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Abstract7

Researchers can express expectations regarding the ordering of group means in sim-8

ple order constrained hypotheses, for example Hi : µ1 > µ2 > µ3, Hc : not Hi, and9

Hi′ : µ3 > µ2 > µ1. They can compare these hypotheses by means of a Bayes factor,10

the relative evidence for two hypotheses. The required sample size for a hypothesis test11

can depend on the desired level of unconditional error probabilities (Type I and Type II er-12

ror probabilities), or the conditional error probabilities (the level of evidence). This article13

presents three approaches for sample size determination, that make use of both conditional14

and unconditional error probabilities. Simulations were performed to determine the group15

sample size such that error probabilities are acceptably low or expected evidence is accept-16

ably strong. The results show that the required sample size is lower if Hi is evaluated against17

Hi′ than when it is evaluated against Hc. Thus, specifying a competing set of inequality18

constrained hypotheses increases power. The three approaches use different decision rules to19

determine the required sample size. Researchers need to choose which sample size determi-20

nation approach to use. A decision tree is provided to guide researchers to the appropriate21

approach. Researchers can perform their own power analysis with the R package Bayesian-22

Power, developed alongside this article, and execute their analyses with the R package bain.23

Keywords: ANOVA; Bayes factor; inequality constrained hypotheses; power; sample size.24

1 Introduction25

Statistical analyses in behavioral research are often concerned with the comparisons between26

groups through analysis of variance (ANOVA). For example, Monin, Sawyer, and Marquez27
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(2008) were interested in the acceptance of moral rebels and conducted an experiment with four28

conditions. Half of the participants were asked to write and record a speech supporting a position29

they disagreed with (actor condition). After writing the speech, they were either shown a record-30

ing of an alleged previous participant that obeyed the task (actor-obedient) or of a moral rebel31

(actor-rebel) who refused to give the speech on the conflicting topic. The other half of the partic-32

ipants were given the instructions about writing and recording a speech allegedly given to other33

participants, but did not have to write a speech themselves (observer condition). After reading the34

instructions they too watched either an obedient previous ‘participant’ (observer-obedient) or a35

moral-rebel (observer-rebel). After watching the recording, participants rated how they perceived36

the person giving the speech.37

A common approach is to analyze the resulting data with an ANOVA and test the null hy-

pothesis that there is no difference between the four groups against the alternative hypothesis that

there is a difference. This analysis does not evaluate any specific predictions based on theory, and

the value of the conclusion of such a hypothesis test can be questioned (van de Schoot, Hoijtink,

& Romeijn, 2011). A prediction can be translated into an informative hypothesis, that is, a hy-

pothesis that describes the theoretical expectation of the researchers (van de Schoot et al., 2011;

Gu, Mulder, Deković, and Hoijtink, 2014). For example, theory predicts an interaction between

the role of the participant (observer/actor) and the role of the speaker (rebel/obedient) (Monin et

al., 2008). Specifically, moral rebels are expected to be rejected by actors and appreciated by ob-

servers. An example of how inequality constraints can be used to express this expected interaction

effect into an informative hypothesis is

Hexample :µobserver-rebel > µactor-obedient > µobserver-obedient > µactor-rebel,

where µ is the average rated acceptance of the speaker in the corresponding condition. In this

hypothesis the four group means are ordered from largest to smallest. A more general notation of

this simple order constrained hypothesis (Kuiper & Hoijtink, 2010) is:

Hi : µ1 > ... > µk > ... > µK , (1)

where all K group means µk are ordered from large to small, with k = 1, ...,K. An informa-
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tive hypothesis can be formed by posing inequality or equality constraints between combinations

of parameters, informed by theoretical expectations (e.g. Hoijtink, Klugkist, & Boelen, 2008;

Hoijtink, 2012). The hypotheses of interest in this paper are hypotheses with only inequality con-

straints like Hi , variations of Hi, for example Hi′ ,

Hi′ : µ2 > µ1 > ... > µK , (2)

or Hc, the complement of Hi:

Hc : not Hi, (3)

which describes all other possible orderings of the parameters in Hi. The complement of for38

example H1 : µ1 > µ2 > µ3, Hc1 , consists of a collection of the five other permutations of these39

three means. Two examples of orderings underHc forK = 3 are µ2 > µ3 > µ1 and µ1 > µ3 > µ2.40

41

The framework of Bayesian informative hypothesis testing can be used to evaluate hypothe-42

ses like Hi, Hc and Hi′(Hoijtink, 2012) . The R package bain (Gu, Mulder, & Hoijtink, 2018;43

Hoijtink, Mulder, van Lissa, & Gu, 2019; Hoijtink, Gu, Mulder, & Rosseel, 2019) can be used44

to compare sets of informative hypotheses by means of Bayes factors. The advantages of using a45

Bayes factor are its straightforward interpretation (relative evidence), its functionality to compare46

multiple hypotheses, and the option to update evidence over multiple rounds of data collection.47

By considering inequality constrained hypotheses rather than null hypotheses, two benefits are48

achieved. First, researchers are encouraged to specify their theoretical expectations in inequality49

constrained hypotheses and can evaluate these interesting hypotheses. The null hypothesis stating50

”nothing is going on” is non-specific and rarely is a good description of theoretical expectations51

(e.g. van de Schoot et al., 2011; Klugkist, van Wesel, & Bullens, 2011). Secondly, for null hy-52

pothesis testing, the Bayes factor is often sensitive to the prior specification, especially to the prior53

scale. The Bayes factor is therefore criticized (Tendeiro & Kiers, 2019). However, when testing54

the inequality constrained hypotheses considered in this paper the choice of prior scale does not55

affect the Bayes factors, as long as the prior means are fixed at zero (Mulder, 2014).56

The Bayes factor BFic expresses the support in the data for Hi relative to Hc. For example,57
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whenBFic = 5, the support in the data forHi is 5 times stronger than forHc. WhenBFic = 0.1,58

the support for Hc is 10 times stronger than for Hi. In addition to express the relative support,59

Bayes factors can be used to update prior odds into posterior odds. The prior odds is the ratio of60

the prior model probability of Hi relative to the prior model probability of Hc. This prior odds61

can be updated with the Bayes factor into posterior odds (Kass & Raftery, 1995). The posterior62

odds is the ratio of the probability of Hi relative to the probability of Hc after observing the data.63

Posterior probabilities are also referred to as conditional error probabilities (Berger, Boukai, &64

Wang, 1997; Hoijtink, 2012, p.80-81). For example, if the posterior odds of Hi relative to Hc65

are 4, there is, given the data and prior probabilities, a probability of
4

1 + 4
= .8 that Hi is66

the best hypothesis and a probability of .2 that Hc is the best hypothesis. The conditional error67

probabilities depend on the chosen prior model probabilities and the Bayes factor. Throughout68

this paper we will assume that the prior model probabilities are equal for all hypotheses.69

Bayesian hypothesis testing allows for sequential evaluation of the data. The same hypothe-70

ses can be evaluated after each new data point until a desired level of support has been achieved,71

without inflating the posterior (conditional) error probabilities (Rouder, 2014; Schönbrodt & Wa-72

genmakers, 2018). This is a useful feature, because it can lead to early stopping of an experiment73

if sufficiently strong evidence has been obtained. However, there is currently no method to a pri-74

ori determine at what sample size this level of evidence would be obtained. This knowledge is75

valuable, for example, when submitting research proposals to medical ethical committees and to76

reserve the required time and money for the research project envisioned.77

Sample size determination methods have been used for various analyses. Cohen’s power anal-78

ysis for null hypothesis significance testing (Cohen, 1988) is probably the most well-known.79

Note that this method relies on unconditional error probabilities to determine the sample size or80

power. Unconditional error probabilities are well-known as the alpha-level and beta-level or the81

Type I and Type II error probabilities in the Neyman-Pearson framework. The unconditional error82

probabilities do not depend on the data and can be used to determine the required sample size to83

detect a particular effect size prior to observing data. The focus in Bayesian hypothesis testing84

often lays in the conditional error probabilities. However, prior to data collection, unconditional85

error probabilities can provide information about what the expected strength of evidence is for86

a particular sample size. Unconditional error probabilities have been investigated in the context87

of Bayesian hypothesis testing (e.g. Weiss, 1997; Klugkist, Post, Haarhuis, & van Wesel, 2014).88
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These studies have either considered null hypotheses, or focused on a post hoc computation of89

error probabilities for a given sample size. To our best knowledge, no research has been done90

solely on sample size determination for Bayesian inequality constrained hypothesis testing.91

