## Abstract ##
Life satisfaction judgments are thought to reflect people's overall evaluation of the quality of their lives as a whole. Because the circumstances of these lives typically do not change very quickly, life satisfaction judgments should be relatively stable over time. However, some evidence suggests that these judgments can be easily manipulated, which leads to low stability even over very short intervals. The current study uses a unique data set that includes multiple assessments of life satisfaction over both long (up to four years) and short (over the course of a single interview) intervals to assess whether information that is made salient during the course of an interview affects life satisfaction judgments at the end of the interview. Results suggest that this intervening information has only small effects on the final judgment and that placement within an interview has little influence on the judgment that people provide.
## Supplemental Material ##
This OSF page provides additional supplemental material that could not be included in the main text. Specifically, we report details of the regression analyses predicting Time 2 DUST life satisfaction from the set of predictor described in the paper, after controlling for Time 1 life satisfaction.
The first model is the baseline model predicting Time 2 life satisfaction from Time 1 life satisfaction. The second model adds the predictors. The final model reverses the direction, predicting Time 1 life satisfaction from Time 2 life satisfaction and the predictors.
```
> summary(baselineModel)
Call:
lm(formula = ls2 ~ ls1, data = final[which(final$selectVar ==
TRUE), ])
Residuals:
Min 1Q Median 3Q Max
-5.6870 -0.3216 -0.0043 0.3130 4.4090
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.90832 0.13073 14.60 <2e-16 ***
ls1 0.68266 0.02142 31.88 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9108 on 1574 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.3923, Adjusted R-squared: 0.3919
F-statistic: 1016 on 1 and 1574 DF, p-value: < 2.2e-16
> summary(completeModel)
Call:
lm(formula = ls2 ~ ls1 + persE + persA + persN + persC + persO +
selfefficy + avgspirituality + domainSat + nFriends + famQual +
impair + activityLimit + rateMemory + betterMemory + aidMemory +
mcode13_1 + mcode13_2 + mcode13_3 + mcode13_4 + mcode13_5 +
mcode13_6 + mcode13_7 + mcode13_8 + totpleasant + avghappy +
avgcalm + avgfrustrated + avgworried + avgsad + care7 + socialize7 +
exercise7 + goout7 + laundry7 + cleanrepair7 + dinner7 +
finance7 + shop7, data = final[which(final$selectVar == TRUE),
])
Residuals:
Min 1Q Median 3Q Max
-4.4155 -0.3535 0.0489 0.4250 4.2607
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.294e+00 4.557e-01 2.838 0.004593 **
ls1 4.616e-01 2.433e-02 18.978 < 2e-16 ***
persE -2.104e-02 3.596e-02 -0.585 0.558478
persA 6.729e-02 4.648e-02 1.448 0.147917
persN -1.063e-01 3.501e-02 -3.036 0.002441 **
persC -3.666e-02 4.247e-02 -0.863 0.388222
persO -1.932e-02 3.557e-02 -0.543 0.587107
selfefficy 6.570e-02 1.807e-02 3.636 0.000286 ***
avgspirituality 8.405e-02 2.672e-02 3.145 0.001693 **
domainSat 1.829e-01 3.344e-02 5.469 5.27e-08 ***
nFriends 5.794e-02 2.511e-02 2.308 0.021134 *
famQual 1.204e-01 3.669e-02 3.281 0.001059 **
impair -3.197e-02 1.640e-02 -1.950 0.051416 .
activityLimit -1.330e-02 2.451e-02 -0.543 0.587327
rateMemory -2.871e-02 2.740e-02 -1.048 0.294772
betterMemory -2.722e-02 5.574e-02 -0.488 0.625424
aidMemory 1.254e-02 2.046e-02 0.613 0.539973
mcode13_1 -1.707e-04 2.219e-04 -0.769 0.441906
mcode13_2 -5.467e-04 2.455e-04 -2.227 0.026095 *
mcode13_3 1.449e-04 3.749e-04 0.386 0.699216
mcode13_4 -1.021e-05 2.660e-04 -0.038 0.969399
mcode13_5 -3.133e-04 4.230e-04 -0.741 0.458959
