves all the necessary steps to generate a
keyword-to-keyword similarity matrix from a latent semantic
analysis of the corpus. The second phase focuses on the
querying, filtering and visualization of this similarity matrix.
As we introduced in previous sections, our method aims to
remove the need to provide a textual query to extract knowl-
edge from a given target corpus Ct by relying instead on
an auxiliary user-generated query corpus Cq . This distinction
allows us to form two bags of words (BoW), formed by the
keyword associations found in the query and target corpora,

2https://vispubdata.org

which are used as the two main inputs of our scheme. As
we explain in section V, the query corpus can be freely
composed from the user’s reference manager or from any
other source she or he considers relevant to the study. Under
this assumption, we expect the user to be familiar with the
language of the query dataset whereas the target corpus
is to be explored. At the end of the process, our method
allows the user to query the target corpus by using keywords
exclusive to the query corpus, effectively skipping the need
for a language acquisition stage which may be highly time-
consuming.

A. SIMILARITY MATRIX GENERATION
In this section, we provide the details on how our proposed
method generates a distance matrix D from the two BoWs
provided as inputs. The generation of this matrix relies on
the LSA method, with some modifications that we introduce
hereafter: Formally, we want to connect a query corpus
Cq = {dq1 , dq2 , . . . , dqm} to a larger target corpus Ct =
{dt1 , dt2 , . . . , dtn} with n � m. In our scheme, any given
document is assumed to have a variable number j of author-
assigned keywords da = {k1, . . . , kj}

1) Tokenization and Stemming
Prior to the application of the semantic model to our data, we
perform tokenization and stemming on the author-assigned
keywords. In the tokenization process, we split each multi-
term keyword into its constituent parts, which are then
stemmed and ultimately added to the BoW. Note that tokens
appearing twice or more in the same document were counted
as one. We noticed that in our case the inclusion of these
two word pre-processing techniques was highly beneficial
for the following reasons: the first and most obvious is that
it provides an automated manner to match a high number of
different linguistic keyword variations of the same concept
(e.g. singular and plural), a circumstance that, unlike it occurs
in keyword taxonomies, can be observed in uncontrolled
keywords due to their closer proximity to natural language.
Second, it allows the detection and subsequent removal of
embedded stop words: i.e., words that do not carry any real
meaning in the context of the collection and that might not
appear on their own in the corpus. Take for example the
multi-term keywords "visual document analysis" and "visual
citation analysis": Although at a high level these two con-
cepts are clearly related (because they represent two special-
izations of visual analysis), making a more clear distinction
between them might not be immediately obvious if they are
found in a corpus related to VA. In this case, the particles
"visual" and "analysis" can be interpreted as noise because
they do not add value to our understanding of the contents of
the corpus. On the other hand, all three particles could carry
important significance in other contexts.

The significance of a word can be generally explained
by calculating the probabilities of seeing this word in the
whole corpus: the less likely it is for a word to be seen, the
more information can be assumed it carries. Therefore, in the
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multi-term keywords "visual document analysis" and "visual
citation analysis", the discriminant terms are "document"
and "citation" since it is less likely that they appear in the
corpus. Without the tokenization and stemming of keywords,
this fact could go unnoticed by the potential linguistic model
to be applied at a later stage. In addition, the tokenization
and stemming step effectively modifies the distributional
model of all keywords over C. In our context, this had
the following two positive impacts: first, it helped reducing
the sparsity of keywords and second, the new distributional
model of the keywords was better captured by LSA, which
assumes a Gaussian distribution [51]. Although previous
studies [18], [52] employ a power-law distribution to explain
the phenomena of author-assigned keywords, recent studies
also show this kind of distribution may be much rarer than
initially thought [53]. For this reason, we identified as key
to understand the particularities of the distributional model
in order to propose a consistent analysis solution. In Figure
3, the pre (top) and post processing (bottom) distributional
models are shown. We used the Python package "power-
law" [54] to plot the complementary cumulative distribution
function (CCDF) of the empirical keyword frequency data
(black, solid), along with other fitted candidate distributions
(dashed). In our example corpora, we could not find evidence
that author-assigned visualization keywords follow a power-
law distribution, but rather we observed they could be better
fitted to a Gaussian or an exponential distribution. According
to these results, we decided not to base our method on the
analysis of the first k-ranked keywords but rather employ
other statistical artifacts such as LSA.

At the end of the processing step, the resulting tokens
define a vocabulary Vg of size ng that we split into three
disjoint sets: Vq (query), Vt (target) and Vl (link) according
to their provenance, this is, tokens in Vq , Vt and Vl can
exclusively be found in Cq , Ct, or both, respectively so that
Vg

.
= Vq t Vt t Vl.