This paper presents three approaches to determine the required sample size per group for92

the evaluation of inequality constrained hypotheses like Hi by means of Bayes factors. Section93

2 provides a further explanation of the model, the prior distributions and how the Bayes factor94

is computed to compare inequality constrained hypotheses. Section 3 presents an overview of95

available sample size determination methods for Bayesian hypothesis testing. Different strategies96

are discussed that can be used to determine sample size based on unconditional or conditional97

error probabilities. These strategies are implemented in the three sample size determination ap-98

proaches presented in Section 4, tailored for the comparison of inequality constrained hypotheses99

by means of Bayes factors. Section 5 describes the simulation set-up and procedure to evaluate100

these approaches. The results of this simulation are discussed in Section 6. Section 7 introduces101

a set of guidelines for sample size determination in Bayesian inequality constrained hypothesis102

testing, illustrated with three examples. The extended options of the R package BayesianPower103

are discussed. Finally, Section 8 briefly discusses the findings of this paper.104

2 Bayes factor105

The Bayes factor is a tool for Bayesian hypothesis testing. Bayes factors can be computed for any

pair of hypotheses, and can be used to quantify the evidence in favor of one of these hypotheses.

The computation of Bayes factors comparing inequality constrained hypotheses makes use of the

unconstrained hypothesis Hu:

Hu : µ1, ..., µk, ..., µK , (4)

where all parameters can take on any value. The hypotheses Hi, Hc and Hi′ are all nested in this106

unconstrained hypothesis.107

The Bayes factor BFiu can be expressed as a ratio of the fit fi and the complexity ci of Hi
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and expresses the support in the data for Hi relative to Hu (Hoijtink, 2012, p. 51–52):

BFiu =
fi
ci
, (5)

where fi describes how well the data support Hi, and ci describes how specific Hi is. By taking

their ratio, the fit of Hi is penalized with its complexity. By taking a ratio of the Bayes factors

BFiu and BFcu or BFi′u the evidence for Hi relative to Hc or Hi′ is computed:

BFic =
BFiu
BFcu

=
fi
ci
/
1− fi
1− ci

, (6)

or

BFii′ =
BFiu
BFi′u

=
fi
ci
/
fi′

ci′
. (7)

In order to compute the fit and complexity of a hypothesis, the density of the data, and the108

prior and posterior distributions of the target parameters are needed. The model of interest is an109

ANOVA model with unequal group variances (a generalization of Welch’s t-test). The density of110

the data is:111

f(y|µ,σ2) =

K∏
k=1

N∏
s=1

1√
2πσ2k

exp(−1

2

(yks − µk)2

σ2k
), (8)

where y = [y11, ..., y1N , ..., yK1, ..., yKN ], µ = [µ1, ..., µK ], σ2 = [σ21, ..., σ
2
K ] indicates the112

within group variance, k = 1, 2, ..., K indicates a group, and s = 1, 2, ..., N indicates a person in113

group k. The group sample size is denoted by N , and is equal for each group.114

An ANOVA with unequal group variances is often a better representation of the reality than an115

ANOVA with fixed group variances. The Bayes factors for this model can be computed with the R116

package bain (Gu et al., 2018). The current paper develops three approaches to determine the re-117

quired sample size to compute Bayes factors using this model with bain. The prior specifications,118

outlined below, match those implemented in bain to ensure the properties of the ‘power analysis’119

match those of the final analysis. In the Supplementary materials, example code is presented of120

such an analysis using bain.121

Following Klugkist, Laudy, and Hoijtink (2005) the encompassing prior approach is adopted.122

This approach makes use of makes use of the fact that hypotheses Hi, Hc and Hi′ are all nested123
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in Hu. The prior distributions for these inequality constrained hypotheses can be obtained by124

simply truncating the unconstrained prior distribution. In other words, the prior under Hu encom-125

passes the priors under Hi, Hc and Hi′ (Klugkist et al., 2005). The encompassing prior approach126

requires only the specification of prior distributions for the unconstrained hypothesis. For the un-127

constrained hypothesis an adjusted fractional prior is used following the prior specification in the128

R package bain (Gu et al., 2018).129

h(µ) = h(µ1)· · · · ·h(µK), (9)

with130

h(µk) = N (0, Cτ̂2k ), (10)

for k = 1, ...,K, in which the prior means are zero and the prior variances are Cτ̂2k , where C is a131

large constant and τ̂2k is the squared standard error of the mean in group k, which will be given in132

Equation 13. When C is considerably large, the impact of this prior on the posterior is negligible,133

and the posterior results rely only on the data. The framework of informative hypothesis testing is134

developed such that the results do not depend on the choice of prior. The means are required to be135

fixed and equal to each other, to obtain appropriate constrained prior distributions for the inequal-136

ity constrained hypotheses. The choice of C can be adjusted, but as shown by Mulder (2014) ,137

the scale of the prior does not affect the results. In addition, the adjusted fractional prior and the138

g prior (Zellner, 1986) behaves very similar when evaluating informative hypotheses (Mulder,139

2014). Moreover, as long as the prior distribution is symmetrical (e.g. normal distribution or140

t distribution), the results for all different choices are the same (Mulder, Hoijtink, & Klugkist,141

2010).142

When C is considerably large, the effect of this prior on the posterior distribution is so small,143

that the posterior depends fully on the data. We use a normal approximation of the posterior144

distribution for the group means, that is, the target parameters:145

g(µ|y) = g(µ1|y)· · · · ·g(µK |y), (11)

with

g(µk|y) = N (µ̂k, τ̂
2
k ),
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for k = 1, 2, ...,K, in which µ̂k is the estimate of the mean in group k, and τ̂2k is the squared146

standard error of the mean in group k, where147

µ̂k =
1

N

N∑
s=1

yks, (12)

148

τ̂2k =

∑N
s=1(yks − µ̂k)2

N·(N − 1)
. (13)

The complexity and fit of a hypothesis are based on the prior and posterior distribution. The149

complexity of Hi, ci, describes how specific Hi is. It is the proportion of the prior distribution in150

agreement with Hi (Hoijtink, 2012, p. 60):151

ci =

∫
µ∈Hi

h(µ)dµ

≈
T∑
t=1

Iµh
t ∈Hi

/T,

(14)

where µht is the tth sample from h(µ), Iµh
t ∈Hi

is 1 if µht is in agreement withHi, and 0 otherwise,152

and T is the number of prior samples. This equation illustrates the encompassing prior approach.153

The prior distribution presented in Equation 9 describes the prior for the unconstrained hypoth-154

esis. The indicator function µ ∈ Hi is used to truncate this unconstrained prior distribution such155

that only those areas where the constraint of Hi are met are retained. This truncation can be ap-156

plied for any hypothesis with inequality constraints. Note that the complexity ofHc is cc = 1−ci.157

Because Hc is the complement of Hi, their complexities add up to one: ci + cc = 1.158

The fit of Hi, fi, describes how well the data support Hi. It is the proportion of the posterior

distribution in agreement with Hi (Hoijtink, 2012, p. 59):

fi =

∫
µ∈Hi

g(µ|y)dµ

≈
T∑
t=1

Iµg
t∈Hi

/T,

(15)

where µgt is sampled from g(µ|y), Iµg
t∈Hi

is 1 if µgt is in agreement with Hi, and 0 otherwise,159

and T is the number of posterior samples. Again, since Hc is the complement of Hi, it follows160

that fc = 1− fi. Using the complexity and fit, Bayes factors can be computed.161
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3 Sample size determination162

The Bayes factor can be used to compute the conditional probabilities of the hypotheses under163

consideration. Often, the goal of hypothesis comparison is to not only describe the evidence in164

the data, but to select the best hypothesis from a set. If BFii′ = 1.1 for example, this shows that165

the evidence is 1.1 times more in favor of Hi relative to Hi′ . This corresponds to a conditional166

probability of approximately .52 for Hi and .48 for Hi′ . These conditional error probabilities not167

provide any information about the the effect of the sample size on this conclusion. If the sample168

size in this example were 10, it seems very possible that the preference for Hi is due to sampling169

variance. Alternatively, if the sample size were 10, 000, the preference for Hi is more likely to170

be true in the population of interest. Adcock (1997) presents the first available research on the171

relation between sample size and the Bayes factor. Amongst others, he discusses the method of172

