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Abstract 

In the wake of the replication crisis, social and personality psychologists have increased attention 

to the sample sizes and statistical power of their studies. Nonetheless, there remain 

misunderstandings about what statistical power is, how to evaluate it, and how researchers 

should think about sample size  . Further, the realities of some research areas (e.g., limited 

resources) and goals (e.g., testing hypotheses vs. precisely estimating effects) limit the utility of 

generic recommendations dictating sample sizes. We address common misconceptions about 

power and sample-size adequacy, and highlight relevant statistical tools and approaches. We also 

provide concrete recommendations for improving the practices of researchers, reviewers, and 

journal editors in social andpersonality psychology. In doing so, we go beyond current practice 

byadvocating an effect-size-sensitivity approach to power analysis for most, but not all, 

situations, based on the indeterminacy of our current knowledge about effect sizes in most fields 

of research.  
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Power to Detect What? Considerations for Planning and Evaluating Sample Size  

 

The recent movement toward reform in psychological research has renewed interest in 

studies’ sample sizes and statistical power. Small sample sizes have been shown to jeopardize 

the accuracy of statistical conclusions, as well as the replicability of findings (Open Science 

Collaboration, 2015). Although researchers have various intuitions about sample sizes, the 

related concept of statistical power is still poorly understood. Currently, psychologists assess 

whether a study’s sample size is adequate by relying on intuition, rules of thumb (e.g., 20 

observations per cell;  Simmons, Nelson, & Simonsohn, 2011), existing studies, various forms of 

power analyses (Cohen, 1988), and precision-based approaches (e.g., Rothman & Greenland, 

2018). In this environment, researchers, reviewers, and editors may struggle to know how many 

observations (cases and measurements) are required to adequately answer a given research 

question.  

Uncertainty about these topics in social and personality psychology led the authors to 

meet as a Power Analysis Working Group at the 2019 meeting of the Society for Personality and 

Social Psychology, in response to a call from Executive Director Chad Rummel. In this paper, 

we address common misconceptions about power and sample size adequacy, discuss different 

kinds of sample size determination methods, propose standards for reporting them, and 

summarize tools and approaches for power analysis. While not all approaches are suited for all 

research contexts, in many contexts calling for power analysis we advocate for an effect-size 

sensitivity approach. In this approach, researchers calculate the effect sizes for which their 

analyses are adequately powered, given a typical or feasible sample size, and a range of useful 

power levels. Because of the many difficulties in determining a likely effect size ahead of time, it 
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may make more sense to look at effect size as an output of power analysis, and let other factors 

weigh in when determining sample size.  

Fundamental Concepts and Misunderstandings in Power Analysis 

Power derives from the Neyman-Pearson approach to statistical hypothesis testing 

(Pearson, 1933). Statistical power is defined as 1 - β (Cohen, 1988, 1992), where β is the false 

negative error rate (the probability of failing to declare an effect as significant, if the alternative 

hypothesis is true). In other words, higher power means that true effects, if present, are detected 

more frequently. In Cohen’s writings (e.g., Cohen, 1988), and in most current psychology 

research, the recommended level of power is conventionally 80%, yielding a false-negative error 

rate (β) of 20%. Based on Neyman and Pearson’s (1933) observation that false positive rates are 

traded off against false negatives, the 80% power level, as Cohen (1988) explains, assumes that 

admitting false findings at the conventional 5% rate is four times worse than missing true 

findings. Consequently, if the rate of “false positives” assuming the null is kept at 5% (α, the 

criterion for statistical significance)1, then “false negatives” assuming the alternative (β) can 

approach 20%.  

Although many quantitative researchers are familiar with these fundamental concepts, a 

nuanced understanding of power is not always evident in the planning, discussion, and 

evaluation of quantitative research. In the sections that follow, we address several common 

misconceptions in power analysis and sample-size planning.  

 
1
 Although the choice of α is increasingly seen as an analytic choice (Lakens et al., 2017) with an argument to be 

made for values below .05 (e.g., Benjamin et al., 2018; Nosek et al., 2018), we assume α = .05 in this paper as it 

remains the most commonly applied criterion. 
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Misunderstanding #1: “Power Analysis Can Only Determine Sample Size” 

 Power analysis is sometimes conflated with a specific kind of a priori power analysis in 

which sample size is determined, given a desired power level (and other features of the study). 

Because commonly used software (e.g., G*Power; Faul, Erdfelder, Lang, & Buchner, 2007) 

refers to this kind of analysis as “a priori,” researchers may be tempted to presume this is the best 

kind of analysis that can be done before conducting a study. In fact, there are several kinds of 

power analysis, and all can be useful at all stages of the research process (planning, analysis, 

evaluation). 

Four parameters define power analysis: α level, population effect size, sample size, and 

power. When three are known, the fourth can be determined, creating four distinct types of 

power analysis. Because α is usually fixed by convention, common types of power analyses 

specify two inputs and one output. The examples below all use α = .05, two-tailed2—a common 

criterion in psychology. It should be emphasized that in all three analysis types below, effect size 

refers to the (unknown) population effect size, not the observed effect size in the sample. 

● An a priori power analysis (Cohen, 1988) inputs the desired power and the effect size 

for which power is desired. It returns a target sample size, ideal for determining study 

methodology ahead of time. For example, to detect a correlation’s effect size ρ ≥ .40 

with at least 80% power, a priori power analysis requires N = 44 observations.  

● An effect-size sensitivity analysis inputs the desired power and likely (or achieved) 

usable sample size. It returns the minimum population effect size detectable at or above 

 
2 Researchers can improve power by committing to a one-tailed test, although this requires they 

restrict all inference to effects in the predicted direction. In the case of pre-registered 

confirmatory analyses, however, one-tailed testing may be useful (Nosek, Ebersole, DeHaven, & 

Mellor, 2018). Arguments also exist for adopting a more stringent criterion α (e.g., .005; 

Benjamin et al., 2018).  
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this power. For example, with 100 observations, an effect-size sensitivity analysis 

identifies that 80% or greater power will be achieved for correlations that have size ρ ≥ 

.27 in the population.  

● A power-determination analysis, sometimes referred to as “post-hoc power” in tools 

such as G*Power, inputs N and a population effect size, and returns power. For 

example, given that N = 100 participants have been recruited, a power-determination 

analysis reveals power is terrible (16%) to detect a population correlation of ρ = .10 and 

excellent (87%) to detect a slightly larger population correlation of ρ = .30. (This 

analysis type seems particularly prone to the misconception that the observed sample 

effect size can be useful for input; see Misunderstanding #5, below.)  

Which of these analyses to use depends on the researcher’s goals. If the only goal is to 

test an empirical hypothesis, then an a priori power analysis will return the minimum necessary 

sample size given a particular effect size. However, this approach may be inaccurate in  many 

research contexts within social-personality psychology for which expected effect size is not 

easily determined. As noted in Misunderstanding #3, power is critically influenced by the 

(unknown) population effect size. Thus, any a priori power analysis requires that researchers 

input a smallest effect size they wish to detect, the value of which helps to determine sample 

size. A researcher who wishes to detect “small” (d = .20) effects must collect N = 787 

observations, whereas a researcher who is happy to detect only slightly larger effects (d = .35) 

need only collect one third that sample size—N = 258.  

We provide some guidelines for thinking about effect sizes below (Misunderstanding #6) 

but acknowledge that there is often not enough information available on this matter before 

running a study. Though many researchers may have intuitions about the kind of effect size that 
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is not worth bothering about (e.g., setting the lower bound at a conventionally “small” size 

corresponding to d = 0.2), theories in the field of social and personality psychology are not 

typically well-defined enough to precisely predict effect sizes in novel studies, or to state what a 

smallest effect size of interest should be (e.g., d = 0.2 or 0.35?). This is particularly important in 

sample size determination because the sample sizes required to detect d = 0.2 and d = 0.35 are 

very different from each other. And, as we discuss later, determining a realistic typical or 

minimal effect size from the literature is often uncertain. 

In the absence of clear criteria for effect sizes, many researchers would be happy 

knowing if there existed any effect in a definite direction. If this is the case, then the first 

question to answer is “What is the smallest effect size that I can afford to detect?” while the 

second question follows,“...and is that effect size reasonable or important?” Researchers with 

limited time, money, and mental energy may be tempted to enter many different effect sizes into 

an a priori analysis by trial-and-error until an acceptable sample size if found.  

However, this is simply an inefficient way of running an effect-size sensitivity analysis 

(Cohen, 1988). In this kind of analysis, the researcher enters a given sample size – for example, 

the largest sample they can afford to collect -- and the desired level of power (e.g., 80%). The 

analysis returns the smallest effect size that can be tested, given that sample size and design, at 

that level of power. Presuming that this effect size is a reasonable lower bound for the range of 

effects in a research area (see Misunderstanding #6), then the sample size is likely adequate. If 

this effect size is larger than effect sizes that would be reasonable or of interest, then the sample 

is not sufficiently powerful.  