mcode13_6 -2.663e-04 2.246e-04 -1.186 0.235922
mcode13_7 -8.639e-05 3.598e-04 -0.240 0.810281
mcode13_8 2.924e-04 3.494e-04 0.837 0.402719
totpleasant 2.591e-04 9.499e-05 2.728 0.006443 **
avghappy 1.436e-01 2.930e-02 4.901 1.05e-06 ***
avgcalm -2.602e-02 2.931e-02 -0.888 0.374743
avgfrustrated 3.140e-02 2.443e-02 1.285 0.198815
avgworried 2.244e-03 3.063e-02 0.073 0.941596
avgsad -6.397e-02 3.050e-02 -2.097 0.036120 *
care7 1.202e-02 4.852e-02 0.248 0.804357
socialize7 1.850e-01 6.288e-02 2.942 0.003307 **
exercise7 -4.897e-02 4.766e-02 -1.028 0.304305
goout7 8.731e-03 5.004e-02 0.174 0.861508
laundry7 5.516e-02 5.344e-02 1.032 0.302111
cleanrepair7 -1.369e-02 7.072e-02 -0.194 0.846512
dinner7 7.696e-02 6.011e-02 1.280 0.200627
finance7 -7.558e-02 4.799e-02 -1.575 0.115518
shop7 -9.333e-02 6.467e-02 -1.443 0.149159
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.832 on 1535 degrees of freedom
(12 observations deleted due to missingness)
Multiple R-squared: 0.5053, Adjusted R-squared: 0.4927
F-statistic: 40.19 on 39 and 1535 DF, p-value: < 2.2e-16
> summary(completeModelR)
Call:
lm(formula = ls1 ~ ls2 + persE + persA + persN + persC + persO +
selfefficy + avgspirituality + domainSat + nFriends + famQual +
impair + activityLimit + rateMemory + betterMemory + aidMemory +
mcode13_1 + mcode13_2 + mcode13_3 + mcode13_4 + mcode13_5 +
mcode13_6 + mcode13_7 + mcode13_8 + totpleasant + avghappy +
avgcalm + avgfrustrated + avgworried + avgsad + care7 + socialize7 +
exercise7 + goout7 + laundry7 + cleanrepair7 + dinner7 +
finance7 + shop7, data = final[which(final$selectVar == TRUE),
])
Residuals:
Min 1Q Median 3Q Max
-5.4834 -0.3653 0.0864 0.4587 3.9686
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.682e+00 4.293e-01 3.918 9.33e-05 ***
ls2 4.117e-01 2.169e-02 18.978 < 2e-16 ***
persE 8.897e-02 3.388e-02 2.626 0.00873 **
persA -2.678e-02 4.392e-02 -0.610 0.54213
persN -6.574e-02 3.311e-02 -1.985 0.04728 *
persC -7.772e-02 4.007e-02 -1.940 0.05259 .
persO -5.199e-02 3.356e-02 -1.549 0.12158
selfefficy 2.624e-02 1.713e-02 1.532 0.12564
avgspirituality -6.084e-03 2.532e-02 -0.240 0.81012
domainSat 3.677e-01 3.047e-02 12.065 < 2e-16 ***
nFriends -2.441e-02 2.374e-02 -1.028 0.30400
famQual -1.937e-02 3.476e-02 -0.557 0.57746
impair -3.665e-03 1.550e-02 -0.236 0.81319
activityLimit 3.813e-02 2.312e-02 1.649 0.09938 .
rateMemory 1.575e-02 2.588e-02 0.609 0.54289
betterMemory 4.466e-02 5.263e-02 0.849 0.39625
aidMemory -1.526e-02 1.932e-02 -0.790 0.42985
mcode13_1 -5.406e-05 2.095e-04 -0.258 0.79646
mcode13_2 -2.589e-04 2.321e-04 -1.115 0.26484
mcode13_3 -7.880e-05 3.541e-04 -0.223 0.82392
mcode13_4 5.621e-06 2.512e-04 0.022 0.98215
mcode13_5 -6.116e-04 3.992e-04 -1.532 0.12571
mcode13_6 8.322e-05 2.122e-04 0.392 0.69496
mcode13_7 -4.842e-04 3.395e-04 -1.426 0.15409
mcode13_8 2.882e-04 3.299e-04 0.874 0.38252
totpleasant -3.936e-05 8.991e-05 -0.438 0.66160
avghappy 1.084e-01 2.775e-02 3.906 9.78e-05 ***
avgcalm 3.189e-02 2.767e-02 1.152 0.24931
avgfrustrated -1.271e-02 2.308e-02 -0.551 0.58190
avgworried -1.835e-03 2.892e-02 -0.063 0.94941
avgsad 1.945e-02 2.884e-02 0.674 0.50024
care7 -5.768e-02 4.579e-02 -1.260 0.20799
socialize7 -8.476e-02 5.950e-02 -1.424 0.15453
exercise7 3.977e-02 4.501e-02 0.884 0.37706
goout7 2.945e-02 4.725e-02 0.623 0.53320
laundry7 6.563e-02 5.045e-02 1.301 0.19347
cleanrepair7 -3.855e-02 6.678e-02 -0.577 0.56385
dinner7 -3.225e-02 5.679e-02 -0.568 0.57017
finance7 3.472e-02 4.535e-02 0.766 0.44399
shop7 5.738e-02 6.109e-02 0.939 0.34771
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7857 on 1535 degrees of freedom
(12 observations deleted due to missingness)
Multiple R-squared: 0.4759, Adjusted R-squared: 0.4625
F-statistic: 35.73 on 39 and 1535 DF, p-value: < 2.2e-16
>
```