Weiss (1997).173

Weiss (1997) advocates the importance of both conditional and unconditional power, and174

investigates different combinations of sample size, conditional and unconditional error probabil-175

ities. One of the approaches considers a cut-off of the Bayes factor such that the unconditional176

Type I error probability, that is, the probability that H0 is preferred when Hu is true, is at the177

traditional .05. He creates sampling distributions for the Bayes factor for different sample sizes178

and true populations under Hu. From these sampling distributions he then derives the uncondi-179

tional power. Using a cut-off for the Type I error probability determines a critical Bayes factor.180

Alternatively Weiss (1997) proposes to keep the cut-off of the Bayes factor fixed at 1, because this181

is a meaningful value, and determine the Type I and Type II error probabilities for this criterion.182

Not only does Weiss (1997) consider both the conditional and unconditional error probabilities183

for different sample sizes, he presents multiple possible strategies for determining the sample size184

and discusses different populations to consider. This paper will elaborate on these different ap-185

proaches. While they are only limited to the comparison of a null hypothesis to a one- or two186

sided alternative, this paper extends to the comparison of inequality constrained hypotheses.187

De Santis (2004, 2007) presents another Bayesian sample size determination on for the com-188

parison of H0 : µ = 0 with H1 : µ 6= 0. This method applies a decision criterion where Bayes189

factors are only considered decisive if they are smaller than 1
3 or larger than 3. The sample size190

is determined such that P (BF01 > 3|H0) and P (BF01 < 1
3 |H1) are both larger than a pre-191
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specified value. In other words, an area of indecision is included in the determination of sample192

size that ensures that not both the unconditional and the conditional error probabilities are at a193

desired level. This strategy goes further than Weiss (1997), but is limited in two aspects. First,194

this approach does not include a limit on the unconditional probability that no decision is made.195

In other words, the sample size determination could potentially lead to a sample that gives a .05196

Type I and Type II error probability, and an indecision probability of .9. In the current paper197

therefore, this approach is extended with the possibility to put a critical value on the indecision198

probability as well. Second, De Santis (2004, 2007) again only considers a single mean with a199

null and alternative hypothesis. Reyes and Ghosh (2013) consider do present Bayesian sample200

size determination methods for the difference between two means. One of their methods deter-201

mines a critical Bayes factor such that the average error probability is minimized. The sample202

size is then determined such that average of the Type I and Type II error probability is smaller203

than a specified cut-off value. This idea will be incorporated in our proposed methods. The focus204

of these Bayesian sample size methods is on the null and alternative hypotheses.205

Sample size determination for the evaluation of the null hypothesis H0 with an inequality206

constrained hypothesis Hi using BFi0 is considered by Klugkist et al. (2014). The decision207

criterion used is that Bayes factors larger and smaller than 1 result in conclusions in favor of Hi208

andH0 respectively. Using this decision criterion, the sample size is determined for various effect209

sizes, such that the traditional Type I error probability is below .05, and the power is above .80210

(Klugkist et al., 2014). Although this article uses order constrained hypotheses, no elaboration is211

made on the sample sizes required for the evaluation of Hi with Hc or with Hi′ . Furthermore, the212

current research does not include a null hypothesis, so is focused on the sample size required for213

comparing inequality constrained hypotheses. The current research extends on this approach by214

considering not only the Type I and Type II error probability, but additionally the indecision and215

average error probabilities.216

Other research discussing the relation between sample size and Bayes factors focuses on217

knowledge updating (e.g. Rouder, 2014). Specifically, this refers to the sequentially adding data218

and computing Bayes factors on this updated dataset to view how the evidence accumulates to the219

true hypothesis as more information is added. Schönbrodt and Wagenmakers (2018) simulated220

sequential stopping scenarios. They determined the expected sample size at which sequential anal-221

ysis was stopped because sufficiently strong evidence was obtained. Thus, they evaluated what the222



PRE-PRINT 11

average sample size was at over a large number of simulations where an optional stopping rule223

was adopted. Sequential testing is a problem if sample size is determined for a desired level of224

unconditional error. The unconditional error probabilities need to be adjusted when sequential225

testing is adopted (Wald, 1945). However, if sample size is determined for a desired level of226

evidence there no longer is an effect of multiple testing and sequential analysis.227

Including the desired level of strength of evidence in the planning for sample size is relatively228

new to the literature on Bayesian sample size determination. Unconditional error probabilities are229

often used in sample size determination methods, while in the Bayesian framework conditional230

error probabilities are used as well. Existing methods use either a cut-off value of the Bayes factor231

to determine error probabilities, or determine the sample size to obtain a certain level of evidence232

with a high probability. This paper presents three approaches to sample size determination that233

use combinations of these methods.234

4 Methods235

The sample size needed for the evaluation of Hi versus Hi′ or versus Hc can be determined such236

that error probabilities are acceptably low, or the median Bayes factor under the true hypothesis237

expresses acceptably strong support. This section will first explain how sampling distributions238

of Bayes factors are obtained. Second, each approach is explained in more detail, by precisely239

defining error probabilities and the median Bayes factor required. Finally, it will be described240

what is meant by acceptably low error probabilities and strong support. Throughout this section,241

the comparison of Hi and Hc using BFic is discussed. The discussion is analogous for Hi and242

Hi′ , where all comments and notations regarding Hc can be replaced with corresponding ones243

regarding Hi′ .244

The three approaches presented in this paper make use of sampling distributions of the Bayes245

factors underHi andHc, or underHi andHi′ . Approach 1, like in Klugkist et al. (2014) and Weiss246

(1997), chooses Hi if BFic > 1 or BFii′ > 1, and chooses Hc if BFic < 1 or Hi′ if BFii′ < 1.247

Sample sizes will be determined such that the unconditional error probabilities are acceptably248

low.249

A Bayes factor of 1.1, conveys very little evidence in favor of one hypothesis over another.250

It can still be useful to determine the required sample size such that the decision error is suffi-251
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ciently low. For example, in instances where a forced decision is required. One option would be252

to keep sequentially sampling until a certain level of evidence is reached. However, if time and253

resources are limited, it can be more appropriate to know the minimum sample size for which254

a forced decision has sufficiently low error probability. The observed Bayes factor may be well255

larger or smaller than 1 and the evidence can be interpreted, knowing that there is only a small256

probability of error. Furthermore researchers can decide to stop data collection early to continue257

sampling after the initial sample size has been achieved. The Bayes factor can continuously be258

updated. However, the computed unconditional error probabilities no longer apply, because they259

do not account for the repeated executed ‘tests’ to determine whether data collection is stopped260

or not.261

Approach 2, like in De Santis (2004, 2007), chooses Hi if BFic > 3 or BFii′ > 3, and262

chooses Hc if BFic < 1
3 or Hi′ if BFii′ < 1

3 . No decision is made if Bayes factors are between263

1
3 and 3. Again, sample sizes will be determined such that error probabilities are acceptably low.264

In Approach 3, the Bayes factor is not used to make a decision, but to express support for Hi and265

Hc or Hi′ based on the data. Sample sizes will be determined such that reasonably high Bayes266

factors can be expected, for example, 3, 10, or 20.267

All approaches in this paper make use of the sampling distributions of Bayes factors. Sample268

size determination is a theoretical endeavor. Hypothetical datasets and Bayes factors are simu-269

lated and computed based on expected population parameters. From such a simulation, properties270

like unconditional error probabilities can be derived. The sample size at which desired levels of271

such properties is obtained, can then be used as a guideline for actual data collection. To obtain272

these sampling distributions, the effect sizes under Hi and under Hc need to be defined to obtain273

the sampling distributions. The simulation and the R package associated with this paper require274

the specification of the group means and optionally also the group standard deviations. For the275

simulations in this paper, we used a variation of Cohen’s d, the standardized difference between276

two means, is used as a measure of effect size (Cohen, 1988, p. 276). While eta squared is com-277

monly used as a measure to describe the observed effect size in ANOVA models, Cohen’s d is278

considered in this paper because of its simple interpretation. Because sample size determination is279

an a priori method, researchers would need to choose an effect size that is reasonable in regard to280

their theory. In the case of inequality constrained hypotheses, researchers have a clear expectation281

regarding the ordering of the means. Specifying the expected group means and optional standard282



PRE-PRINT 13

deviations is more straightforward than specifying the expected proportion of explained variance.283