In our experiments, we performed a manual cleaning in
which we removed obvious typographic errors and standard-
ization of keywords, i.e. the most common form of a key-
word was preferred (e.g. "hci/human-computer-interaction"
or "xai/explainable artificial intelligence"). Stemming was
performed on the keywords using the Porter stemming al-
gorithm [55]. Then, stems matching the expressions "visual",
"digit", "human", "humanit" and "humanist" were discarded
for being the purpose of the study ("visualization" and
"digital humanities"). After tokenization and stemming of
keywords, we obtained 2720 unique keywords that were
distributed among the three considered vocabularies; query,
link and target (|Vq| = 257, |Vt| = 2143, |Vl| = 320).

2) Pointwise Information Matrix
In previous sections, we explained that LSA extracts latent
semantics by factorizing a co-occurrence statistics matrix
M. This matrix can be built via different methods, such as
term-frequency (TF) or term frequency - inverse document
frequency (TF-IDF). In our case, we detected that narrow-

FIGURE 3. Pre (top) and post (bottom) stemming empirical (black) and
theoretical (red: power law, blue: truncated power law, yellow: stretched
exponential and green: lognormal) keyword frequency data CCDFs. Using the
KS-Test we could not find statistically significant evidence in any of the two
cases that supported that keywords followed a power law; neither before
(pa = 0.054, gof = 0.0311) nor after (p = 0.0, gof : 0.0431)
tokenization/stemming. Moreover, we found evidence that these results could
be best described with a stretched exponential, a lognormal distribution or, to
a lesser extent, a truncated power law distribution.

domain corpora produce a great overlapping of insignificant
words (noise) that we wanted to eliminate. To this end, we
relied on a well-known metric of information science, Point-
wise Mutual Information (PMI) [56] because 1. provides an
efficient manner to remove repetitive terms from the analysis
and 2. when used in conjunction with LSA/SVD is capable
of generating linguistic models that excel in distributional
similarity tasks [43]. The usage of the smoothed PPMI matrix
in LSA favors the detection of infrequent and informative
relationships occurring in the high-dimensional semantic
space over uninformative terms. This feature helps to provide
a view of the target corpus that is based on the specifics
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of the user-generated query corpus and to identify keyword
pairs that share a common latent meaning. PMI encodes
the probability for a pair of tokens to be seen together in a
document with respect to the probability of seeing those two
same tokens in the whole corpus. This probability is defined
as the log ratio between w and c’s joint probability and the
product of their marginal probabilities. These probabilities
can be extracted empirically from the corpus by counting
the number of times w and c appear in the same document
divided by the times they can be seen in other documents. In
this paper, we do not consider the order in which the terms
appear within a document and therefore, the word-context
matrix is built solely on co-occurrence. Similarly, the term-
document matrix is a sparse binary matrix whose entries are
defined as B(t, d) = {1 if t occurs in d or 0 otherwise}.

PMI(w, c) = log
P̂ (w, c)

P̂ (w)P̂ (c)
= log

#(w, c) · |CT |
#(w) ·#(c)

(1)

Following recommendations in the recent NLP literature
[43], we employ a smoothed version of the PMI matrix.
During our experiments, we found that setting the smoothing
factor α to 0.95 yielded the best results in the similarity task,
which is in line with observations from other studies [7].

SPMI(w, c) = log
P̂ (w, c)

P̂ (w)P̂α(c)
(2)

where the smoothed unigram distribution of the context is:

P̂α(c) =
#(c)α∑
c #(c)α

(3)

The pairwise results are stored in a Smoothed PMI matrix
MSPMI that matches the original dimensions of F , |VT | ×
|VT |. A common problem with MSPMI is that it contains
entries of the form PMI(w, c) = log 0 = −∞ for word-
context pairs that were never observed. This issue is solved
in the NLP literature by using positive PMI (PPMI), in which
the negative entries are replaced by 0:

M = SPPMI(w, c) =

{
SPMI(w, c) if SPMI(w, c) > 0

0 otherwise
(4)

Once the keywords have been tokenized and stemmed,
the next step of our method relies on counting the number
of times each unique token appears in the query and target
BoWs. Similarly, we calculate skipgram counts in order to
measure the number of times two tokens can be seen together.
The skipgrams count is employed to construct a N × N
sparse matrix in which each cell represents the absolute count
of observed associations between any two given tokens. At
this stage, a binary term-document sparse matrix T is also
created. This binary matrix is employed in the last step of
the method to project the results onto document space and
produce a set of paper recommendations.