Using effect-size sensitivity has a number of advantages. First, it lets researchers 

explicitly consider sample-size criteria other than power (e.g., their resources available) when 
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planning research. These are often realities of research design, yet an a priori analysis does not 

allow for their consideration. Relatedly, to the degree that it is already the practice of researchers 

to find an effect size that has good power for a given feasible N, then reporting it as such is more 

transparent and accurate. Third, to focus on the largest possible sample size given one’s 

resources may improve precision: Larger samples estimate effects more precisely and accurately 

(Maxwell, Kelley & Rausch, 2008), so researchers have more to say about an effect when they 

collect more than a minimal N to reject the null hypothesis (recall that rejecting the null typically 

means declaring an effect nonzero). Further, even if an a priori analysis is used, the final usable 

number of cases may differ from its recommendations. For example, researchers who collect 

some reaction-time tests routinely reject nontrivial proportions of their samples for fast, slow, or 

erroneous responding (see Greenwald et al., 2003). An effect-size sensitivity analysis may be 

needed to evaluate this revised sample size. 

In practice, all three kinds of power analysis may be run in concert, even before a study 

begins. For example, a researcher might decide it best to be able to detect d ≥ .20. An a priori 

analysis can be used to determine the necessary sample size (e.g., finding that N = 787 for 80% 

power to detect d = 0.20 with an independent-samples t-test). Using this example, they might 

then realize that N = 787 is unrealistic, because 500 is the maximum sample size achievable with 

current funding. Power-determination analysis could then be used to assess the adequacy of that 

sample size (e.g., revealing that only 61% power is achieved for N = 500 and d = 0.20). 

Begrudgingly, the researcher might give up on detecting such small effects and instead ask what 

effect sizes can be detected with N = 500? An effect-size sensitivity analysis could then reveal 

that N = 500 can detect d = 0.25 with 80% power. The researcher might decide this is close 

enough to the original intended effect size, and proceed to gather 500 participants. Alternatively, 
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if d = 0.25 seems inadequate, the researcher could seek additional resources in order to collect 

the initially recommended sample size for d = .20, thus avoiding wasting their existing resources 

seeking an effect which the study would be underpowered to detect.  

 

Misunderstanding #2: “Power Can Be Intuited Based on the Number of Participants” 

In practice, research psychologists have often used the sample size reported in a study as 

a proxy for power. However, sample size is not the whole story about power. Power is also tied 

to study design, analytic choices, and other features of the research. For example, a repeated-

measures study with few participants, but many data points per participant, can have far greater 

power than a between-subjects study with many participants, but with few data points per 

participant. Given this, we caution against intuitions and heuristics based on the number of 

participants overall, or on N-per-design-cell guidelines (e.g. van Voorhis & Morgan, 2007), 

which are often calibrated for between-subjects designs. Instead, sample size evaluation based on 

power analysis will properly consider the number of data points, not just individuals, and will 

also properly consider the greater informational efficiency of repeated-measures analysis. For 

example, a within-subjects design comparing participants’ evaluation of four emotion-eliciting 

scenarios will give the same number of data points (and power) as a between-subjects design that 

addresses the same question with four times as many participants, each evaluating one scenario. 

Furthermore, if responses to the scenarios are correlated within each individual, repeated-

measures analysis will increase power even more by allowing individual-level “noise” to be 

removed, focusing on differences between scenarios. More points about within-participants 

analyses can be found in this article’s Supplementary Materials. 
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After data are collected, a given research sample’s power also cannot be properly 

evaluated based on a mere count of participants, as power functions are nonlinear and analysis-

specific (Cohen, 1988). Therefore, any heuristic that deems a study inadequate from N alone has 

the potential to do serious disservice to designs that use participants efficiently. Even in between-

subject designs, heuristics may be misleading because they rely on an assumption of effect size 

(for example, N-per-design-cell = 20 assumes an effect size d = 0.91 to achieve 80% power, and 

N-per-design-cell = 40 assumes d = 0.64). As we will see, it is unlikely that one effect size 

estimate can accurately characterize all relationships and manipulations across a single field of 

research, let alone many such fields in a discipline.  

 

Misunderstanding #3: “There is a Single Power Level for a Study” 

Researchers may be tempted, or requested, to report on “the” power level for a study. The 

most obvious problem with this nomenclature is that a single study may encompass different 

analyses and designs, which require different power analyses. But more meaningfully, because 

population effect sizes are unknown, researchers need to consider a range of possible effect sizes 

to accurately assess power for each study. Calling a study “high-powered” or “low-powered” is 

problematic because power is entirely dependent on the unknown population effect size for a 

given analysis. Although hidden, the population effect size is also crucial, because it determines 

what an analysis has power to detect. For example, a sample test with N = 100 has 99% power to 

detect a correlation effect size of ρ = .50 yet only 52% power to detect ρ = .10. Similar 

calculations can be made across a range of all possible effect sizes. For this reason, power is best 

thought of as a curve across this range rather than a single value. A study can only be reported as 
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having 80% power in the context of a given effect size and a given analysis (e.g., “the final 

sample had at least 80% power to detect correlations ρ > .28 at α = .05”).  

One corollary of this property is that all analyses have 80% (or 90%, or 95%) power for 

some effect size. By this logic, all analyses have adequate power -- and inadequate power! That 

is, a given analysis has high power to detect some (large) effect, and low power to detect some 

(small) effect. The question then becomes whether the analysis has adequate power for effect 

sizes that are meaningfully likely to occur in the context of interest. We address the question of 

how to determine target effect size under Misunderstanding #6. 

 

Misunderstanding #4: “Power is Only Important for Controlling False Negative Rates”  

It is widely understood that running adequately powered studies controls the risk of 

falsely arriving at negative outcomes, which in many research traditions are seen as failures. 

However, this is only a partial understanding. Power also improves the replicability of positive 

results (Szucs & Ioannidis, 2017). In a world where power to detect true effects is low, any given 

positive result is less likely to be a true positive, and thus relatively more likely to be a false 

positive.  

For example, assume that 100 research studies on varied topics examine 30 true effects 

and 70 null effects in the population. If the power across all studies to detect their effect’s 

population size is low (e.g., 12%), then 30 ✕ 12% = 3.6 true positives are expected (Szucs & 

Ioannidis, 2017). However, 70 ✕ 5% = 3.5 false positives arealso  expected, so that nearly half 

of all observed significant effects are not true in the population. But at power of 80%, 24 true 

positives are found versus 3.5 false positives, and we can be much more confident that any 
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observed significant effect is true. Thus, power is important in controlling the field-wide 

dissemination of false positive results, as well as controlling study-level false negative rates.    

 

Misunderstanding #5: “Power Analysis Based on the Currently Obtained Effect Size is 

Meaningful for Evaluating the Current Study”  

Researchers may wish to know whether a given analysis—theirs or someone else’s—was 

adequately powered. In such cases, it is incorrect to use the sample’s observed effect size to 

determine the power of that analysis (Cohen, 1988; Gelman, 2019). Unfortunately, some users of 

statistical packages wrongly interpret power analyses using the sample-observed effect size in 

exactly this way. For example, some procedures in the SPSS package allow for a calculation of 

the “observed power” on the basis of the sample effect size (IBM Corp., 2017). This kind of 

power estimate is uninformative, because it is a monotonic function of the p-value (see Goodman 

& Berlin, 1994). In particular, if p > .05, then observed power will always be less than 50%. 

Power based on observed values does not add new information, beyond echoing the already-

known significance test. Instead, we recommend that researchers in this situation should, enter 

the given sample size and desired power into an effect-size sensitivity analysis to determine 

whether the analysis was powered to detect meaningful effect sizes.   

 

Misunderstanding #6: “One Should Always Power for Effect Size X” 

 Because required N depends on effect size, all rules of thumb for sample size (e.g., N per 

cell; Simmons et al., 2011; van Voorhis & Morgan, 2007) also imply an effect size that 

researchers are, by default, powering for. As argued above, instead of relying on these heuristics 

for picking a sample size, researchers should conduct a power analysis that requires either (1) 
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inputting an effect size or (2) evaluating the effect size of the resulting analysis. However, this 

advice solves one problem and replaces it with another—what effect size should researchers use? 

We contend that it would be a mistake to replace one heuristic with another. A principled way of 

thinking about effect sizes is necessary. We review two options here: effect size precedent and 

smallest effect size of interest.  

 Effect size precedent. When using previously observed effect sizes as a guide, it seems 

reasonable to look for the most specific precedent available for the planned analyses. For 

completely novel research, one might assume that the effect size will be similar to sizes that 

studies in the relevant sub-discipline of psychology typically find. For example, Richard, Bond, 

and Stokes-Zoota (2003) conducted a meta-analysis of meta-analyses to estimate the average 

effect size in social psychology, drawing on over 25,000 studies. The average effect size across 

all of those studies was r = .21 with a standard deviation of .15 (this corresponds to a d = 0.43 

and an f = .2153). In the absence of any other information, social psychologists designing new 

studies could assume that the effect size will be about r = .21. Similarly, personality 

psychologists could assume that their effect falls close to r = .19, as the appropriate field-wide 

estimate suggests (Gignac & Szodorai, 2016).  