The effect size dHi under Hi is the standardized difference between the largest and the smallest284

mean under Hi.285

dHi =
µ1 − µK√

(σ2
1+σ

2
K)

2

, (16)

where µ1 is the largest mean, and µK is the smallest mean under Hi, and σ21 and σ2K are the286

corresponding variances. The effect size dHc under Hc is the standardized difference between the287

largest and the smallest population mean under Hc. For example, Figure 1a displays hypothetical288

sampling distributions of BFic under Hi and under Hc, given group sample size N = 50, dHi =289

.2, and dHc = .2. These distributions represent the values of the Bayes factors observed if290

we repeatedly sample from populations under Hi and Hc. The procedure to obtain sampling291

distributions will be explained in full detail in Section 5.4. Note that Hc consists of all permuta-292

tions of the K group means except the one specified under Hi. The effect size dHc can be defined293

for any of these permutations. Section 5.2 explains in more detail how dHc is implemented in the294

simulations.295

4.1 Approach 1296

The decision criterion used in Approach 1 is that Hi is preferred when BFic is larger than 1, and297

Hc is preferred when BFic is smaller than 1 (Weiss, 1997; Klugkist et al., 2014). In Figure 1a,298

the vertical line at BFic = 1 indicates the decision criterion used in this approach: obtaining299

BFic > 1 results in the decision that the data support Hi, and BFic < 1 results in the decision300

that the data support Hc.301

The vertical line marks two error probabilities. The first, the probability of observing BFic <302

1 when Hi is true, P (BFic < 1|Hi), is the probability of supporting Hc when Hi is true. In303

the remainder of this paper, this probability will be referred to as a Type i error probability. The304

second error probability is that of observing BFic > 1 when Hc is true denoted by P (BFic >305

1|Hc), that is, support for Hi when Hc is true. This will be referred to as Type c error probability.306

The average of Type i and Type c error probabilities will be called the Decision error probability307

which is similar to the average error probability used in Reyes and Ghosh (2013). Note that the308

unweighted average can be taken because the prior model probabilities are assumed to be equal. If309

the prior model probabilities are not equal, the Decision error should be re-weighted accordingly.310



PRE-PRINT 14

BFic0 1

8

Hc

Hi

Type i

Type c

(a) N = 50 and dHi
= .2.

BFic0 1

8

Hc

Hi

Type i

Type c

(b) N = 50 and dHi
= .5.

BFic0 1

8

Hc

Hi

Type i

Type c

(c) N = 100 and dHi
= .2.

Figure 1. Error probabilities for Approach 1. Hypothetical sampling distributions of BFic under
Hi and Hc, given group sample size N and effect sizes dHi and dHc . Note that dHc = .2 in each
figure.

311

As can be seen in Figure 1b, if the effect size under Hi in Figure 1a increases, the sampling312

distribution under Hi shifts further away from the decision criterion, thus the Type i error de-313

creases. As can be seen in Figure 1c, if the group sample size in Figure 1a increases, both Type i314

and Type c error decrease in this situation. For Approach 1, sample size will be determined such315

that the Type i, Type c, or Decision error probability is acceptably low.316

4.2 Approach 2317

The decision criterion used in Approach 2 allows for indecision. Kass and Raftery (1995) have318

argued that Bayes factors between 1
3 and 3 express too little support to prefer either hypothesis. In319

Approach 2, like De Santis (2004, 2007), this distinction is used by deciding that Hi is preferred320

for Bayes factors larger than 3 and deciding that Hc is preferred for Bayes factors smaller than321

1
3 . For Approach 2, Type i error probability is expressed by P (BFic < 1

3 |Hi) and Type c error322

probability by P (BFic > 3|Hc). The average of Type i and Type c is the Decision error proba-323

bility, weighted with respect to the prior model probabilities, which are equal for all hypotheses324

throughout this paper. An additional probability in this approach is that of not making a decision:325

P (13 < BFic < 3) =
P (13 < BFic < 3|Hi) + P (13 < BFic < 3|Hc)

2
, (17)

which is called the Indecision probability. In Figure 2a the Indecision probability is the area326

between 1/3 and 3 for both the distribution of Bayes factors under Hi and Hc. The unweighted327

average of the two areas of indecision is taken, because the prior model probabilities ofHi andHc328
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Figure 2. Error probabilities for Approach 2. Hypothetical sampling distributions of BFic under
Hi and Hc, for group sample size N and effect sizes dHi and dHc . Note that dHc = .2 in each
figure. The average of the area between BFic = 1

3 and BFic = 3 under Hi and the area between
1
3 and BFic = 3 under Hc, is the Indecision probability.

are equal. If the prior probabilities were not equal, the Indecision probability would be a weighted329

average of the two elements in the numerator of Equation 17.330

Figure 2 shows hypothetical sampling distributions of BFic under Hi and Hc and the error331

probabilities under Approach 2. As can be seen in Figure 2b, if the effect size under Hi in332

Figure 2a increases, the Type i error probability decreases, while the Type c error probability333

remains constant. In Figure 2b it can also be seen that the Indecision probability decreases with334

the increased effect size. As can be seen in Figure 2c, if the sample size in Figure 2a is increased,335

the Type i and Type c error probabilities decrease. Since for both distributions, the size of the area336

between 1
3 and 3 decreases, the Indecision probability also decreases. For Approach 2, sample337

size will be determined such that the Type i, Type c, or the Decision error probability is acceptably338

low. Note that the Decision error probability and the Indecision probability cannot be controlled339

at the same time. The sample size is determined for a desired level of Decision error probability,340

and the Indecision error probability is a logical consequence.341

4.2.1 Approach 2b342

Note that the Indecision probability can be quite large in Approach 2, which might be undesirable343

for a researcher. Therefore, the situation in which a researcher wants to determine sample size344

such that the Indecision probability is acceptably low is also considered. We will refer to this345

approach by Approach 2b. In contrast to Approach 2, for Approach 2b sample size is determined346

such that the Indecision probability is controlled. Based on the sample size and decision criterion,347

the error probabilities can be determined, but not controlled.348
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Figure 3. Median Bayes factors for Approach 3. Hypothetical sampling distributions of BFic
under Hi and Hc, given group sample size N and effect size dHi . Note that dHc = .2 in each
figure.

4.3 Approach 3349

Approach 3 is different from Approach 1 and 2, because it does not rely on error probabilities or350

on a fixed decision criterion. In the sampling distributions under Hi and under Hc the median351

Bayes factor can be determined. These medians are an indication of the size of the Bayes factors352

that can be expected, given N , dHi , and dHc . This approach makes use of a summary measure to353

describe the distribution of Bayes factors. Extreme outlier Bayes factors can greatly influence the354

value of the mean. The median is not affected by extreme cases. Additionally, as can be seen in355

the figures, the distribution of Bayes factors is skewed. The skewness of this distribution depends356

on effect size and the number of parameters in the hypothesis. The median is not affected by the357

skew.358

Figure 3 shows hypothetical sampling distributions of BFic under Hi and Hc. As can be seen359

in Figure 3a, each of the distributions is marked with a line, indicating the median value of that360

distribution. Note that in Approach 3, a researcher can choose a required value for the median361

Bayes factor under Hi or under Hc. As can be seen in Figure 3b, if the effect size in Figure 3a362

increases, the median Bayes factor under Hi increases, while the median Bayes factor under Hc363

remains constant. As can be seen in Figure 3c, if the group sample size in Figure 3a increases,364

the median Bayes factor under Hi increases, while the median Bayes factor under Hc decreases.365

For Approach 3, sample size will be determined such that the median Bayes factor under Hi is of366

a required size, B, or the median Bayes factor under Hc is of a required size, 1/B.367



PRE-PRINT 17

4.4 Critical values368

Critical values for the error probabilities, Indecision probability, and median Bayes factor have to369

be chosen for the methods presented in this paper. In null hypothesis significance testing, Type I370

and Type II error probabilities are usually set at .05 and .2, resulting in an average error probability371

(Decision error probability in this paper) of .125. This led us to consider cutoff values of .1, .05,372

and .025 for Approach 1 and 2. These cutoff values can be used to control the Type i, Type c,373

or the Decision error probability. Relatively strict cut-off values are used. We chose to do so, to374

respond to the replication crisis in social sciences. This crisis is partially due to publication of false375

positives (see for example Pashler and Wagenmakers (2012) and Thompson (2004)), which are376

partly caused by too lenient Type I error rates. By using strict error probabilities, we determine377

group sample sizes that have a relatively high probability of rendering correct results. For the378