With vocabulary Vt we build a square term-context fre-
quency matrix F ∈ R|Vg|×|Vg| and a binary term-document
matrix B ∈ B|Vg|×|Cg|. The word-context frequency matrix
captures how many times two terms appear together in the
corpus. Following [42], this translates into #(w, c) · |Cg|.
For example, if a document contains the following set of
keywords: {social, network, analysis, graphs}, the context of
"social" in this document is {network, analysis, graphs}. Fi-
nally, we retain the provenance of each token by indexing the
square matrix M in the following manner:

Mi =


0 ≤ i < |Vq| ⇐⇒ Mi ∈ Vq
|Vq| ≤ i < |Vq|+ |Vl| ⇐⇒ Mi ∈ Vl
|Vq|+ |Vl| ≤ i < |Vg| ⇐⇒ Mi ∈ Vt

(5)

3) Latent Semantic Analysis

The next step we apply in our makes use of SVD to factorize
the sparse matrix MPPMI. This factorization produces dense
vector representations of the keywords in our dataset and
captures their latent meaning according to the principles
explained in previous sections. Notice that in our case the
input matrix M is the symmetric matrix MSPPMI, because
PMI(w1, w2) ≡ PMI(w2, w1) for any pair of tokens w1

and w2, which results in MPPMI ≈ M̂PPMI = UkΣkU
T
k .

Now, the rows of the resulting matrix Uk are the dense vector
representations of all the keywords in vocabulary VT .

Recent studies [51], [57] support that the selection of
the number of singular values k in SVD has an important
impact on the interpretability of the results: selecting too few
dimensions hinders the extraction of meaningful patterns,
while picking too many could reveal irrelevant connections,
adding noise to the analysis process. During our experiments,
we empirically determined that setting k to the minimum rec-
ommended (50) [51] rendered the best results, although we
are aware that this parameter may vary in other datasets. In
[51], the authors comment that "it has been conjectured that
in many cases, such as language simulation, that the optimal
dimensionality is intrinsic to the domain being simulated and
thus must be empirically determined". Finally, we performed
L2 normalization on the resulting word vectors for ease of
use and performance optimization of the subsequent steps of
our algorithm.

4) Distance Matrix from Dense Word Vectors

One of the most popular (dis)similarity measures employed
in NLP is the cosine of the angle formed by two word vectors
[57]. This measure discards the length of the vectors and
quantifies the difference in their direction in the multidimen-
sional space. We selected this similarity measure because,
as reported by other studies, it is adequate to represent
cognitive similarity beyond simple linguistic similarity [57].
The formula of the cosine is well known and can be applied
easily to the LSA vectors to build a distance matrix D:
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D(x, y) = cos(x, y) =

∑n
i=1 xi · yi√∑n

i=1 x
2
i ·

∑n
i=1 y

2
i

(6)

Analogously, the similarity between two vectors can be
expressed as:

S(x, y) = 1−D(x, y) (7)

As a final step, we employed the similarity matrix S to
detect and merge synonyms (i.e. token pairs with S(x, y) ≈
0), which resulted in a reduction in vocabularies sizes (|Vq| =
176, |Vt| = 1745, |Vl| = 320).

B. ANALYZING INTER-GROUP SIMILARITIES
The second stage of our method focuses on exploring the
similarity matrix S that was obtained in the last step. To
overcome the conceptual distance between the query and
target corpora, we look for structural patterns in the similarity
relationships between keywords in the query vocabulary and
those found exclusively in the target vocabulary. For this task,
we rely on the construction of a complete graph G using the
distance matrix D, which enables us to analyze the similarity
between nodes (tokens) using different scaling techniques
to reduce the complexity of the resulting graph. In order to
map all tokens in Vt to their counterpart in Vq , we identify
the shortest path that connects a token in Vt to any other
token Vq . Formally, we can define the set of shortest paths P ′j
from the token j in Vt to all tokens in Vq as the sequence of
node pairs (ttj , t

r
k1), (trk1, t

r
k2), . . . , (trkl, t

q
i ) with r ∈ {q, l, t}.

