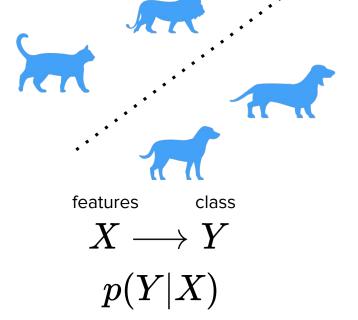
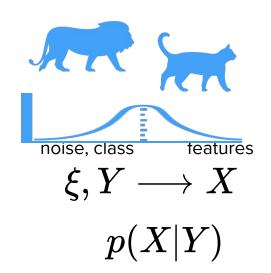
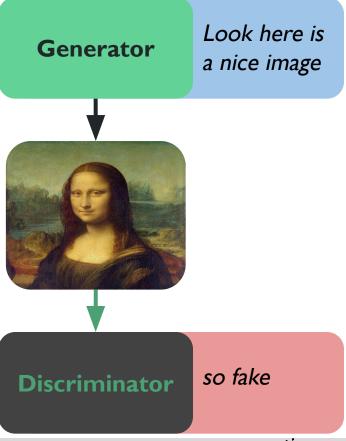
Generative Adversarial Networks

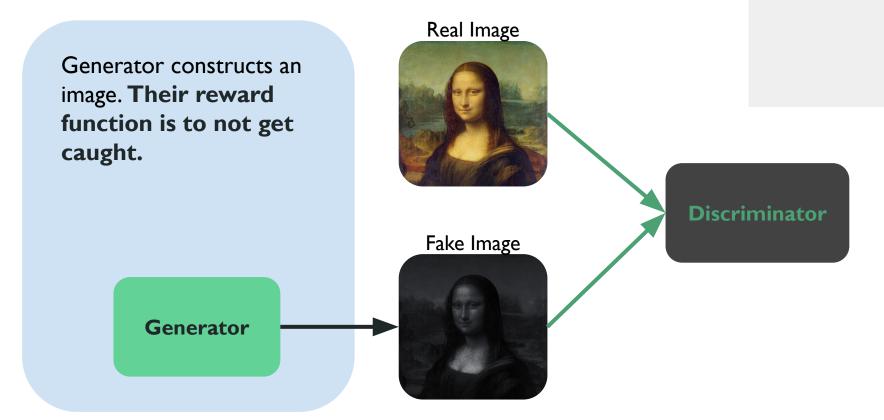
Konrad Kording

Discriminative vs Generative models

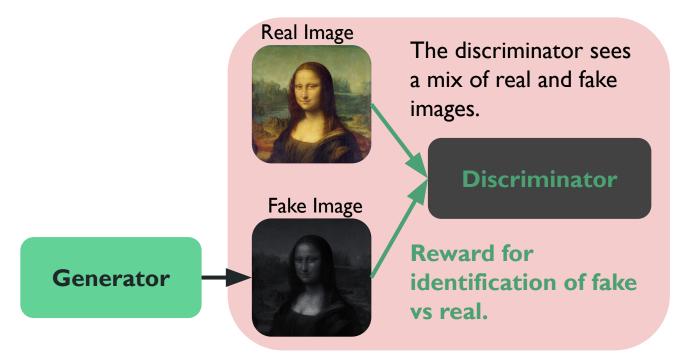








The Discriminator



P(Real)=.9

The Model

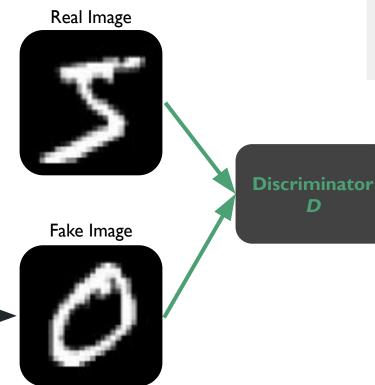
 The generator G takes an input Z to generate some fake image