Indecision probability in Approach 2b, cutoff values of .3, .2, and .1 are considered. Indecision379

probabilities larger than .3 have not been considered because then studies remain undecided too380

often. Furthermore, Indecision probabilities smaller than .1 were not considered, because then381

the Indecision probability becomes too small, and the situation resembles Approach 1 too much.382

In Approach 3, the values 3, 10, and 20 are considered for B, roughly based on an indication383

of strength of support by Kass and Raftery (1995). A B of 3 implies a required median Bayes384

factor of 3 if Hi is true, and implies a required median Bayes factor of 1/B = 1/3 if Hc is true.385

Note that a researcher could decide that both the Bayes factor if Hi is true and the Bayes factor386

if Hc is true, should be of a required size. This is done by determining the group sample size387

such that the median Bayes factor under Hi is B, and the group sample size such that the median388

Bayes factor under Hc is 1/B. The largest of these two sample sizes is the required group sample389

size.390

5 Simulation391

The Type i, Type c and Type i′ error probabilities, Decision error probability and Indecision prob-392

ability and expected median Bayes factor all rely on the sampling distribution of Bayes factors.393

These sampling distributions cannot be obtained analytically. Simulations are executed to obtain394

the required sample size for different combinations of population parameters. The simulations are395

programmed and carried out in R (R Core Team, 2013) using the package BayesianPower version396
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0.2.3 (developed for this manuscript, see Section 7.1 for additional information). The R code and397

output are available on the Open Science Framework, 10.17605/OSF.IO/D9EAJ. The hypotheses398

considered in this paper are Hi, Hc, and Hi′ , like in Equations 1–3, with K = 2, 3, 4. The399

Bayes factors BFic or BFii′ are computed using hypothetical datasets sampled from populations400

under Hi and Hc or under Hi and Hi′ . The first three subsections describe in detail how the401

populations under Hi, Hc, and Hi′ are specified. These are the first steps of the simulation402

procedure. Section 5.4 gives a brief description of the entire simulation procedure by means of an403

example.404

5.1 Specify Hi and effect size dHi
405

First, a population under Hi needs to be specified. The population is dependent on the number of406

groups under Hi, and on effect size dHi . As was indicated before, the effect size considered in407

this paper is Cohen’s d. Based on Cohen’s definition of small, medium, and large effect sizes, dHi408

can take on the values 0.2, 0.5, and 0.8 (Cohen, 1992). The group standard deviation σk is 1, for409

k = 1, 2, ...,K, and the smallest ordered mean is equal to 0. The difference between the first and410

the last ordered mean is described by dHi , and intermediate means are equally spaced between 0411

and dHi . Table 1 shows the population means for K = 2, 3, 4. If Hi is compared to Hc, dHi =412

.2, .5, and .8 are considered. If Hi is compared to Hi′ , dHi = .2 and .5 are considered.413

Note that because of our definition of effect size, the difference between each pair of means414

in a hypothesis for some effect size, varies over K. For example, for K = 3, and dHi = .2,415

the standardized difference between each pair of means is .1, while for K = 4, the difference416

is .067. We believe that by controlling the effect size over the difference between the first and417

the last mean, realistic mean orderings can be expressed. For example, for K = 4, it would be418

unrealistic to consider an effect size of .8 between each pair of means, because it would result419

in a standardized difference of 2.4 between the first and the last ordered mean. Although we420

believe our choices for effect size are realistic, we also acknowledge that we are being strict by421

considering rather small differences between pairs of means like .067.422
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Table 1
Population means given d

K d µ1 µ2 µ3 µ4
0.2 0.2 0 - -

2 0.5 0.5 0 - -
0.8 0.8 0 - -
0.2 0.2 0.1 0 -

3 0.5 0.5 0.25 0 -
0.8 0.8 0.4 0 -
0.2 0.2 0.133 0.067 0

4 0.5 0.5 0.333 0.167 0
0.8 0.8 0.533 0.267 0

Note. d can be dHi
, dHc

, or dHi′ . The means are labeled such that they match the ordering of means in
Hi. The labels can be rearranged such that they match Hc or Hi′ . For example, if K = 3, dHi′ = .2,
and Hi′ : µ3 > µ2 > µ1, the populations means will be µ3 = .2, µ2 = .1, and µ1 = 0.

5.2 Specify Hc and effect size dHc423

If Hi is evaluated with Hc, a population under Hc needs to be specified. The hypothesis Hc is424

the complement of Hi, indicating that every ordering of means not in Hi can be true. For K = 2,425

only one other ordering than that under Hi is possible, but five orderings are possible for K = 3,426

and 23 for K = 4. Table 2 shows all options of ordered means under Hc for K = 2, 3, and427

three examples for K = 4. As can be seen for K = 3, the orderings under Hc differ from428

Hi with a different number of pairwise permutations. To obtain the first two orderings, only one429

pairwise permutation is required (e.g. switch µ1 and µ2 yields µ2 > µ1 > µ3). To obtain the third430

and fourth ordering, 2 pairwise permutations are required (e.g., switch µ1 and µ2 first, and then431

switch µ1 and µ3 to yield µ2 > µ3 > µ1). Finally, to obtain the last ordering, 3 permutations are432

required. The number of permutations required is classified as a small, medium, or large deviation433

of Hi.434

The effect size dHc needs to be specified. Because Hc consists of multiple orderings for435

K > 2, the effect size dHc can be specified for all of these orderings, and a composite population436

can be defined. However, if a researcher is comparing Hi and Hc, he is testing an inequality con-437

strained hypothesis Hi against its complement Hc, that is, he is testing one theory. The required438

group sample size should be such that it can detect any deviation from his theory that is possible439

under Hc. Both effect size and the number permutations in the population describe the deviation440

from Hi. Therefore, we choose to only consider dHc = .2 in this paper. Additionally to a small441
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Table 2
Examples of ordered population means

K Ordering Deviation from Hi

2 µ2 > µ1 -

3

µ1 > µ3 > µ2 small c*
µ2 > µ1 > µ3 small
µ2 > µ3 > µ1 medium *
µ3 > µ1 > µ2 medium
µ3 > µ2 > µ1 large*

4
µ1 > µ2 > µ4 > µ3 small c*
µ2 > µ3 > µ1 > µ4 medium *
µ4 > µ3 > µ2 > µ1 large *

Note. For K = 4 only a selection of ordered means is presented. A c indicates that this ordering is the
considered as the true mean ordering under Hc. A ∗ indicates that this ordering is considered as the
true mean ordering under Hi′ as a representative of a small, medium and large deviation from Hi.

effect size, the required sample size should be such that the smallest deviation from Hi (i.e., only442

one permutation) can be detected. In line with the argumentation for a small effect size under Hc,443

we also opt to determine the sample size such that a small deviation from Hi, meaning only 1444

permutation, can be detected given the chosen error probabilities. Rather than simulating from a445

composite population, where all orderings of Hc are represented, we simulated from a population446

where a single ordering is chosen as representation of Hc. This is a closer representation of real-447

ity. For a complete overview, this paper does present sample sizes required per group for medium448

and large deviations from Hi, too. Table 2 indicates which orderings are used in the simulation to449

represent Hc.450

5.3 Specify Hi′ and effect size dHi′
451

If Hi is evaluated with Hi′ , a population under Hi′ needs to be specified. To specify a population452

under Hi′ , first a choice needs to be made for what ordering of means is considered under Hi′ .453

Any ordering of means that is possible under Hc could be used as Hi′ . In this paper, one ordering454

of means with a small deviation of Hi is considered, one with a medium deviation, and one with455

a large deviation, for K = 3, 4. Only two permutations of means exist when K = 2. This implies456

that for K = 2, Hc is equivalent to Hi′ as defined in this paper. Therefore, K = 2 is only consid-457

ered in the simulations for Hc and not repeated for Hi′ . In Table 2 the orderings considered for458

Hi′ are marked with an asterisk.459
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IfHi is compared withHi′ , .2 and .5 are considered for both dHi and dHi′ . We do so, because460

if a researcher wants to evaluate Hi with Hi′ , he might value these two hypotheses equally. He461

can expect that a population underHi is true, with for example an effect size of .5, but at the same462

time also consider a population under Hi′ , with an effect size of .5.463

5.4 Simulation procedure464

This section describes the steps taken in the simulation procedure by means of an example. Fig-465

ure 4 displays the simulation procedure, and highlights the choices made in the example.466