 Greater focus can help researchers choose more accurately. Within Richard et al.’s (2003) 

r = .21 average, there was substantial variability across topics. For example, studies in group 

processes tended to produce larger effects (r = .32) than those in social influence (r = .13). 

Therefore, knowing the research’s general topic area might improve the estimate. Research 

topics can be defined even more precisely, such as correspondence bias or moral licensing, and 

the appropriate meta-analytic estimate used. Finally, in the most focused case, researchers 

 
3
 The d and f , like the r, are typical effect size statistics that power analysis software will request to make a sample 

size determination. They correspond to ANOVA results and, in the case of d,  also to t-tests. 
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performing a direct replication of a given study often use its reported effect size as a ready target 

(Brandt et al., 2014). 

 But in making more precise calibrations, it is underappreciated that a study’s 

methodological paradigm, not just topic, can influence effect sizes. Consider methods of 

manipulating interracial threat. At the subtle end of the spectrum, one can manipulate minimal 

features of vignettes, such as the year when the United States is expected to become a “majority-

minority” nation (Craig & Richeson, 2014). That manipulation should produce a smaller effect 

size, all else equal, than a more vivid procedure in which, for example, White and Black men are 

paired to chat about racial profiling (Goff, Steele, & Davies, 2008).   

In fact, we might question the wisdom of taking effect size estimates from a meta-

analysis at all to guide our own efforts. A novel study by definition will not share the exact 

combination of independent variable, dependent variable, and setting in any published study. 

What’s more, one paradigm with a tendency toward stronger or weaker effect sizes might 

dominate any given meta-analysis for arbitrary reasons, biasing its overall estimate. What might 

be useful in triangulating our expectations are meta-analyses of effects from paradigms that cut 

across multiple substantive topics, but these, unfortunately, are few (e.g., Forscher, Lai et al. 

2019 on bias reduction techniques across attitude topics; Shaffer & Postlethwaite, 2012, on the 

predictive effects of contextual vs. non-contextual personality instruments).  

Likewise, effect sizes might be increased by an efficient design or analysis that, for 

example, uses repeated measures to reduce theoretically uninteresting variance from between-

participant differences, or uses covariates to dampen “noise” in the outcome variable. And 

finally, a manipulation that ropes together many different effective mechanisms may be 

conceptually imprecise, but it will probably give stronger effects than an intervention that uses 
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only one isolated mechanism. Thinking about tasks and measures used in previous studies, then, 

should inform choices about effect size, but for now this process happens more in an 

impressionistic than a precise way.  

Another major limitation to the effect-size precedent approach comes from the distorting 

effects that publication bias and questionable research practices (QRPs) have on effect sizes in a 

literature. Most meta-analytic estimates come from published studies, plus unpublished data 

collected ad hoc. Even single studies for replication have usually been published in an 

environment where non-significant results do not see the light of day. We never know how many 

other study results live in a file drawer, biasing our estimates of the true effect size. What’s more, 

within a study, the main conclusion may be based on the most favorable of many possible 

analyses chosen post hoc. This QRP will tend to inflate effect sizes compared to analyses chosen 

a priori. Because significant, hence larger, results are more likely to be published, literature-

based estimates are often too large (Dickersin, 1990).  

Simply put, in a world where only large effects can be significant (i.e., low power), then 

all significant effects will be large. Consider a literature that tests a true effect whose size is d = 

0.20, but with inadequate power (e.g., 16%). Over repeated testing, the average effect size over 

all tests will indeed be d = 0.20. However, most tests will not be significant; by definition, only 

16% of tests will be significant, and they will be the tests with the highest sample estimates of 

effect size. If only significant findings are published under publication bias, these “surviving” 

sample effects will be higher (on average) than the population d = .20, biasing the literature 

toward larger effect sizes. As power increases, or publication bias is mitigated, then more sample 

estimates will be declared fit to publish and fewer ‘weak’ results will be filtered from the 

literature--making the literature more representative of the population. Thus, low power in 
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combination with publication bias may be a contributor to biased effect sizes in the literature. 

This situation can help explain, among other things, why studies with smaller sample sizes are 

less likely to show significant independent replication compared to those with higher sample 

sizes, even when their observed effect sizes look healthy (e.g., Open Science Collaboration, 

2015). 

The amount of publication bias that needs to be adjusted for can be difficult to infer, 

though some heuristics and methods have been proposed (see Lewis & Michalak, 2019; 

Simonsohn, 2015). As less-biased effect size estimates emerge from large-scale replication 

projects, and from articles in the Registered Report format that are approved for publication prior 

to knowing results, more literatures – especially in social psychology -- should begin to support 

accurate effect size determination by precedent (Klein et al., 2014; Scheel, Schijen, & Lakens, 

2019).  

 

Smallest Effect Size of Interest. If these arguments make researchers reluctant to rely on 

the literature, they could anchor power analysis instead on their idea of the smallest effect size of 

interest (SESOI) (Lakens, Scheel, & Isager, 2018). The challenge lies in actually determining the 

SESOI. Research teams that study more tangible outcome measures may have it easier. For 

instance, an education researcher might design a study to detect whether an intervention changes 

grade point averages (GPA) by at least 0.25 units on a 4.0 grading scale because, in their view, a 

lesser effect would not be worth investing large amounts of resources developing and 

disseminating the intervention. For cheaper interventions, the SESOI might be lower. 

But without clear benchmarks from applied outcomes, it can be difficult for teams 

conducting research on basic questions to determine their SESOI. Are interventions that produce 



 POWER AND SAMPLE SIZE 17 

d = 0.10 changes on 7-point Likert scales important to study, or does d need to be at least 0.20?  

Anecdotally, many researchers take Cohen’s “small” effect size guidelines such as  = .1 or d = 

.2 as a SESOI, but this choice seems to be based more on its availability as the smallest named 

value in that system, than on any detailed analysis. With more justification, if not necessarily 

clarity, scholars have suggested various criteria for how appreciable an effect size is. These 

include: societal importance (e.g., lives saved; Rosenthal, 1990); perceived difficulty in affecting 

an outcome variable (Prentice & Miller, 1992); whether multiple small effects might build on 

each other to have large effects on an outcome (Abelson, 1985); and how the presence of 

multiple predictors can limit mathematically the potency (i.e., effect size) of any one predictor 

(Ahadi & Diener, 1989; Strube, 1991).   

The problem with these factors is that they are rarely possible to specify exactly or with 

consensus.  More tangible criteria, perhaps, could be based on the typical methods and resources 

available to other basic-question researchers in a given field and research population. For 

example, a  = .028 effect needing 10,000 participants for 80% power may be unreachable 

outside of the largest data collection contexts, but 500 might reasonably be found to give the 

same power to detect  = .124. These latter kinds of consideration may help researchers who are 

planning new studies decide what range of effect sizes they would consider worthwhile. 

Spending wagonloads of resources on a huge sample, just to detect effect sizes that very few labs 

can practically replicate or build upon, might not be the best use of those resources in terms of 

the larger community of basic researchers.  
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Misunderstanding #7: “Effects That are Significant Despite a Low-Powered Analysis are 

Clearly Very Large in the Population.”  

Although some may admire a “heroic” effect that survives every attempt of poor 

methodology to kill it, this evaluation is wrong (Loken & Gelman, 2017). A significant result 

only means that if the null hypothesis is true, the probability of the observed effect (or stronger) 

is low. However, the survivor myth depends on wrongly concluding the reverse, following the 

logical fallacy, affirming the consequent: that if a significant effect is observed, the null 

hypothesis is unlikely (Ioannidis, 2005). In fact, low power reduces the likelihood that an 

observed significant result reflects a true positive effect, as discussed in Misunderstanding #4. 

 

Misunderstanding #8: “Power is the Only Way to Plan Sample Size.” 

Researchers might assume that a priori power analysis is the only way to quantitatively 

determine a sample size ahead of time. Here, we present two alternatives that may be more 

attractive depending on a researcher’s goals: precision analysis and sequential analysis.  

Precision Analysis. Sometimes researchers will want to do more than reject the null 

hypothesis. For example, they may be confident that an effect is not zero and, instead, focus on 

estimating its size. For situations like these, sample size planning should be based on precision 

rather than power. 

Precision in data analysis means that the confidence interval (CI) for the effect is narrow. 

The CI gives a range of effect size values around the effect size estimate, based on the standard 

error. Assuming that the observed parameters are true in the population, a replication study 

drawn from the same underlying population should find parameter estimates that fall within the 

specified CI, (1− α)% of the time (most commonly, 95%, in keeping with the conventional 5% α 
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level). The CI becomes narrower as the sample size increases, but wider if the desired confidence 

level increases.  