Given that all pairs are edges representing distances, the sum
of all distance pairs in a path in P ′ gives the total distance
between the token ttj and every other token in Vq . Therefore,
there exists a shortest path P in P ′ connecting the node ttj
to another node tqi that, by (7), yields a maximum similarity
over all other alternative paths to tokens in Vq . Note that when
|P | = 1, the similarity score sim is equal to the value of the
similarity matrix S at S(tj , ti).

sim(ttj , t
q
i ) = 1−min

P∈P ′
j

{
l∑

k=1

dist(tk, tk+1) | (tk, tk+1) ∈ P}

(8)
By (8), the path Pttj that maximizes the similarity score

sim is a significant path of the target token ttj in G because
it connects it to its most similar counterpart in Vq . These
paths can be easily computed by a multi-source version of
the Dijkstra algorithm.

After all shortest paths have been calculated, we can
group similar nodes by the number of shared links by their
respective paths from Vt to Vq . In this way, the sets of target
nodes that present structural similarities in their relationship
with the query dataset can be grouped together. This builds
upon the idea that nodes related to the same topics have the
likelihood to share more links in the shortest paths that relate
them to tokens in Vq , while the shortest paths of dissimilar

nodes have few or no links in common. [58]. Particularly, the
subgraph resulting from merging two or more shortest paths
with common elements P1, P2 . . . Pn is a spanning tree of
its nodes in G. This procedure is illustrated in Figure 4. On
the left, two shortest paths for tokens tt1 and tt2 are shown.
As |Vt| � |Vq|, some paths will share at least a common
destination token in Vq , t

q
1 in the example. Input paths are

ultimately merged into the same tree Ttq1 .
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FIGURE 4. Shortest paths P (t1t ) (left, top) and P (t2t ) (left, bottom)
connecting tokens t1t and t2t to their closest neighbor in Vq . The proposed
method detects coincident tokens in the resulting paths and constructs the
spanning tree that contains them. This results in a partition of the dataset in
which tokens in Vt are grouped together if they relate to Vq in a similar
manner.

After merging paths with common elements, we obtain
a set of trees T = {T1, T2 . . . Ti} for each token tqi ∈ Vq
present in any path in P . Note that at this point not all tokens
in Vq can be found in T , whereas all tokens in Vt are. The
solution to this issue is trivial and can be solved by adding a
token tjq not present in T to the MST of its nearest neighbor
given that there are not any other shorter paths connecting
tjq to any other token in Vt. At the end of this process,
any tree, or a combination of trees in T , along with related
documents, can be represented in a visualization according
to the procedure outlined in the next sections. In Figure 5
we provide some of the paths obtained by this method in our
experiments.

During our experiments, we were able to generate paths for
138 distinct query tokens. On these paths, the total amount of
1745 target tokens were represented, along with other 85 link
tokens.

Combining Significant Paths
Apart from the visualization of a single tree, our visualization
scheme also supports the combination of two or more query
terms to represent related keywords and documents. Given
that by definition all trees in T are disjoint subgraphs of
G, we can find an MST in G that contains all vertices in
T1, T2, . . . Tn and that presents the minimum edit distance
of all possible MSTs to the sum of all subgraphs. This
reasoning is depicted in Figure 6, where we show the process
of combining the tree of Figure 4, Ttq1 . with another tree Ttq2 .
The tree resulting from the combination of the two paths
has similar properties to any other tree in T and thus can
be displayed in the same manner as we describe in the next
section.
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FIGURE 5. Keyword components (query, link, target) of some of the trees
obtained by our method. Tokens were translated into their original keyword
forms for clarity’s sake. Each tree can be interpreted as a topic formed by a
group of keywords that are highly related to the same element in Vq .
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are combined into
a new path that results from calculating the MST of nodes in the two paths.
This procedure ensures that the two paths are presented in the most coherent
possible way in the visualization.

C. DOCUMENT EXPLORATION VIA KEYWORD
PROXIMITY
In the last stage, the user is expected to provide a set of
keywords to explore the collection. Following the reasoning
explained in previous sections, the user employs keywords
specific to the query vocabulary to obtain affine keywords

and documents from the target corpus. These elements are
presented to the user in a visualization that shows explo-
ration paths related to the input query expression. The user
is then able to progressively form a mental image of the
target corpus by following these paths and optionally perform
further research on the list of document suggestions that are
displayed in the same visualization space. In this section, we
comment on the necessary steps that were taken to produce
this expected output.