1. Specify K, the number of groups, and the inequality constrained hypotheses considered:467

Hi, and Hc or Hi′ . For this example, K = 3, Hi : µ1 > µ2 > µ3, which is compared with468

Hc : not Hi. Note that the true population considered under Hc is indicated in Table 2.469

2. Specify the population means under Hi and Hc or Hi′ using dHi and dHc or dHi′ . For this470

example, dHi = .2 and dHc = .2.471

3. Specify the approach used (1, 2, 2b or 3), the controlled error (Type i, Type c, Type i′472

or Decision error probability, Indecision probability or median Bayes factor under Hi or473

Hc/Hi′) and specify the critical value. For the example, Approach 1 is considered, with a474

critical value of .1 for the Decision error.475

4. Specify a minimum and maximum group sample size N . The minimum group sample size476

is considered 20 and the maximum is 1, 000. The starting group sample size is the midpoint477

between the minimum and maximum, so 510.478

5. Sample J datasets using the population means and standard deviation, and group sample479

size N . For all simulations, J = 1, 000.480

6. Compute the complexity and fit using Equation 14–15. Compute BFic or BFii′ , using481

Equation 6 or 7 using 1, 000 prior and posterior samples. Because Hi is compared with Hc482

in this example, BFic is computed.483

7. Compute the Type i, c or i′ and Decision error probabilities, Indecision probability and the484

median Bayes factor.485
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1. Specify K, K = 3    ...

and hypotheses Hi: μ1 > μ2 > μ3 Hc: not Hi

2. Specify population 

means using effect sizes

dHi
= .2

μ1 = .2, μ2 = .1 , μ3 =0

dHc
= .2

μ1 = .1, μ2 = .2, μ3 = 0

3. Specify approach and 

critical value

Approach 1, with Decision error at .1

4. Specify minimum and 

maximum sample size

Min. = 20; Max. = 1,000

Starting sample size = 510

5. Sample J datasets

D1 D2 … DJ-1 DJ D1 D2 … DJ-1 DJ

6. Compute BFic BFic
1 BFic

2 … BFic
J-1 BFic

J BFic
1 BFic

2 … BFic
J-1 BFic

J

7. Compute Decision error probability

8. If the critical value is not met, adjust the sample size (decrease if Decision error 

probability is smaller than .1, increase if Decision error probability is larger than .1)

Figure 4. Example of the simulation procedure.

8. Adjust the group sample size. If the observed statistic (Decision error probability for the486

example) is higher than the critical value (.1 for the example), increase the sample size487

midway between the current group sample size and the maximum group sample size. If the488

observed statistic is lower than the critical value, decrease the sample size midway between489

the current group sample size and the maximum group sample size. Adjust the minimum or490

maximum group sample sizes. If the sample size increase, the current midway point (510 in491

first iteration) becomes the new minimum group sample size. If the sample size decreased,492

the current midway point becomes the new maximum group sample size.493

9. Iterate Steps 5–8 until the critical value has been reached.494

Note that the simulations start at a group sample size of 20. The methodology in this paper uses495

a normal approximation of the marginal posterior distribution of the population means. The true496

marginal posterior distribution is a t-distribution. It has been shown that for group sample sizes497

of 20 and larger the t-distribution and the normal approximation yield similar Bayes factors when498

testing inequality constrained hypotheses (Gu et al., 2014). The required group sample size can499

be determined based on the type and size of error one is willing to make (Approaches 1, 2, and500

2b), or on the median Bayes factor (Approach 3). The critical error probabilities and median501
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Table 3
Required group sample sizes for Approach 1 using Hc

Critical error probability .025 .05 .1
K Controlled dHi = .2 .5 .8 .2 .5 .8 .2 .5 .8

Decision 184 121 121 141 85 85 85 43 33
2 Type i 203 33 21 141 21 21 79 21 21

Type c 183 183 183 121 121 121 85 85 85

Decision 305 103 103 216 74 49 119 37 23
3 Type i 415 64 25 293 45 21 187 29 21

Type c 139 139 139 103 103 103 49 49 49

Decision 369 93 61 221 61 34 138 35 21
4 Type i 461 77 33 350 53 21 219 39 21

Type c 126 126 126 61 61 61 29 29 29

Note. Required group sample size N when Type i, Type c or Decision error probability is controlled
at .025, .05 or .1. The mean ordering considered under Hc is µ2 > µ1 for K = 2, µ1 > µ3 > µ2 for
K = 3 and µ1 > µ2 > µ4 > µ3 for K = 4. The effect size dHi

is .2, .5 or .8 and dHc
= .2 for all

sample sizes. When Type c error is controlled, the required sample size is independent of dHi
. Note

that 21 is the lowest possible required group sample size.

Bayes factors used are those presented in Section 4.4. If Hc is considered, the required sample502

size is determined for each of the orderings. Then, the orderings are grouped by deviation from503

Hi (number of permutations), and the average for each of these groups is computed. Thus, if two504

orderings exist with the same number of permutations (say, one permutation, labeled as a small505

deviation), the average of the required sample sizes for these orderings is the required sample size506

for small deviations.507

6 Results508

This section discusses the results from the simulations using sample size tables 2 for each of the509

approaches. For Approach 1, two sample size tables are presented. Table 3 presents the required510

group sample sizes if the Type i, c or Decision error probability is controlled when testing Hi511

against Hc. Table 4 presents the required group sample size of Approach 1 when comparing512

Hi against Hi′ rather than Hc, only for K = 4. Table 5 presents the required group sample sizes513

2Note that the sample size tables presented in the paper are computed using 1, 000 posterior samples and 1, 000
sampled datasets because of computation time. The Supplementary materials present the results of Table 3 using
10, 000 posterior samples for K = 2 only, rendering comparable sample sizes. Additional tables from earlier
simulations are available in the Supplmentary materials also, with 10, 000 posterior samples and 10, 000 sampled
datasets, but using a slightly different prior.
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Table 4
Required group sample sizes for Approach 1 using Hi′ and K = 4

Critical error probability .025 .05 .1
dHi′ Controlled dHi = .2 .5 .2 .5 .2 .5

Decision * * * 797 782 371
.2 Type i * 279 * 191 781 126

Type i′ * * * * 797 797

Decision * 266 781 199 381 124
.5 Type i * 279 * 191 781 126

Type i′ 255 255 185 185 124 124

Note. Required group sample size N when Type i, Type c or Decision error probability is controlled
at .025, .05 or .1. Let * denote required group sample sizes larger than 1, 000. The mean ordering
considered under Hi′ is µ1 > µ2 > µ4 > µ3. The effect sizes dHi

and dHi′ are .2 or .5. When Type
i′ error is controlled, the required sample size is independent of dHi . When Type i error is controlled,
the required sample size is independent of dHi′ .

when the Indecision probability is controlled following Approach 2b. Finally, Table 6 presents the514

required group sample sizes when the median Bayes factor is controlled following Approach 3.515

Using these tables the general conclusions from the simulations are illustrated. The supplementary516

materials contain additional sample size tables and extensive illustrations.517

The sample sizes resulting from the simulation might seem large on first view. This can be518

explained by the fact that strict measures for the effect sizes and the error probabilities have been519

used. Small, medium, and large effect sizes are used, however, these effect sizes describe the520

difference between the largest and the smallest mean. Thus, large differences between each pair521

of means are not common. As was explained in Section 4.4, the used critical values in this paper522

(.1, .05, and .025) are more strict than the Decision error probability based on the traditional Type523

I and Type II error probabilities ((.05 + .2)/2 = .25/2 = .125).524

6.1 General trends525

First, we find that the required group sample size increases if the error probability (Type i, c,526

i′, or Decision) or Indecision probability decreases, or if B increases. Put differently, the more527

certainty is desired for the conclusion, the larger the group sample size should be. If the deviation528

under Hi′ increases (i.e., more pairwise permutation relative to Hi), the required group sample529

size decreases. Hypotheses with larger deviations are more distinctly different from Hi: datasets530
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Table 5
Required group sample sizes for Approach 2b using Hi′

Critical indecision probability .3 .2 .1
K deviation dHi′ dHi = .2 .5 .2 .5 .2 .5

