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Discriminative vs Generative models 

2

features class noise, class features
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so fake

Generator

Discriminator

Look here is 
a nice image
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Generator

Discriminator

Real Image

Fake Image

Generator constructs an 
image. Their reward 
function is to not get 
caught.
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The Discriminator

Generator

Discriminator

Real Image

Fake Image

The discriminator sees 
a mix of real and fake 
images.  

Reward for 
identification of fake 
vs real.
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P(Real)=.9
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The Model

Generator
G

Discriminator
D

Real Image

Fake Image

Random 
Input 

Vector Z

● The generator G takes an 
input Z to generate some 
fake image

● The discriminator has to tell 
the difference between fake 
and real images

At first, the discriminator’s 
job is easy...
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Getting harder

Generator
G

Discriminator
D

Real Image

Fake Image

Random 
Input 

Vector Z

0/1

● The generator will learn to 
adapt to the distribution 
matching the real images

● Eventually the GAN may 
converge at a realistic 
facsimile
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 Real y= 1, Fake y= 0

The Discriminator Loss Function
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Can G avoid getting caught? How well did it do at fooling D?

The Generator Loss Function

This loss function has problems, though… 9
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GAN generator learning idea

Random number

Image
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Typical GAN failure modes:
Bad Images
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What is going on here?
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Mode collapse
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Mode collapse
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Mode collapse

Let us get an 
intuition about 
mode collapse
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How to improve? Many ideas:

https://towardsdatascience.com/gan-objective
-functions-gans-and-their-variations-ad77340
bce3c
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https://towardsdatascience.com/gan-objective-functions-gans-and-their-variations-ad77340bce3c
https://towardsdatascience.com/gan-objective-functions-gans-and-their-variations-ad77340bce3c
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The math is often just a thin veneer to hide 
what we do not understand

But maybe read 
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Did they succeed?

Did anyone find the magical well-working formulation?
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Measuring how good a GAN does 

Take inception network
Use FC 2048 width layer
Probability distributions should be matched
Frechet inception distance
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Kinda makes sense
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Surprisingly all our innovations seem 
pretty useless
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