The visualization employs a single tree as input, which
can be one of the trees in T if only a single keyword is
provided, or a tree resulting from combining two or more
trees in T . The tree is drawn in the plane using the Kamada-
Kawai layout algorithm [59], where tokens are depicted as
vertices (text) and cosine distances as edges (solid lines)
in the network. Query, link and target keywords are shown
in orange, blue, and green colors, respectively. Tokens are
translated into their original forms to ensure the readabil-
ity of the results. In a subsequent step, the visualization
is completed by representing documents into the semantic
subspace defined by T . Firstly, the TD matrix is filtered to
obtain documents that contain any of the terms in T . Note
that each of the resulting documents may contain one or
more terms (components) of the semantic subspace T . Then,
the documents are projected according to their components’
positions in the plane, as assigned by the Kamada-Kawai
layout (see Figure 7).

t1

t3t2 

t4
d3= { t1, t2, t3, t4...} 

d3

d2= { t3, t4,...} 

d2

d1

d1= {  t1,...} 

FIGURE 7. Documents are projected into the 2D representation of the
semantic subspace defined by T . d1 is projected to its only component in the
subspace, t1. Similarly, d2 contains terms t3 and t4 of and therefore it is
projected at the mid-distance of the link between the two terms. Finally,
documents such as d3 that contain three or more terms are projected at the
centroid of the convex hull formed by the positions of such terms in the plane.

Documents are represented as dots in the visualization
and follow the same color scheme as keywords: Documents
in the query corpus are shown in orange, whereas those
appearing in the target dataset are shown in green. Whenever
two or more documents share the same position in the plane,
they are aggregated in a visual encoding (the size of the
circle). We represent the links between a document and their
related components in the plane with a dashed line, which
facilitates the task of identifying relationships between terms
and documents.

V. EXPERIMENTS
In this section we demonstrate the advantages of our
method with two use-cases framed in the context of vi-
sualization in the DH. These experiments can be repro-
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duced at the following location: https://doi.org/10.24433/
CO.7350089.v1, whereas the code is publicly accessible at:
https://github.com/ale0xb/keywords-vis.

A. DISTANT READING OF SHAKESPEARE’S PLAYS
In the first use case, we show how our visualization scheme
can be used to relate theoretically distant subjects specific
to the humanities to the subject of visualization. Concretely,
we demonstrate how a scholar could extract knowledge
from the target document collection using the query term
"Shakespeare." We retrieve all the shortest paths ending in
"Shakespeare" and plot them in the plane following the
procedure explained in Section IV. The joint documents-
terms visualization is shown in Figure 8.

The visualization is able to preserve similarities in the
high-dimensional semantic space by placing nodes with high
cosine similarity closer in the plane. The term "shakespeare"
is placed at the top of the image. From a first impression, it
can be observed that there are three documents (see Table
V-A) containing the term "shakespeare" in the DH corpus
(shown in orange): Two documents appear at the same posi-
tion as "shakespeare", whereas the third one is shown closer
to the link word "(persistent) homology" (in blue). Other vis-
specific keywords (in green), such as "spine", "cliques" or
"reeb" are drawn next to "shakespeare". These particles in-
troduce the topic of topological data analysis, because docu-
ment DH.3" includes the unexpected term "topology" among
its keywords. On the contrary, the other two documents
(DH.1, DH.2) including the keyword "shakespeare" display
general terms such as "networks", "exploratory" or "social"
that do not generate high similarities in the semantic space
and therefore these are not shown in the graph. Following the
path formed by the terms "reeb" and "homology", the topic
of "topological data analysis" specializes into "persistent ho-
mology", an algebraic method of discerning the topological
features of data, that is another interesting term as found
by our model. Documents "Clique Community Persistence"
(VIS.1) and "Augmented Topological Descriptors of Pore
Networks" (VIS.2) treat this matter in the context of graph
cliques and reeb graphs, respectively. Interestingly, it can be
observed document VIS.1 shares two common authors with
document DH.3 (see full dataset in supplementary materials).

In this case, LSA was able to detect the similarity in latent
meaning between the terms "cliques" and "shakespeare"(
dist(shakespeare, cliques) = 0.1773 ) by employing the
unusual terms "homology" and "topology/topological". This
first example shows the advantages of our proposal: The
algorithm is able to detect the context of "shakespeare"
(social network analysis) and extract relevant terms and
documents that are presented in the visualization. This way
the user can learn about community cliques and persistent
homologies, which are statistically significant to the topic at
hand. Although there are other documents with the keywords
"social network" (7 hits) or "social network analysis" (2 hits)
on the VIS collection, those are mostly related to different
applications such as the mapping of intellectual structures

or visualization of online communities. Furthermore, none
of these manual searches would have returned document
VIS.1, although a close reading of this publication reveals
that its background is "social network analysis", despite the
authors do not state it in their selection of keywords for this
document.