 The discriminator has to tell the difference between fake and real images

Getting harder

 The generator will learn to adapt to the distribution matching the real images

 Eventually the GAN may converge at a realistic facsimile



0/1

The Discriminator Loss Function

Real y=1, Fake y=0

$$J_D = -rac{1}{m} \sum_{i=1}^m y_i \log D(x_i) + (1-y_i) \log (1-D(x_i))$$

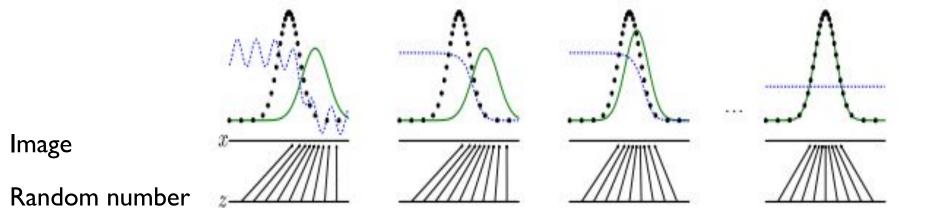
The Generator Loss Function

Can G avoid getting caught? How well did it do at fooling D?

$$J_G = -J_D = rac{1}{m} \sum_{i=1}^m y_i \log D(x_i) + (1-y_i) \log \left(1 - D(x_i)
ight)$$

This loss function has problems, though... 9

GAN generator learning idea



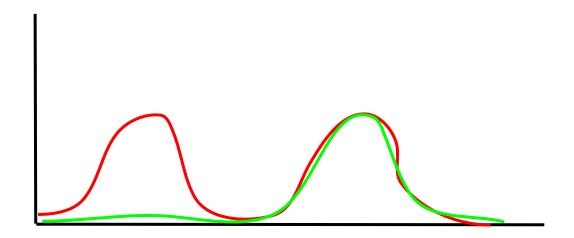
Typical GAN failure modes: Bad Images

What is going on here?



Mode collapse

Mode collapse



Mode collapse

```
5 8 7 0 3 5 5
```

Let us get an intuition about mode collapse

10k steps 20k steps 50K steps

100k steps

How to improve? Many ideas:

GAN Type	Key Take-Away
GAN	The original (JSD divergence)
WGAN	EM distance objective
Improved WGAN	No weight clipping on WGAN
LSGAN	L2 loss objective
RWGAN	Relaxed WGAN framework
McGAN	Mean/covariance minimization objective
GMMN	Maximum mean discrepancy objective
MMD GAN	Adversarial kernel to GMMN
Cramer GAN	Cramer distance
Fisher GAN	Chi-square objective
EBGAN	Autoencoder instead of discriminator
BEGAN	WGAN and EBGAN merged objectives
MAGAN	Dynamic margin on hinge loss from EBGAN

https://towardsdatascience.com/gan-objective -functions-gans-and-their-variations-ad77340 bce3c

The math is often just a thin veneer to hide what we do not understand

But maybe read

On How Well Generative Adversarial Networks Learn Densities:
Nonparametric and Parametric Results

Tengyuan Liang*1

¹University of Chicago, Booth School of Business

Did they succeed?

Did anyone find the magical well-working formulation?

Measuring how good a GAN does

Take inception network

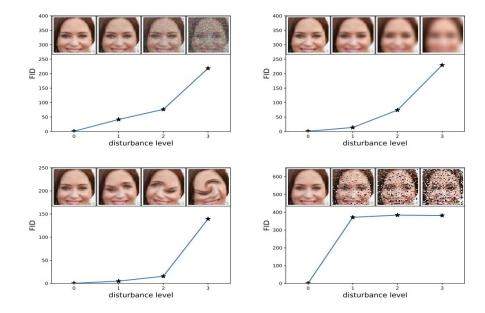
Use FC 2048 width layer

Probability distributions should be matched

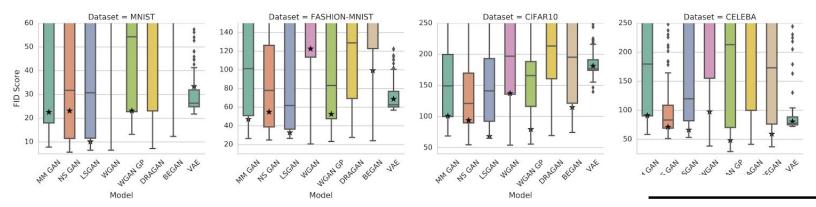
Frechet inception distance

FID =
$$||\mu_r - \mu_g||^2 + \text{Tr}(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2})$$

Kinda makes sense



Surprisingly all our innovations seem pretty useless



Are GANs Created Equal? A Large-Scale Study

Mario Lucic* Karol Kurach* Marcin Michalski Olivier Bousquet Sylvain Gelly Google Brain