For some tests such as correlations, specific guidelines for precision are available. 

Schönbrodt and Perugini (2013) found that when N > 250, the width of CIs for correlations 

stabilized, and increasing sample size did not appreciably decrease the width of CIs. The 

Accuracy in Parameter Estimation (AIPE) approach, however, is an approach to precision that 

can be used with many different statistical tests (Maxwell et al., 2008), alone or in conjunction 

with power analysis.  

Sample size planning with AIPE aims to reach a pre-specified width of the confidence 

interval around a parameter. Unlike power, this width can vary separately from the size of the 

effect. Further, a study with good power will not necessarily have a narrow confidence interval. 

Maxwell et al. (2008) provide an example of a study comparing two means with d = 0.50. A 

sample size of N = 128 (64 per group) provides 80% power, but that sample size results in a 

predicted 95% confidence interval ranging widely from 0.15 to 0.85. Similarly, a study with 

narrow confidence intervals does not necessarily have high power. For example, when 

comparing two means with d = .05, a sample size of 342 results in a predicted 95% confidence 

interval of -0.10 to 0.20 but only 9.5% power. Thus, an AIPE analysis can be useful for selecting 

the appropriate sample size for the desired level of precision, but not for determining power. 

AIPE requires deciding when a confidence interval is sufficiently narrow to be desirable, 

analogous to selecting an effect size in power analysis. A researcher should consider factors such 

as the maturity of the research area, and the need for a practically useful range, to select a desired 

confidence interval.  
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Sequential Analysis / Optional Stopping. Traditionally, a researcher specifies one 

sample size a priori. However, uncertainty about the population effect size could lead to a  study 

being underpowered and missing effects in the population, or being overpowered and needlessly 

exhausting resources. To balance power and feasibility concerns, optional stopping techniques 

let researchers make data-dependent changes to their sample size while correcting for an 

increased false positive rate. In these sequential analysis designs, participants are collected in 

“waves.” Between waves, an interim decision is made—whether to continue collecting data or to 

stop, based on the significance test corrected for multiple testing, and/or the achieved N. This 

method, if done openly and correctly, is by no means the same as undisclosed optional stopping 

without correction, which has been rightly criticized as a practice leading to false positive 

inflation and low replicability in psychology (Simmons et al., 2011).  

 Optional stopping techniques have some drawbacks. Sample sizes from studies stopped 

early will be smaller, and so effect-size estimates will be less precise. In addition, studies that 

stop early will still have some degree of effect-size inflation, because only larger effect sizes will 

pass the lower significance bounds with the smaller samples of early interim analyses. There are 

methods to correct for inflation (see Lakens, 2016 for calculations), and we suggest that 

researchers report the corrected effect size when using these designs. Another potential downside 

of some kinds of sequential analyses is that, if their maximum N is reached, they are somewhat 

less powerful than a traditional design, because their significance criterion is more stringent. But 

drawbacks aside, we think that sequential analyses are a potent and underappreciated approach to 

research, in areas experiencing uncertainty about what effect sizes they should be aiming for. 
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Misunderstanding #9: “Power Must Always be 80%” 

As noted above, the 80% power criterion suggested by Cohen (e.g., 1988) is now widely 

used, with its implication that a false positive is four times more important to avoid (5% risk 

given H0) than a false negative (20% given H1). More specifically, the 80% value represents an 

inflection point in the trade-off between cost and power. There is a near-linear relationship 

between sample size and power, until power hits .80. That is, a similar percentage increase in 

sample size is necessary moving from power of .50 to .60 to .70 to .80, roughly a 25% increase 

in sample size at each step. However, moving from .80 to .90 requires roughly a 33% increase, 

while gaining just .05 more power by moving from .90 to .95 requires a similar increase, about 

33%.  

We suggest that in psychology, 80% should be a bare minimum, based on its standing as 

an inflection point. However, if the increased resources can be justified, 90% represents a more 

rigorous standard, and 95%—exactly balancing false-negatives with false-positives—a strong 

ideal. 99% power is even stronger, but its advantages have to be weighed against the costs of 

getting there from 95%; to detect a population ρ = .20 at 95% takes N = 317, but at 99% takes N 

= 450, a 42% increase!  It is important to justify trade-offs involved in adopting any particular 

power criterion, as with any particular value of α (Lakens, Adolfi, et al., 2018). The best practice 

is to report results for multiple reasonable power levels (e.g., 80%, 90%, and 95%).  

 

Misunderstanding #10: “All Power Analyses Can be Easily Done with One Software Tool” 

As the importance of power analysis has grown, tools for conducting it have flourished. 

One popular tool is the freely available and highly cited software, G*Power (Faul, Erdfelder, 
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Lang, & Buchner, 2007). However, just as there is not a one-size-fits-all solution for power 

analysis, no one software or analytic approach will be appropriate in all instances. 

For example, non-analytic approaches that depend on simulation are not implemented in 

G*Power and similar software. These are often needed for accurate power analysis where 

analytic approaches, only involving formulas would, be too difficult to compute or have not yet 

been derived. Non-analytic approaches can be accessed in a variety of procedures written in 

statistical programs such as Mplus or R, as well as in some stand-alone applications. These 

techniques are particularly valuable for mediation, structural equation modeling, multilevel 

analysis, and other complex multivariate procedures.  

Many of these non-analytic approaches use Monte Carlo techniques, in which many 

random simulations are run to assess the probability of observing significant outcomes given an 

underlying effect of a certain size. These techniques may look difficult because they require the 

input of many parameters, such as means, standard deviations, and/or correlations between 

variables. However, means and standard deviations can be input by assuming standardized data 

(SD = 1) and expressing mean differences in terms of these standard units (that is, to represent an 

effect size d = 0.5, or half a standard deviation, you might input one mean as -0.25 and the other 

as 0.25). Correlations among variables can be input by looking at what is typical in similar 

research, or by putting in a variety of plausible correlations and seeing how they affect the result. 

Although Monte Carlo approaches may at first seem intimidating, they can often be simplified in 

order to make them manageable.  

A full review of power techniques is too detailed for the present article, but we have 

made available a critical review of tools for commonly used analyses in psychology in our 

Supplementary Materials. We take G*Power as a reference point. Table 1 summarizes our 
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review, outlining where G*Power gives a good answer, where it needs special considerations (as 

of this writing), and where other resources need to be consulted. Citations for R packages and 

online resources are listed in the Appendix. 

To briefly describe some special considerations explained more fully in the 

Supplementary Materials, when using G*Power for regression and ANOVA: 

● Regression: When planning to interpret more than one regression coefficient in the same 

analysis, G*Power’s estimates do not consider correlations among independent 

variables. It is recommended instead to use the R package, pwr2ppl. 

● ANOVA: In all ANOVA applications, G*Power uses the biased effect size estimate of 

partial eta-squared (η2), but the unbiased estimates ω2  or ε2 are preferable (Lakens, 2013, 

2015). MOTE and Superpower (formerly ANOVApower) R packages allow calculation 

from unbiased effect sizes. 

● Repeated measures ANOVA: This procedure is currently not documented in G*Power, 

but appears in its menus. It is important for users to do two non-obvious things: always 

select the option “effect sizes as in SPSS,” from the Options window; and, for factorial 

repeated measures, enter “number of measures” using the numerator degrees of freedom 

of the ANOVA plus one (not the total number of measures in the design). If these steps 

are not followed, power will be greatly overestimated.
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Table 1. Summary of Specific Power Analysis Methods Recommendations  

Technique G*Power 

OK as is? 

G*Power considerations Other resources 

Correlation, chi 

square, t-tests 

Yes  SPSS: SamplePower 

R package: pwr 

Multiple 

regression: model 

and change tests 

Yes  R package: pwr2ppl 

Multiple 

regression: multiple 

single coefficients 

No Need to know correlations among 

IVs 

R package: pwr2ppl 

ANOVA: general No Use unbiased effect sizes, ω2  or ε2  R Package: MOTE, 

ANOVApower 

Online: MOTE app 

ANOVA: Repeated 

measures & mixed   

No 1. IV correlations double- counted; 

use effect size “as in SPSS” 

2. “Number of measurements” 

input unclear in factorial RM, use 

num. df +1 

Online: GLIMMPSE, 

PANGEA app 

R package: ANOVApower 

ANOVA: Factorial Yes, but 1. Interactions often have lower 

sizes than main / simple effects 

2. Power also needs determining for 

comparisons and simple effects 

 R package: ANOVApower 

Mediation No Not available Various; see Appendix 

SEM No Not available Various; see Appendix 

Multilevel No Not available Various; see Appendix 
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● Factorial ANOVA: G*Power’s sample size recommendations for factorial designs 

require some caveats. First, if part of your argument rests on simple effects or multiple 

comparisons, you should base your power on cell size for those tests, not just the overall 

ANOVA (Giner-Sorolla, 2018). Second, effect sizes for two-way and higher 

interactions are usually smaller than the effect size of the simple effects they are based 

on, by a factor of 0.5 or less (Simonsohn, 2014; Westfall, 2015a, 2015b). Only when 

there is “cross-over”, such that (in a 2x2 design) one simple effect is the reverse of the 

other, will interaction effect sizes approach simple effect sizes. 