3
small

.2 216 67 366 147 657 389

.5 81 31 143 61 372 105

medium
.2 21 21 69 23 165 88
.5 21 21 23 21 83 29

large
.2 21 21 47 21 127 61
.5 21 21 21 21 60 21

4
small

.2 505 187 893 383 999 895

.5 191 83 377 141 891 253

medium
.2 93 23 209 75 409 211
.5 36 21 79 36 223 63

large
.2 21 21 29 21 103 34
.5 21 21 21 21 39 21

Note. Required group sample sizeN when Indecision probability is controlled at .3, .2 or .1. The effect
sizes dHi

and dHi′ are .2 or .5. Small, medium and large denote the true mean ordering considered
presented in Table 2. Note that 21 is the lowest possible required group sample size.

generated under Hi will less often result in a decision in favor of Hi′ , and vice versa, compared531

to small deviations.532

Second, if the number of groups K increases, a larger group sample size is required. If K533

increases, but dHi is constant, the differences between pair of means decreases. For example, if534

dHi = .5, the difference between each pair of means is .5 for K = 2, .25 for K = 3, and .167535

for K = 4. If differences between means are smaller, it is more likely that the means of a sample536

will not adhere to the population from which they were sampled, thus, a larger group sample size537

is required.538

6.2 Exchangeability of hypotheses539

Third, the results show symmetric results in cases where Hi and Hi′ are exchangeable. Hi and540

Hi′ are exchangeable when the effect size under both hypotheses is equal. Because both hypothe-541

ses describe an ordering of all means from large to small, they are mathematically equivalent.542

Consequently, the Type i and Type i′ error probability are equivalent and so is the Decision error543

probability (their average). The expected sample size required to control the Type i, Type i′ or544

Decision error probability is the same when the expected effect size is equal for equivalent hy-545
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Table 6
Required group sample sizes for Approach 3 using Hc

B 3 10 20
K Controlled dHi = .2 .5 .8 .2 .5 .8 .2 .5 .8

2
Median i 21 21 21 73 21 21 141 25 21
Median c 21 21 21 73 73 73 141 141 141

3
Median i 71 21 21 259 45 21 467 79 33
Median c 21 21 21 61 61 61 101 101 101

4
Median i 103 21 21 359 55 21 603 103 37
Median c 21 21 21 23 23 23 55 55 55

Note. Required group sample size N when the median Bayes factor BFic is constrained to be larger
than B under Hi (median i) or smaller than 1/B under Hc (median c). The mean ordering considered
under Hc is µ2 > µ1 for K = 2, µ1 > µ3 > µ2 for K = 3 and µ1 > µ2 > µ4 > µ3 for K = 4.
The effect size dHi is .2, .5 or .8 and dHc = .2 for all sample sizes. When median c is controlled, the
required sample size is independent of dHi

. Note that 21 is the lowest possible required group sample
size.

potheses. As can be seen in Table 4, for K = 4, dHi = dHi′ = .5, and a critical value for the546

error probability of .1, the group sample size is 124 whether the Decision error and Type i′ error547

probability are controlled, and 126 when the Type i error probability is controlled. Note that these548

sample sizes are not exactly equivalent due to sampling variation.549

Note that Hi′ is equivalent to Hc for K = 2, rendering the same equivalence condition when550

the effect sizesHi andHc are equal. For example, as can be seen in Table 3, forK = 2, dHi = .2,551

and a critical value for the error probabilities of .1, the group sample size is 85, when the Decision552

error and Type c error probability are controlled, and 79 when the Type i error probability is553

controlled.554

A similar symmetry occurs when dHi and dHi′ are switched. For example, the combination of555

dHi = .2 and dHi′ = .5, renders very similar results as the combination dHi = .5 and dHi′ = .2.556

The only difference is the labeling of the error probabilities. The Type i error probability for557

dHi = .2 and dHi′ = .5 is the same as the Type i′ error probability for dHi = .5 and dHi′ = .2, and558

vice versa. The Decision error probability is exchangeable. Table 5 shows that for a hypothesis559

with 3 means that have medium deviation from Hi, and a controlled Indecision probability at .2,560

the group sample size is 23 both when dHi = .5 and dHi′ = .2, and when dHi = .2 and dHi′ = .5.561
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6.3 Hc versus Hi′562

When Hi is compared to Hc or Hi′ with the same effect size, different group sample sizes are563

required. Tables 3 and 4 both present the required group sample sizes for K = 4. The required564

group sample sizes are much larger when Hi′ is considered than when Hc is considered. For565

example, as can be seen in Table 3, for K = 3, dHi = .5, and a Decision error probability of .05,566

the required sample size is 74 if the true population under Hc is indeed µ1 > µ3 > µ2 with a567

small (dHc = .2) effect size. If Hi is compared to Hi′ , and dHi′ = .2, the required group sample568

size is 797 (Table 4). Table 5 shows that when Hi′ deviates more extremely from Hi, or the effect569

size under Hi′ increases, the required group sample size decreases. The required group sample570

size for testingHi againstHc is sometimes smaller and sometimes larger than that required to test571

or against Hi′ . If Hi′ deviates much from Hi, this test will require a smaller sample than a test572

against Hc. However, if only a small deviaion or small effect size is expected under Hi′ , this test573

may require a larger sample size than a comparison against Hc. Note that the question of interest574

should be leading in deciding which hypotheses to consider, and not which hypothesis renders a575

lower required sample size.576

6.4 Approach 3577

Table 6 presents the required group sample sizes when the median Bayes factor is controlled.578

When Approach 3 is adopted, it is advisable to execute two separate sample size determinations.579

For example, if the median Bayes factor BFic is desired to be larger than 20 when Hi is true with580

dHi = .8 and K = 4 , the required group sample size is 37. In contrast, when the median Bayes581

factor BFic should be lower than 1/20 when Hc is true the required group sample size is 55.582

If both constraints are desirable, that is, the expected evidence is desired to be of a factor of 20583

or larger for either hypothesis, both sample size determinations should be executed. The largest584

sample size is the appropriate one.585

7 In practice586

This section provides guidelines for applied researchers to select an approach, Hi′ or Hc, an587

effect size, and a critical value. Figure 5 shows a decision tree, with some example research588

questions. This section discusses the decision tree and further illustrates the choices researchers589
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1. Type of decision? 

No decision: 

Support for Hi and Hc /Hi’  

Error probability Indecision probability 

Approach 1 Approach 2 Approach 2b Approach 3 

Example 1: 

Hi : μnew > μplacebo 

Hc : not Hi 

Example 2: 

Hi : μflyer > μposter 

Hi’ : μposter > μflyer 

Example 3: 

Hi : μ+ > μneutral > μ- 

Hi’: μ- > μ+ > μneutral 

Example 2b: 

Hi : μiPad > μpc > μbook 

Hc : not Hi  

2. Controlled probability? 

Dichotomous decision: 

Choose Hi or Hc /Hi’ 

Trichitomous decision:  

Choose Hi, Hc /Hi’, or indecision  

Figure 5. Decision Tree

need to make with a few examples. Finally, the additional options of the corresponding R package590

BayesianPower are discussed.591

As can be seen in Figure 5, the choice for an approach depends on maximally two sequential592

questions. The first question, What type of decision do you want to make? relates to whether a593

dichotomous, trichotomous, or no decision should be made. For dichotomous decisions, that is,594

choosing between Hi and Hc or Hi′ , Approach 1 applies. For trichotomous decisions, that is,595

choosing between Hi, Hc or Hi′ , and indecision, either Approach 2 or 2b applies. For situations596

in which a researcher does not want to make decision, but express the support in the data for each597

hypothesis, Approach 3 applies. If a trichotomous decision is required, the second question, What598

probability do you want to control for? has to be answered. This relates to whether a researcher599

wants to control the Indecision probability, that is, Approach 2b, or control theType i, c, i′, or600

Decision error probability, that is, Approach 2.601

Example 1. Suppose a researcher wants to see if a new drug is more effective than a placebo,602

Hi : µnew > µplacebo, and compares this with the complement, Hc. It is very important to know603

if Hi or Hc is true, to support the decision to implement the drug or not. Answering Question604

1 in Figure 5 this researcher would need to use Approach 1 to determine the required group605

sample size, because a dichotomous decision has to be made. Example 2. Suppose a researcher606
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wants to investigate whether flyers or posters are more effective in informing inhabitants of a607

neighbourhood about upcoming events, Hi : µflyer > µposter versus Hi′ : µposter > µflyer. The608

researcher wants to make a decision for Hi or Hi′ only when the evidence is sufficiently large.609