Continuing with other elements placed below "homology"
we can identify documents and keywords related to "persis-
tent homology" and visualization of topologies in a variety
of contexts. The informative term "oct-tree" (a hierarchical
algorithm) is placed at the centre of the polygon formed by
the terms "approximation", "plants", "sets", "voxelization"
and "arrays". For example, the paper "Computing Robustness
and Persistence for Images" (VIS.2) informs on a visualiza-
tion technique to depict the robustness of homology classes
in 3-dimensional images of plant roots. Other documents,
containing only one of the keywords in this polygon could
be regarded as complementary readings to understand the
central idea of the subtopic.

On the right side of the graph, it is worth noting the
link connecting the terms "plant" and "arc" that intro-
duce text visualization techniques which are also rele-
vant to the topic of the analysis of dramatic texts. De-
spite the distance of these two keywords to "shakespeare"
is relatively high ( dist(shakespeare, arc) = 0.6574,
dist(shakespeare, bard) = 0.6773), the design favors the
inclusion of terms that produce documents relevant to the
topic. In this case, the term "plant" provides a context to
present Arc Diagrams (VIS.3), a popular network visualiza-
tion technique to represent repetition patterns found in text
strings. As presented by the author in the original publication,
a natural approach is to apply this technique to analyze DNA
sequences (which explains its proximity to the term "plants").
However, arc diagrams are also highly related to the topic of
text analysis in DH: in his paper, the author demonstrates the
capabilities of his proposal by visualizing musical composi-
tions in a second use case. This finding reveals a technique
that is related to the latent topics of text analysis and graph
visualization and therefore it may be worth considering when
designing a novel visualization in the context of the provided
query term.

B. COMBINING SEARCH TERMS
In the second example, we demonstrate how different search
terms can be combined in the same visualization to obtain a
broader perspective of a given topic, in this case, GIScience
in the Humanities. To obtain the desired effects, we pur-
posely choose two terms "willa" and "racial" to explore the
VIS corpus. Both keywords appear once in two different
publications related to the work of the American writer
and Pulitzer prize winner Willa Cather (1873-1947) and of
Monroe Work (1866-1945), an American sociologist famous
for documenting lynching activity in the United States during
the 19th and 20th centuries. The two contributions rely on
the use of interactive maps and other GIS techniques to map
the intellectual activity of the two individuals, a fact that
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FIGURE 8. Visualization of the tree related to the query term "shakespeare" introducing at the top the concepts "persistent homology" and "topological data analysis".

the authors state in their keywords selection by including
the keyword "gis" (see bottom of Table V-A). This keyword
appears in ten and five publications in the DH and VIS
corpora, respectively. In Figure 9 we depict the word cloud
of the contexts of "gis" in both datasets.

The MST of members in the two paths of "willa" and
"racial" is plotted in Figure 10. The resulting representation
places the query terms close together at the center of the
image. We can identify three main links departing from the
nodes marked in orange which lead to different subtopics

that we discuss below: The shortest path of all displayed
contains only one link (racial, server), and highlights two
papers VIS.4 and VIS.5, being VIS.4 directly related to the
general topic represented by the network while the other
fits better as additional reading. In this case, the algorithm
has detected a component related to web technologies in the
latent meaning of "gis". This effect can also be observed
in the word clouds of Figure 9, where we can find terms
such as "web", "www", "log", "server" or "online". Among
all these associations, "server" presents the closest cosine
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Use
case

Collection ID Title Keywords

1

DH
DH.1 Personae: A Character Visualisation Tool for Dramatic

Texts
visualization, networks, drama, exploratory, shakespeare.

DH.2 Analyzing Social Networks Of XML Plays: Exploring
Shakespeare’s Genres.

social networks,shakespeare, genre, drama, xml.

DH.3 ’Shall I compare thee to a network?’: Visualizing the Topo-
logical Structure of Shakespeare’s Plays.

visualization, shakespeare, social network analysis, topology,
persistent homology.

VIS

VIS.1 Clique Community Persistence: A Topological Visual Anal-
ysis Approach for Complex Networks.

persistent homology, topological persistence, cliques, com-
plex networks, visual analysis.