 

Recommendations for Best Practices 

 In the sections above, we have responded to ten misunderstandings about power analysis 

and sample-size planning. We follow these with positive recommendations for best practices in 

three areas: planning future research, reporting power analysis in published research, and 

evaluating existing research on the basis of power. We also address the difficulties researchers 

may face in achieving a desirable level of power in research involving populations or methods 

that are more difficult than usual to work with.  

Planning Future Research 

Beyond deciding sample size in planning a study, a priori analyses can also test the 

relative power of different designs, such as within- versus between- subjects, or the number of 

levels in a proposed manipulation. Researchers are encouraged to experiment with between- and 

within-subject variants of project ideas to assess the benefits that a within-subjects design might 

offer for any particular study. Systematically planning these aspects of research lowers the risk 

of failure, whether defined in terms of precision (coming to a conclusion far from the truth) or 
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power (“missing” an effect that exists in the population). To control these risks, a priori power 

analysis has become required in recent decades by many funders, and by ethical bodies charged 

with determining whether research is worthwhile (Vollmer & Howard, 2010). However, as savvy 

applicants know, such analyses can deliver seemingly high-powered results if a suitably 

optimistic effect size is input (Maxwell & Kelley, 2011).  

Arriving at an exact effect size may be difficult, but agreeing upon a reasonable range of 

effect sizes should not, starting from the likelihood that effect sizes from previous studies or 

meta-analyses are subject to publication bias and should at the very least not be exceeded. 

Without taking a principled approach to effect sizes and other decisions, as we advise, power 

analysis’ usefulness will be lost. In a field where precedents for estimating effect sizes are 

currently uncertain due to publication bias, we suggest determining sample sizes and designs on 

the basis of resources typically accessible to research labs, then presenting for evaluation the 

minimum effect size that sample and design can detect at various desirable levels of power. 

 

Reporting Power Analyses 

 Current writing guides for psychologists (e.g. the Journal Article Reporting Standards or 

JARS; APA Publication Manual, 7th ed., 2019; Appelbaum, Cooper, Kline, Mayo-Wilson, Nezu, 

& Rao, 2018) leave unclear how power analyses should be reported in manuscripts. We offer 

recommendations here.  

As noted earlier in Misunderstanding #3, power within a single study may vary if 

multiple conclusions draw on statistical analyses with different tests, designs, and/or presumed 

effect sizes. In this case, one or more power analyses (plural) should be described, not in the 

Methods section, but in the Results section close to each type of analysis (following Sleegers, 



 POWER AND SAMPLE SIZE 27 

2019). The Participants subsection of Methods need only specify which of these analyses, if any, 

the overall sample size was based on. 

If sample size was decided a priori via power analysis, make sure to report the software 

and analysis option used, effect size (with units, e.g. d, f2), rationale for choosing an effect size, 

target power (including, as we have suggested, values for 80%, 90% and 95% power), and any 

other parameters used in the power analysis. We also recommend full reporting of parameters 

and decisions if precision or sequential analysis are used.  

However, a priori power analysis should not be reported if it was not used to determine 

sample size. Often, sample size is decided by resource availability, rules of thumb, or emulation 

of prior sample sizes. In such cases, effect-size sensitivity analysis is the most useful and honest 

tool (Cohen, 1988). Even when sample size is planned via power analysis, missing or incomplete 

responses may reduce the amount of usable data, reducing achieved power and also making 

effect-size sensitivity analysis advisable. For example, an author who followed their plan to 

recruit 352 participants, with 80% power to detect an effect size d = 0.30, but only could keep 

298, might state that the final analysis had “80% power to detect an effect of d = 0.33”.  

 

Using Power in Evaluating Reported Research 

Power is not just useful for research planning. Reviewers of manuscripts, and readers of 

published work, need to assess the value of research when it is disseminated. Power bears on this 

task, but many people do not have a clear idea about why or how to use power in evaluation.  

Evaluating power accurately, first of all, requires full and transparent reporting of the 

results. A result from a study where many outcomes were analyzed, but only significant results 

reported, cannot be evaluated in the same way as the identical result from a single-analysis study. 
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Multiple testing increases the likelihood of making a type I error, and selective reporting inflates 

the effect size estimate. Other practices that inflate type I error, such as undisclosed optional 

stopping, also reduce confidence in the study’s accuracy. A statement that all measures, 

manipulations, and even relevant studies are disclosed can give greater confidence in effect size 

estimates from research (Simmons et al., 2012). Preregistration and Registered Reports can also 

help ensure full disclosure of research practices.  

To understand how power affects the evidence value of observed p-values, as mentioned 

under Misunderstandings #4 and #7, one must understand what error rates do—and do not—say 

about research. If α = .05, many researchers and educators make the fallacious assumption that 

there is only a 5% risk of a false positive. Setting α = .05 does indeed allow only 5% of null 

effects to appear significant. However, it does not restrict false positives overall to 5%. 

Researchers may wish to know what percent of all observed significant results are false 

positives, known as the false discovery rate (FDR; Ioannidis, 2005) or more accurately, false 

positive risk (FPR; Colquhoun, 2019). An argument could then be made for attempting to restrict 

this risk to 5% or some other low number (e.g., Colquhoun, 2019).  

Critically, the FPR depends on the frequency of false positives (determined by α) and true 

positives (determined by power), as well as the odds of the effect actually being true (prior odds). 

High power to detect a given effect size means the FPR is closer to an acceptable number. For 

example, in a study with a very low power of 10% given the population effect size, and 

uninformed prior odds of 1:1, the FPR is 33%, whereas an identical study with power of 80% has 

FPR of 5.9%. A middling power of 40% leads to an FPR of 11.1%, meaning that the α level 

needed to reach the same FPR as the study with 80% power would be closer to .025 than to .05. 

That is, p-values close to .05 are particularly untrustworthy in lower-powered studies, because 
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they are unlikely to reach the α level required to achieve an acceptable risk of false positives. 

(All calculations were facilitated by the online resources at Schönbrodt, 2019.) 

In evaluating the power of a published article, it may be tempting to use the observed 

effect size and sample size in a power determination analysis. However, this method is flawed 

(see Misunderstanding #5). An effect-size sensitivity analysis gives the best information. If the 

authors do not provide it, it can be calculated using the information on N and design in the 

article, setting a desired power level. The question is how to evaluate the effect size output. 

Criteria for typical and minimal effect sizes are often not well established, and depend on the 

topic, method, and application of the research, as we have discussed. Because power analysis 

depends on difficult decisions about likely effect sizes, we are wary of suggesting a one-size-fits-

all correction factor to apply to p-values under “low” power. However, we can suggest that if a 

study has considerably less than 80% power to detect the kind of effects that are typical or useful 

in a literature, then p-values in the .01 to .05 range should be viewed with caution as evidence for 

a proposition. The lower the power, the more we should reduce our willingness to accept p-

values close to α = .05 as evidence.  

  

Power for Difficult Research Cases: Cautions and Solutions 

Although it may be justified to be cautious about the results of studies low in power, 

excluding such results from publication and other forms of dissemination can limit a scientific 

field in undesirable ways. Because publication is a major metric of hiring, tenure, and promotion, 

these decisions will impact scholars’ judgments about whether to pursue a particular type of 

research in the first place.An inflexible policy of rejecting “low-powered” research could thus 

discourage work on hard-to-reach and diverse populations. It would also perpetuate the long-
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standing file-drawer problem, an issue that becomes particularly pernicious for groups that are 

already underrepresented in the literature. This includes underserved groups, and groups that are 

simply more difficult to study than relatively affluent Western citizens (WEIRD populations; 

Henrich, Heine, & Norenzayan, 2010).  

Conversely, standards requiring high power to detect reasonable effects in a given field 

are most easily reached through samples such as undergraduate students, who can be recruited 

relatively easily, quickly, and in large numbers. But these samples are simply not appropriate or 

possible for some research questions.  Additionally, prioritizing undergraduate samples can 

systematically exclude scholars from institutions with smaller participant pools, decreasing the 

diversity of perspectives in our field. Researchers have also recently turned to crowdsourced 

participant pools online for data collection (e.g., Buhrmester, Kwang, & Gosling, 2011; 

Buhrmester, Talaifar, & Gosling, 2018; Paolacci & Chandler, 2014; Sassenberg & Ditrich, 

2019). However, online samples are not going to be valid for all research contexts; for example, 

research involving immersive face-to-face social environments or tangible behavioral outcomes 

(Anderson et al., 2019). 