He is open to the fact that the Bayes factor may be too small, and thus replies to Question 1 that610

he wants to make a trichotomous decision, where he allows for indecision. Finally, he does not611

have a limit to what indecision he maximally allows, so he replies to Question 2 that he wants612

to control the error probability. This researcher would need to use Approach 2 to determine the613

required group sample size.614

Example 2b. Suppose a researcher wants to investigate the effect of learning tool on the test615

outcome of students. He hypothesizesHi : µiPad > µPC > µbook, andHc : notHi. The researcher616

wants to make a decision for Hi or Hc only when the evidence is sufficiently large. He is open617

to the fact that the Bayes factor may be too small, and thus replies to Question 1 that he wants618

to make a trichotomous decision, where he allows for indecision. Because his research is quite619

costly to execute, he wants to limit the Indecision probability. Therefore, this researcher should620

use Approach 2b to determine the required group sample size..621

Example 3. Suppose a researcher wants to evaluate two competing theories. The theories622

concern the attitude of people towards healthy food, after being primed with positive, neutral, or623

negative cues. He hypothesizes Hi : µ+ > µneutral > µ− and Hi′ : µ− > µ+ > µneutral. This624

researcher is not interested in making a decision, but wants to express the support in the data625

for Hi and Hi′ . Following Question 1 in Figure 5, he needs to use Approach 3 to determine the626

required group sample size.627

After determining the appropriate approach, a researcher still needs to make three decisions.628

First of all, a researcher needs to decide whether he wants to compare Hi to Hc or Hi′ . If Hc629

is used, as explained in Section 5.2, only small deviations of Hi should be considered, and if630

Hi′ is used, the researcher must decide based on his theory, what the ordering of means under631

Hi′ is. Table 2 displays what is considered a small deviation under Hc, and shows the orderings632

considered under Hi′ in this paper633

Secondly, a researcher needs to choose the effect sizes and population means under Hi and634

Hc or Hi′ . Table 1 displays the population means for the effect sizes considered in this paper.635

Inspiration for effect size can be taken from previous research in the same field. If the effect636

size generally is .5, use .5. If no previous research exists, it is up to the researcher to choose a637
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reasonable effect size. It is advised to use a small effect size in this situation.638

Thirdly, a researcher needs to make one or two decisions regarding the critical value. This639

differs per approach. Section 4.4 presents the critical values for the different decision criteria640

used in this paper. For Approach 1 and 2, a researcher must first decide whether he wants to641

control Type i, Type c or Type i′, or Decision error probability. This choice is dependent on what642

type of error the researcher values more strongly. For example, if a Type i error is deemed most643

harmful, the Type i error probability must be controlled. Secondly, the researcher must choose644

the critical value. This should be done based on practical value. The smaller the value, the larger645

the probability that the resulting decision will be correct.646

For Approach 2b, a researcher must only decide what critical value he considers for the Inde-647

cision probability. This choice depends on the costs related to not making a decision. If the costs648

are high, a small critical value should be chosen for the Indecision probability.649

For Approach 3, a researcher must first decide whether he wants to control the median Bayes650

factor under Hi, the median Bayes factor under Hc or Hi′ , or control both. For example, if the651

evidence under Hi is deemed most important, the chosen B only refers to Bayes factors under652

Hi. Secondly, the researcher must choose a size of this median Bayes factor, which is expressed653

by B. This should be done based on practical value. Tentative guidelines for the strength of the654

evidence expressed by B can be found in Kass and Raftery (1995). According to them, B = 3655

expresses positive support, and B = 20 expresses strong support.656

7.1 BayesianPower, an R package657

An R package named BayesianPower was developed alongside this paper, and is available on658

CRAN. The package provides the user with two main functions. One allows an a priori group659

sample size determination, as presented in this paper, for any set of two hypotheses that can be660

formed using the constrained matrix R, such that Rµ > 0 is true, where R is a K × r constraint661

matrix describing the r linear constraints in a hypothesis, µ is a vector of the K constrained pa-662

rameters, and 0 is a vector of length K containing zeroes. A more thorough explanation of such663

constraint matrices can be found in, for example, Hoijtink (2012). In addition to the sample size664

determination, the package also contains a function through which the Type i, Type c, Decision665

error or Indecision probability can be determined for a prior selected group sample size. This666
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gives researchers the opportunity to learn about the frequentist properties of the observed Bayes667

factor. The package allows for hindsight power calculation and for different hypotheses than pre-668

sented in this paper. On all other aspects, the underlying calculations are analogous. The prior669

variance scale can be adjusted if desired (which will show that the results are independent of the670

prior scale), but no other alterations of the prior are possible.671

8 Discussion672

In this paper, three approaches have been presented to determine the required group sample sizes673

for the comparison of inequality constrained hypotheses about group means by means of a Bayes674

factor. All approaches use a hypothetical distribution of Bayes factors to determine the sample675

size prior to data collection. Critical properties of these sampling distributions are introduced.676

The Type i, Type c, Type i′ and Decision error probabilities and Indecision probability can be677

used to quantify desirable properties of a Bayes factor in each approach. These unconditional678

error probabilities are used merely for the determination of the sample size that is needed. After679

data has been collected and analyzed, a researcher can still use the Bayes factor to update the680

conditional probabilities. Note however, that once sequential analysis is adopted, the computed681

power or appropriate group sample size no longer holds, because it assumes a single analysis.682

The remainder of this section discusses the practical implications and limitations of the proposed683

sample size determination approaches and suggests directions for further research.684

The simulation results show that adopting Bayesian inequality constrained hypothesis test-685

ing does not require enormous samples. Rather, when specific comparisons are of interest, e.g.686

comparing Hi to Hi′ , the group sample size is relatively small. By informing the hypotheses, the687

‘power’ of the comparison improves. This conclusion is limited to the chosen parameters in the688

simulation. Especially the fixed group sample size and the equal distribution of effect size over689

the means are choices that affect the results. In the presentation of this paper, these choices were690

made because they are straightforward and simply explained. The R package developed for this691

paper allows for other specifications of effect size.692

The Bayes factor can be used to compare pairs, but also sets of hypotheses. Because it ex-693

presses the relative evidence for a pair of hypotheses, by making multiple comparisons, the rank-694

ing of a set of hypotheses can be determined. The approaches in this paper consider only pairwise695
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comparisons. The number of required pairwise comparisons is equal to the number of sample size696

determinations that is required. If multiple hypotheses are considered, multiple sample size deter-697

minations should be executed to determine the appropriate sample size. The comparison between698

Hi andHi′ is best complemented with an inclusion of the complement of eitherHi orHi′ or both,699

or the unconstrained hypothesis. By including an additional hypothesis that covers the remainder700

of the parameters space, false positives are limited. If both Hi and Hi′ are wrong, the fail-safe701

hypothesis will be preferred. When multiple hypotheses are considered, this can become a time702

consuming and inefficient approach. The current approaches could easily be extended in future703

research to allow for sample size determination for multiple comparisons at once.704

The discussion in this paper limited the comparison of Hi with Hi′ or Hc. Note that the R705

package BayesianPower offers the possibility to consider alternative formulations of inequality706

constrained hypotheses that may describe combinations of constraints or fewer constraints. For707

example: H : (µ1 + µ2 + µ3)/3 > µ4, that expects the average of the first three means to be708

larger than a fourth mean; or H : µ1 > {µ2, µ3, µ4}, that expects a first mean to be larger than all709

other means, but specifies no constraints among the latter.710

A practical limitation of the sample size determination using BayesianPower is the compu-711

tation time, that increases as the number of groups increases. When, for example, 10 groups are712

considered,Hi describes only a very small proportion of the parameter space. There are 10! ≈ 3.6713

million orderings with 10 group means. The current calculations use only 10, 000 posterior sam-714

ples, which will be insufficient to obtain an reliable measure of fit. Many more posterior samples715

are required, which slows the sample size determination down. The number of posterior samples716

can be chosen by the user. It is advised to do a test run with 1, 000 posterior samples, before717

committing to the computation time of 10, 000 samples.718

This paper presents a first step in developing methods for sample size determination for719

Bayesian hypothesis tests. The current methods are limited to the context of ANOVA models.720

More research needs to be done on the impact of previously mentioned variables, i.e. hypothesis721

choice, effect size, fixed or variable sample size per group. With this knowledge, more general722

methods can be developed so that sample size determination is applicable for any model or hy-723

pothesis that can be analyzed using Bayesian inequality constrained hypothesis testing.724
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8.1 Open Practices Statement725

The materials and simulation output are available on the Open Science Framework ((https://osf.io/d9eaj/,726

doi:10.17605/OSF.IO/D9EAJ).727
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