VIS.2 Augmented Topological Descriptors of Pore Networks for
Material Science.

reeb graph, persistent homology, topological data analysis,
geometric algorithms, segmentation, microscopy

VIS.3 Arc Diagrams: Visualizing Structure in Strings. string, sequence, visualization, arc diagram, music, text, code

2

DH DH.4 Mapping Imagined and Experienced Places: An Exploration
of the Geography of Willa Cather’s Writing.

willa cather, mapping, gis, spatial turn

DH.5 Monroe Work Today: Unearthing The Geography Of US
Lynching Violence.

racial violence, lynching, gis

VIS

VIS.4 Hotmap: Looking at Geographic Attention. geographical visualization, gis, heatmap, server log analysis,
online mapping systems, social navigation

VIS.5 Semotus Visum: A Flexible Remove Visualization Frame-
work

remote visualization, client server

VIS.6 Dynamic Map Labeling map labeling, dynamic maps, human-computer interface, la-
bel placement, label selection, label filtering, label consis-
tency, computational cartography, gis, hci, realtime, prepro-
cessing

VIS.7 Spatial Text Visualization Using Automatic Typographic
Maps

geovisualization, spatial data, text visualization, label place-
ment

VIS.8 Dynamic Visualization of Graphs with Extended Labels graph label placement, dynamic animation, graph visualiza-
tion, information visualization

VIS.9 Particle-based labeling: Fast point-feature labeling without
obscuring other visual features

interactive labeling, dynamic labeling, automatic label place-
ment, occlusion-free, information visualization

VIS.10 An Extension of WIlkinson’s Algorithm for Positioning
Tick Labels on Axes.

axis labeling, nice numbers

TABLE 1. Research papers commented in the description of the two use-cases presented in Section V (Experiments).

distance to "racial" (dist(racial, server) = 0.2749) and
thus it is shown in the visualization. If we look at the upper
part of the graph in Figure 10, it is worth noting the inclusion
of the link keyword "labeling" (in blue), which generates
interesting associations with other nodes in the graph. Next
to the query node "racial" we find a document containing
many of its nearest neighbors: "Dynamic Map Labeling"
(VIS.6). This document is especially important since its ver-
bose keyword description introduces specific subjects related
to map labeling. Following other dashed links starting at
the "labeling" node, we can observe this effect: The link
(labeling, placement) produces two documents (VIS.7 and
VIS.8) plus a third one (VIS.9) surging from the inclusion of
the keyword "occlusion-free". In the same manner, (labeling,
nice) generates a document (VIS.10) that, despite it is not
directly related to the topic of GIS, is deemed relevant
because its contribution relates to the positioning of labels.
Going up, the rest of the path introduces other aspects related
to cartography, such as Mercator projections, digital and
thematic maps and other specific techniques of interest as
found by our method. In the lower side of the graph, the
subtheme is related to the depiction of statistical significance
and autocorrelation in maps, which is ultimately connected to
image mapping and display techniques such as line integral
convolution (LIC).

VI. LIMITATIONS AND FUTURE WORK
During our research, we detected certain limitations in our
method that we outline and link to future lines of work below:
One first obvious yet important limitation of our proposal
is that it depends on an appropriate selection of keywords
by the original authors of the academic papers. Selecting
keywords for a publication is not a trivial task that, in our
humblest opinion, is not paid enough attention. The task of
assigning keywords to a publication presents scholars with
the following dilemma: on the one hand, keywords must be
easily recognizable within the relevant area of knowledge in
order to make the publication discoverable to other scientific
peers. On the other hand, the selected keywords need to
be sufficiently granular to make a given work distinguish-
able from others of similar nature. A right combination of
keywords is a balanced choice that accomplishes these two
objectives at the same time. However, as we could observe
during our investigation, this is not always the case. We often
found relevant papers whose selection of keywords was ill-
defined, a fact that negatively impacted the discoverability
of such publications. A potential solution to this issue to
be explored in further developments was pointed in Section
I-C when we referred to other works [60] that rely on an
automatic extraction of keywords through the analysis of the
papers’ full texts or abstracts. Although the inclusion of these
techniques could partially address the reliability issue in the
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FIGURE 9. Word clouds showing the context of the link keyword "gis" in the
query (top) and target (bottom) datasets. The SPPMI statistics matrix, in
combination with LSA, is able to identify recurrent context terms such as
"map" or "spatial", favoring the establishment of fine-grained affinities that are
not built exclusively on first-order co-occurrence.

primary sources, their impact on the vocabulary acquisition
task needs thoroughly evaluated in future experiments deal-
ing with different research subjects from the one employed
in this study.