 As an example of the kind of research that strict sample size requirements might 

disadvantage, consider a researcher interested in prejudice experiences of Asian Americans, who 

also wants to represent the diversity of backgrounds within this category (East Asian Americans 

versus Southeast Asian Americans, for example; Leong & Okazaki, 2009). Doing so could 

require recruiting enough participants to represent, say, five or six ethnic backgrounds, some of 

which might be relatively small in numbers or hard to reach.  Or, consider a researcher who 

studies population health disparities intersectionally. While existing literature has shown 

meaningful population health disparities between people of color and Whites in the United 
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States, researchers are only just beginning to examine how the intersection of multiple identities 

(Crenshaw, 1989) may exacerbate existing health disparities (e.g., Lewis & Van Dyke, 2018).  

Perhaps this researcher is interested in group differences in depression between Whites and 

people of color in the United States, but additionally in how these ethnic disparities may be 

exacerbated in elderly populations.  

In both cases, conducting research with high power to detect smallish effects would be 

very difficult. The investigators would need time and resources to ensure the validity of their 

materials; adequate participant-payment funds; and, most likely, longer-term partnerships with 

people in their communities to locate participants. They would be limited, critically, by the 

numbers of reachable participants fitting the target demographics. Further, eligible individuals 

may not want to participate, for a variety of reasons—time, general wariness, specific concerns 

about the research process.   

Given the barriers facing such researchers, analyses targeting the kind of effect sizes 

detectable by larger studies are likely to show low power, despite their most assiduous efforts. In 

this case, a rigid decision to reject the work based on conventional power criteria may do more 

harm than good. It would perpetuate the exclusion from research literature of hard-to-reach 

populations who are already severely under-represented. A file-drawer problem based on 

statistical power is still a file-drawer problem.  

Rejection, then, should not be the only possible outcome for methodologically difficult 

studies with low power to detect effect sizes that are usual for the field of study. Indeed, by 

definition every study has sufficient power to detect some effects, but lacks power to detect 

others. Editors and reviewers must consider the effects that a study is adequately powered to 

detect, weighing the clarity of the finding against the importance of doing research at all in the 
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context. For example, in research on a population where at most 100 individuals can be recruited 

at once, the smallest effect size detectable at 80% power is  = .28, meaning that many effects of 

a size typically found in social/personality studies would be underpowered in this research. In 

evaluating research, editors might consciously adopt different thresholds (e.g., a different power 

criterion, or higher α) for difficult methods or studies difficult-to-reach populations. Such 

publications would be allowed to be more tentative than publications addressing questions that 

can be studied through large and multiple repeated studies. Of course, the authors should then be 

encouraged to express uncertainty in their writing, without having to oversell the findings to get 

published. 

For less convenient methods or populations, researchers also need to plan around power 

issues. They may want to concentrate on larger, rather than smaller, effects--for example, in 

studies involving a policy or health-related intervention.  They can also choose methods for 

stronger effect size and hence power: for instance, using a more robust vs. subtle experimental 

manipulation, or adopting a within-subjects vs. between-subjects design. Labs conducting similar 

work may benefit from collaborations pooling together resources and samples to maximize 

power (e.g., the Psychological Science Accelerator, Moshontz et al., 2018). Finally, researchers 

may also choose to share unpublished data through preprints, remedying distorted perceptions of 

effect sizes under publication bias, and aiding future meta-analyses.   

 

Conclusion 

 Within social and personality psychology, there has been increased recognition over the 

years of statistical power and related considerations (e.g., effect size, precision). Determining 

statistical power can be daunting, however, due to the statistical complexity surrounding a 
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multitude of different approaches. To remedy this, we have provided background on statistical 

power and other approaches, addressed ten potential misconceptions, provided a compendium of 

resources, and advocated for a combination of a priori and effect-size sensitivity approaches. 

With our overview of specific techniques and software, we have also further empowered 

researchers to conduct and evaluate research in line with sample-size considerations.  

If there is one take-home message, it is that issues of power depend crucially on questions 

of meaningful effect size, which social and personality psychology have largely avoided tackling 

in theory and methodology development. The approximate nature of effect size criteria should be 

a caution against applying overly rigid “bright lines” to power statistics, and against repeating 

the mistaken ways in which the p-value has been treated as a live-or-die criterion of evidence 

(Wasserstein & Lazar, 2016). In emphasizing the essential role of effect size in power analysis, 

we challenge researchers and reviewers to reframe their evaluations of pending or completed 

research. Instead of asking “does this study have enough power?” we should ask “What effects 

does this study have acceptable power to detect?”  

 

 

 

Author contributions: Authorship order was determined as follows: The first author convened 

the working group and took the lead in writing a first version, together with all authors. A second 

version incorporated major revisions, worked on by the first four authors. The second through 

fourth authors thus appear in alphabetical order, followed by the others in alphabetical order. 

 



 POWER AND SAMPLE SIZE 34 

Conflicts of Interest: The authors declare that there were no conflicts of interest with respect to 

the authorship or the publication of this article. 

 

Acknowledgments: We would like to acknowledge the Society for Personality and Social 

Psychology and in particular its past Executive Director, Chad Rummel, who initiated a call for 

working groups at the 2019 meeting, approved our application, and facilitated our in-person 

meeting at the conference. 

 

Supplemental Material: Posted on OSF: https://osf.io/9bt5s/, “Power Analysis Working Group 

supplement Aug 6 19”. 

 

Prior versions: A previously submitted version of this article has been posted as a preprint on 

OSF at https://osf.io/9bt5s/. 

 

 

  

https://osf.io/9bt5s/
https://osf.io/9bt5s/


 POWER AND SAMPLE SIZE 35 

References 

Abelson, R. P. (1985). A variance explanation paradox: When a little is a lot. Psychological 

Bulletin, 97, 129-133. 

Aberson, C. L. (2019). Applied power analysis for the behavioral sciences (2nd edition). New 

York: Routledge. 

Ahadi, S., & Diener, E. (1989). Multiple determinants and effect size. Journal of Personality and 

Social Psychology, 56, 398-406. 

American Psychological Association. (2019). Publication manual of the American Psychological 

Association (7th ed.). Washington, DC: American Psychological Association. 

Anderson, C. A., Allen, J. J., Plante, C., Quigley-McBride, A., Lovett, A., & Rokkum, J. N. 

(2019). The MTurkification of social and personality psychology. Personality and Social 

Psychology Bulletin, 45, 842-850. 

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). 

Journal article reporting standards for quantitative research in psychology: The APA 

Publications and Communications Board Task Force report. American Psychologist, 73, 

3–25. 

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. 

Behavior Research Methods, 37, 379-384. 

Benjamin, D.J., Berger, J.O., Johannesson, M. et al. (2018). Redefine statistical significance. 

Nature Human Behavior 2, 6–10. doi:10.1038/s41562-017-0189-z 

Brandt, M. J., IJzerman, H., Dijksterhuis, A., Farach, F. J., Geller, J., Giner-Sorolla, R., ... & 

Van't Veer, A. (2014). The replication recipe: What makes for a convincing 

replication? Journal of Experimental Social Psychology, 50, 217-224. 



 POWER AND SAMPLE SIZE 36 

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon's Mechanical Turk: A new source 

of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3-5. 

Buhrmester, M. D., Talaifar, S., & Gosling, S. D. (2018). An evaluation of Amazon’s 

Mechanical Turk, its rapid rise, and its effective use. Perspectives on Psychological 

Science, 13(2), 149-154. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, NJ: 

Erlbaum. 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. 

https://doi.org/10.1037/0033-2909.112.1.155 

Colquhoun, D. (2019). The false positive risk: a proposal concerning what to do about p-values. 

The American Statistician, 73 (sup1), 192-201. 

Craig, M. A., & Richeson, J. A. (2014). On the precipice of a “majority-minority” America: 

Perceived status threat from the racial demographic shift affects White Americans’ 

political ideology. Psychological Science, 25(6), 1189-1197. 

Crenshaw, K. (1989). Demarginalizing the intersection of race and sex: A Black feminist critique 

of antidiscrimination doctrine, feminist theory and antiracist politics. University of 

Chicago Legal Forum, 1989(8), 139–167. 

Dickersin, K. (1990). The existence of publication bias and risk factors for its occurrence. Jama, 

263(10), 1385-1389. 

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical 

power analysis program for the social, behavioral, and biomedical sciences. Behavior 

Research Methods, 39(2), 175-191. 

 

https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1037/0033-2909.112.1.155


 POWER AND SAMPLE SIZE 37 

Forscher, P. S., Lai, C. K., Axt, J. R., Ebersole, C. R., Herman, M., Devine, P. G., & Nosek, B. 

A. (2019). A meta-analysis of procedures to change implicit measures. Journal of 

Personality and Social Psychology, 117(3), 522-559. 

Frick, R. W. (1998). A better stopping rule for conventional statistical tests. Behavioral Research 

Methods, Instruments, & Computers, 30, 690-697. 

G*Power 3.1 Manual (March 1, 2017). Retrieved from 

http://www.gpower.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-

Naturwissenschaftliche_Fakultaet/Psychologie/AAP/gpower/GPowerManual.pdf . 

Gelman, A. (2019). Don’t calculate post-hoc power using observed estimate of effect size. 

Annals of Surgery, 269, e9. https://doi.org/10.1097/SLA.0000000000002908 

Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences 

researchers. Personality and Individual Differences, 102, 74-78. 

Giner-Sorolla, R. (2018, January 24). Powering your interaction [Blog post]. Retrieved from 

https://approachingblog.wordpress.com/2018/01/24/powering-your-interaction-2. 

Goff, P. A., Steele, C. M., & Davies, P. G. (2008). The space between us: Stereotype threat and 

distance in interracial contexts. Journal of Personality and Social Psychology, 94(1), 91. 

Goodman, S. N., & Berlin, J. A. (1994). The use of predicted confidence intervals when planning 

experiments and the misuse of power when interpreting results. Annals of Internal 

Medicine, 121(3), 200-206. 

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the 

world?  Behavioral and Brain Sciences, 33(2-3), 61-83. 

IBM Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. 

http://www.gpower.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Psychologie/AAP/gpower/GPowerManual.pdf
http://www.gpower.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-Naturwissenschaftliche_Fakultaet/Psychologie/AAP/gpower/GPowerManual.pdf
https://doi.org/10.1097/SLA.0000000000002908


 POWER AND SAMPLE SIZE 38 

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 

e124. 

Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Jr., Bahník, Š., Bernstein, M. J., . . . 

Nosek, B. A. (2014). Investigating variation in replicability: A “many labs” replication 

project. Social Psychology, 45(3), 142-152. http://dx.doi.org/10.1027/1864-9335/a000178 

Konstantopoulos, S. (2010). Power analysis in two-level unbalanced designs. The Journal of 

Experimental Education, 78(3), 291-317. Doi: 10.1080/00220970903292876 

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A 

practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. 

Lakens, D. (2015, June 8). Why you should use omega-squared instead of eta-squared [Blog 

Post]. Retrieved from http://daniellakens.blogspot.com/2015/06/why-you-should-use-

omega-squared.html 

Lakens, D. (2016). Sequential analyses. Retrieved from https://osf.io/uygrs/. 

Lakens, D., Adolfi, F. G., Albers, C. J., Anvari, F., Apps, M. A., Argamon, S. E., ... & Buchanan, 

E. M. (2018). Justify your alpha. Nature Human Behaviour, 2(3), 168. 

Lakens, D. & Evers, E. R. (2014). Sailing from the seas of chaos into the corridor of stability: 

Practical recommendations to increase the information value of studies. Perspectives on 

Psychological Science, 9(3), 278-292. 

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological 

research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 

259-269. 

Leong, F. T., & Okazaki, S. (2009). History of Asian American psychology. Cultural Diversity  

and Ethnic Minority Psychology, 15(4), 352-362. 

https://spuonline-my.sharepoint.com/personal/tcarpenter_spu_edu/Documents/OneDriveBusiness/Research/2019%20-%20RGS%20Power/om%20http:/daniellak
http://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html
http://daniellakens.blogspot.com/2015/06/why-you-should-use-omega-squared.html
https://osf.io/uygrs/


 POWER AND SAMPLE SIZE 39 

Lewis, N. A., Jr., & Michalak, N. M. (2019, April 8). Has stereotype threat dissipated over time? 

A cross-temporal meta-analysis. Preprint retrieved from 

https://doi.org/10.31234/osf.io/w4ta2.  

Lewis, T. T., & Van Dyke, M. E. (2018). Discrimination and the health of African Americans:  

The potential importance of intersectionalities. Current Directions in Psychological 

Science, 27(3), 176-182. 

Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 

355(6325), 584–585.  

Maxwell, S. E., & Kelley, K. (2011). Ethics and sample size planning. Handbook of Ethics in 

Quantitative Methodology, 159-184. 

Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power 

and accuracy in parameter estimation. Annual Review of Psychology, 59, 537-563. 

doi:10.1146/annurev.psych.59.103006.093735. 

Moshontz, H., Campbell, L., Ebersole, C. R., IJzerman, H., Urry, H. L., Forscher, P. S., ... & 

Castille, C. M. (2018). The Psychological Science Accelerator: Advancing psychology 

through a distributed collaborative network. Advances in Methods and Practices in 

Psychological Science, 1(4), 501-515. 

Neyman, J., & Pearson, E. S. (1933, October). The testing of statistical hypotheses in relation to 

probabilities a priori. In Mathematical Proceedings of the Cambridge Philosophical 

Society (Vol. 29, No. 4, pp. 492-510). Cambridge University Press. 

Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration 

revolution. Proceedings of the National Academy of Sciences, 115(11), 2600-2606. 



 POWER AND SAMPLE SIZE 40 

Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices 

in one-way ANOVA. Behaviormetrika, 40(2), 129-147. 

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. 

Science, 349(6251), aac4716. 

Paolacci, G., & Chandler, J. (2014). Inside the Turk: Understanding Mechanical Turk as a  

participant pool. Current Directions in Psychological Science, 23(3), 184-188. 

Prentice, D. A., & Miller, D. T. (1992). When small effects are impressive. Psychological 

Bulletin, 112, 160-164. 

Richard, F. D., Bond Jr, C. F., & Stokes-Zoota, J. J. (2003). One hundred years of social 

psychology quantitatively described. Review of General Psychology, 7(4), 331-363. 

Rosenthal, R. (1990). How are we doing in soft psychology? American Psychologist, 45(6), 775-

777. 

Sassenberg, K., & Ditrich, L. (2019). Research in social psychology changed between 2011 and  

2016: Larger sample sizes, more self-report measures, and more online studies.  

Advances in Methods and Practices in Psychological Science, 2(2), 107–114. 

Scheel, A. M., Schijen, M., & Lakens, D. (2020, February 5). An excess of positive results: 

Comparing the standard psychology literature with registered reports. 

https://doi.org/10.31234/osf.io/p6e9c 

Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal 

of Research in Personality, 47(5), 609-612. 

Schönbrodt, F. D. (2019). When does a significant p-value indicate a true effect? Understanding 

the Positive Predictive Value (PPV) of a p-value [Web Page]. Retrieved from 

http://alturl.com/k3do9 



 POWER AND SAMPLE SIZE 41 

Shaffer, J. A., & Postlethwaite, B. E. (2012). A matter of context: A meta‐analytic investigation 

of the relative validity of contextualized and noncontextualized personality measures. 

Personnel Psychology, 65(3), 445-494. 

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed 

flexibility in data collection and analysis allows presenting anything as significant. 

Psychological Science, 22, 1359–1366. https://doi.org/10.1177/0956797611417632 

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012, October 14). A 21 Word Solution. 

Available at SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2160588 

Simonsohn, U. (2014, March 12). No-way interaction [Blog post]. Retrieved from 

http://datacolada.org/17  

Simonsohn, U. (2015). Small telescopes: Detectability and the evaluation of replication results. 

Psychological Science, 26(5), 559-569. 

Sleegers, W. (February 25, 2019) [Twitter Post]. Retrieved from 

https://twitter.com/willemsleegers/status/1100087024785244161 

Sterne, J. A., Gavaghan, D., & Egger, M. (2000). Publication and related bias in meta-analysis: 

power of statistical tests and prevalence in the literature. Journal of clinical 

epidemiology, 53(11), 1119-1129. 

Strube, M. J. (1991). Multiple determinants and effect size: A more general method of discourse. 

Journal of Personality and Social Psychology, 61, 1024-1027. 

Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and power 

in the recent cognitive neuroscience and psychology literature. PLOS Biology, 15, 

e2000797. https://doi.org/10.1371/journal.pbio.2000797 

https://spuonline-my.sharepoint.com/personal/tcarpenter_spu_edu/Documents/OneDriveBusiness/Research/2019%20-%20RGS%20Power/om%20http:/datacol
https://spuonline-my.sharepoint.com/personal/tcarpenter_spu_edu/Documents/OneDriveBusiness/Research/2019%20-%20RGS%20Power/om%20http:/datacol
https://twitter.com/willemsleegers/status/1100087024785244161
https://doi.org/10.1371/journal.pbio.2000797
https://doi.org/10.1371/journal.pbio.2000797


 POWER AND SAMPLE SIZE 42 

van Voorhis, C. W., & Morgan, B. L. (2007). Understanding power and rules of thumb for 

determining sample sizes. Tutorials in Quantitative Methods for Psychology, 3(2), 43-50. 

Vollmer, S. H., & Howard, G. (2010). Statistical power, the Belmont report, and the ethics of 

clinical trials. Science and Engineering Ethics, 16(4), 675-691. 

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA's statement on p-values: Context, process, 

and purpose. The American Statistician, 70(2), 129-133. 