Another important limitation of our method is that LSA
cannot handle polysemy (words with multiple meanings)
effectively. It assumes that the same word means the same
concept in the whole corpus, which represents a problem
for words that acquire different meanings depending on

the context they appear. Polysemy is an inherent problem
to interdisciplinary research which unfortunately cannot be
resolved by LSA alone. Whereas the impact of this unwanted
behavior is negligible in small vocabularies such as the one
we employed, we are aware that the stemming procedure
that is applied to keywords might be problematic in big-
ger datasets. During our experiments, this behavior could
be observed in the mismatching of different keywords that
shared a common root but have different meanings (i.e.,
"colonoscopy/colonization" or "factory/factorial"). Some so-
lutions have been proposed in the literature to address this
kind of issue, such as the inclusion of syntactic dependen-
cies in the construction of the PMI matrix [61]. Syntactic
analysis could represent a useful alternative to mark explicit
distinctions between occurrences of the same token in dif-
ferent multi-word keywords, on which a token may play
different syntactic roles (e.g., noun, adjective). In a different
approach, the polysemy problem could also be addressed
through interactive term tagging. The user could generate
new terms by annotating different meanings of the same
token in an opposite approach to synonym detection. Not
only this interactive application would be able to resolve this
problem, but it could also enable a smarter exploration task
in which other parameters could also be live-tuned, such as
the stemming algorithm (e.g., Lancaster, Porter, Snowball),
number of singular values, smoothing factor of SPPMI or
selection of stop-words. For these reasons, the construction
of an interactive application based on the methods explained
in this paper represents a path that we are decided to explore
in the future.

Finally, as we introduced in Section I-C, we will seek to
enhance the LBD process by supporting its close variant,
which will be key to design formal evaluations of our vi-
sualization scheme. Traditionally, the validation of results
obtained in LBD has been achieved by two means: inter-
section [62] and expert evaluation [63]. Our intention is to
combine these methods with well-established interaction and
visualization evaluation practices [64] to further asses the
validity of the showcased techniques and to identify further
requirements for future works in this line.

VII. CONCLUSION
In this paper, we described an automatic method to en-
hance the open LBD process by visual means. The proposed
method allows users to explore author-assigned keywords
and related documents in two disjoints bodies of scientific
literature which can accelerate the discovery of visualization
techniques appropriate for a narrow-domain research interest.
Our approach enables scholars to inspect local structures in
proximity data derived from the latent meaning of keywords,
facilitating both the progressive learning of new concepts and
the acquisition of domain-specific vocabulary in a seamless
manner. Furthermore, the method eliminates the need for a
manual selection of terms to query the collection. Instead,
we rely on a set of keyword associations extracted from an
auxiliary corpus that provides a semantic expression that is
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gabor

occlusion-free

heuristic-based

filtering

spiral

metro
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racial

realtime

consistency

significance
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lic

forward

choropleth

nice

digimap

autocorrelation

server
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proportional

selection

cartogram

mercator
value-by-area

thematic

placement

willa
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Mapping Imagined
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Exploration of the
Geography of Willa

Cather’s Writing
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5 documents

25 documents

26 documents

10 documents

4 documents

3 documents

Surprise! Bayesian
Weighting for

De-Biasing Thematic
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7 documents
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flow visualization

2 documents

Case study:
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rendering
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(VIS.5,VIS.6)
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Routes for Car
Navigation Systems
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Consistency-Preserving

Word Cloud Editing

A two-stage
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designing visual
analytics system in

organizational
environments

Rethinking Map
Legends with
Visualization

Necklace Maps

Flow Map Layout via
Spiral Trees

Exploring Uncertainty
in Geodemographics

with Interactive
Graphics

Adaptive Composite
Map Projections

Visual Analytics for
Spatial Clustering:
Using a Heuristic

Approach for Guided
Exploration

Quantifying the Visual
Impact of

Classification
Boundaries in

Choropleth Maps

Continuous cartogram
construction

Forward image
mapping

2 documents

A feature-driven
approach to locating

optimal viewpoints for
volume visualization

Dynamic Map
Labeling

Particle-based
labeling: Fast

point-feature labeling
without obscuring

other visual features

An Extension of
Wilkinson's Algorithm

for Positioning Tick
Labels on Axes

Focus+Context Metro
Maps

Explicit Frequency
Control for

High-Quality
Texture-Based Flow

Visualization

Map LineUps: Effects
of spatial structure on

graphical inference

FIGURE 10. Subgraph formed by nodes in the shortest paths of "willa" and "racial". The resulting network informs on techniques related to the topic of GIS.

rich enough to capture specific user needs concerning a pre-
defined multidisciplinary research purpose. Documents from
the target and auxiliary corpora are jointly projected into a
2D representation of keyword proximity derived from the
high-dimensional semantic space, offering the user multiple
learning paths that can be readily incorporated into future
research. Moreover, new keywords learned through the use
of our visualization could be utilized to perform classical
text queries in an online scientific database, bringing new
potential data sources into question.
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