Westfall, J. (2015a, May 26). Think about total N, not n per cell [Blog post]. Retrieved from 

http://jakewestfall.org/blog/index.php/2015/05/26/think-about-total-n-not-n-per-cell/ 

Westfall, J. (2015b, May 27). Follow-up: What about Uri’s 2n rule? [Blog post]. Retrieved from 

http://jakewestfall.org/blog/index.php/2015/05/27/follow-up-what-about-uris-2n-rule/ 

  

http://jakewestfall.org/blog/index.php/2015/05/27/follow-up-what-about-uris-2n-rule/


 POWER AND SAMPLE SIZE 43 

Appendix: Reference list of computational resources  

 

Precision analysis 

Kelley, K. (2007). Methods for the behavioral, educational, and social Science: An R package. 

Behavior Research Methods, 39, 979–984. 

Kelley, K., & Maxwell S. E. (2003). Sample size for multiple regression: Obtaining regression 

coefficients that are accurate, not simply significant. Psychological Methods, 8, 305–321. 

Kelley, K., & Rausch J. R. (2006). Sample size planning for the standardized mean difference: 

Accuracy in parameter estimation via narrow confidence intervals. Psychological 

Methods, 11, 363–385 

 

Sequential analysis 

Botella, J., Ximenez, C., Revuelta, J., & Suero, M. (2006). Optimization of sample size in 

controlled experiments: The CLAST rule. Behavior Research Methods, 38, 65-76. 

Fitts, D. A. (2010a). Improving stopping rules for the design of efficient small-sample 

experiments in biomedical and biobehavioral research. Behavior Research Methods, 42, 

3-22. 

Fitts, D. A. (2010b). The variable-criterion sequential stopping rule: Generality to unequal 

sample sizes, unequal variances, or to large ANOVAs. Behavior Research Methods, 42, 

918-929. 

Lakens, D. (2016, December 3). Sequential analyses. Retrieved from osf.io/uygrs. 

Lakens, D. (2014). Performing high-powered studies efficiently with sequential analyses. 

European Journal of Social Psychology, 44, 701-710. 



 POWER AND SAMPLE SIZE 44 

 

Reboussin, D. M., DeMets, D. L., Kim, K., & Lan, K. K. (2000). Computation for group 

sequential boundaries using the Lan-DeMets spending function method. Controlled 

Clinical Trials, 21(3), 190-207. 

Sagarin, B. J., Ambler, J. K., & Lee, E. M. (2014). An ethical approach to peeking at data. 

Perspectives on Psychological Science, 9(3), 293-304. 

Ximenez, C. & Revuelta, J. (2007). Extending the CLAST sequential rule to one-way ANOVA 

under group sampling. Behavior Research Methods, 39(1), 86-100. 

 

Basic analyses including correlation, t-test, regression 

Aberson, C. L. (2019). pwr2ppl: Power analysis for common designs. R package version 0.1. 

Retrieved from https://cran.r-project.org/web/packages/pwr2ppl/index.html. 

Beaujean, A. A. (2014). Sample size determination for regression models using Monte Carlo 

Methods in R. Practical Assessment, Research & Evaluation, 19(12). Available online: 

http://pareonline.net/getvn.asp?v=19&n=12 

Champely, S., Ekstrom, C., Dalgaard, P., Gill, J. … & De Rosario, H. (2018). pwr: Basic 

Functions for Power Analysis R package version 1.2-2. Retrieved from https://cran.r-

project.org/web/packages/pwr/index.html. 

 

ANOVA 

Buchanan, E. M., Gillenwaters, A. M., Padfield, W., Van Nuland, A., & Wikowsky, A. (2019). 

MOTE [Shiny App]. Retrieved from https://doomlab.shinyapps.io/mote/.  

https://cran.r-project.org/web/packages/pwr2ppl/index.html
http://pareonline.net/getvn.asp?v=19&n=12
https://cran.r-project.org/web/packages/pwr/index.html
https://cran.r-project.org/web/packages/pwr/index.html


 POWER AND SAMPLE SIZE 45 

Buchanan, E. M., Gillenwaters, A. M., Scofield, J. E., & Valentine, K. D. (2019). MOTE. R 

package version 1.02. https://cran.r-project.org/web/packages/MOTE/MOTE.pdf. 

Kriedler, S. M., Muller, K. E., Grunwald, G. K., Ringham, B. M., Coker-Dukowitz, Z. T., 

Sahhadeo, U. R., … Glueck, D. H. (2013). GLIMPPSE: Online power computation for 

linear models with and without baseline covariate. Journal of Statistical Software, 54, 

i10.  

Lakens, D., & Caldwell, (2019). Simulation-based power-analysis for factorial ANOVA designs.  

Retrieved from https://psyarxiv.com/baxsf. (note: supports the ANOVAPower r package) 

Westfall, J. (2016a). PANGEA (v0.2): Power analysis for general anova designs. [Shiny App]. 

Retrieved from https://jakewestfall.shinyapps.io/pangea/ 

 

Mediation analysis 

Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the 

indirect effect in statistical mediation analysis: Does method really matter?. 

Psychological Science, 24(10), 1918-1927. 

Kenny, D. A. (2017, February). MedPower: An interactive tool for the estimation of power in 

tests of mediation [Computer software]. Available from 

https://davidakenny.shinyapps.io/MedPower/. 

Schoemann, A. M., Boulton, A. J., & Short, S. D. (2017). Determining power and sample size 

for simple and complex mediation models. Social Psychological and Personality Science, 

8, 379-386. 

Zhang, Z., & Wang, L. (2013). Methods for mediation analysis with missing data. 

Psychometrika, 78(1), 154-184. 

https://cran.r-project.org/web/packages/MOTE/MOTE.pdf
https://psyarxiv.com/baxsf
https://jakewestfall.shinyapps.io/pangea/
https://davidakenny.shinyapps.io/MedPower/


 POWER AND SAMPLE SIZE 46 

Zhang, Z., & Yuan, K. H. (2018). Practical Statistical Power Analysis Using Webpower and R 

(Eds). Granger, IN: ISDSA Press. 

 

Structural equation modeling 

Dziak, J. J., Lanza, S. T., & Tan, X. (2014). Effect size, statistical power and sample size 

requirements for the bootstrap likelihood ratio test in latent class analysis. Structural 

Equation Modeling, 21, 534-552. Doi: 10.1080/10705511.2014.919819 

Hertzog, C., von Oertzen, T., Ghisletta, P., Lindenberger, U. (2008). Evaluating the power of 

latent growth curve models to detect individual differences in change. Structural 

Equation Modeling, 15, 541–563. Doi: 10.1080/10705510802338983 

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested 

covariance structure models: Power analysis and null hypotheses. Psychological 

Methods, 11(1), 19-35. doi: 10.1037/1082-989X.11.1.19 

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and 

determination of sample size for covariance structure modeling. Psychological Methods, 

1(2), 130-149. doi:http://dx.doi.org/10.1037/1082-989X.1.2.130.  

Preacher, K. J., & Coffman, D. L. (2006, May). Computing power and minimum sample size for 

RMSEA [Computer software]. Available from http://quantpsy.org/. 

Wang, Y. A., & Rhemtulla, M. (in press). Power analysis for parameter estimation in structural 

equation modeling: A discussion and tutorial. Advances in Methods and Practices in 

Psychological Science. 

http://dx.doi.org/10.1037/1082-989X.1.2.130


 POWER AND SAMPLE SIZE 47 

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements 

for structural equation models: An evaluation of power, bias, and solution propriety. Educational 

and Psychological Measurement, 73, 913-934. doi: 10.1177/0013164413495237 

 

Multilevel / hierarchical / mixed model analysis 

Arend, M. G., & Schäfer, T. (2019). Statistical power in two-level models: A tutorial based on 

Monte Carlo simulation. Psychological Methods, 24, 1-19. 

Browne, W. J., Lahi, M.G., & Parker, R. M. (2009). A guide to sample size calculations for 

random effect models via simulation and the MLPowSim software package. Retrieved 

from http://www.bristol.ac.uk/cmm/software/mlpowsim/mlpowsim-manual.pdf. 

Green, P., & MacLeod, C. J. (2016). Simr: An R package for power analysis of generalized 

linear mixed models by simulation. Methods in Ecology and Evolution, 7, 493-498. Doi: 

10.1111/2041-210X.12504 

Lane, S. P., & Hennes, E. P. (2018). Power struggles: Estimating sample size for multilevel 

relationships research. Journal of Social and Personal Relationships, 35(1), 7-

31.Raudenbush, S. W., Spybrook, J., Congdon, R., Liu, X. F., Martinez, A., Bloom, H., 

& Hill, C. (2011). Optimal design software for multi-level and longitudinal research 

(Version 3.01)[Software]. Available from www.wtgrantfoundation.org. 

 

 

http://www.bristol.ac.uk/cmm/software/mlpowsim/mlpowsim-manual.pdf
http://www.wtgrantfoundation.org/

