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Abstract

Projectile motion, the study of the movement of objects that are
thrown or shot through the air, has long been an important area of in-
vestigation in classical physics. The development of equations to predict
the position of projectiles was one of the first practical applications of cal-
culus and has had numerous practical applications, including in the field
of artillery. While modern artillery personnel use computers to calcu-
late more complex versions of these equations, the fundamental principles
underlying projectile motion are still taught at military academies world-
wide. In recent years, the development of "smart" munitions that can
guide themselves towards their targets has led to new questions about the
relative performance of these advanced weapons and traditional "dumb"
munitions. In this paper, we will provide a detailed overview of the his-
tory and principles of projectile motion and explore the ongoing efforts
to model and compare the performance of smart and dumb munitions in
order to determine the optimal mix for different countries’ needs.
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1 Fundamentals
In this study, we will analyze the trajectory of a projectile under certain simpli-
fying assumptions. Specifically, we will assume that the projectile’s movement
in the lateral direction is negligible, allowing us to consider its movement in two
dimensions only. The x-axis will represent the distance from the projectile’s
starting point to its target. Additionally, we will assume that the effects of
air resistance and wind are negligible, and that the curvature and rotation of
the earth can be ignored. Finally, we will assume that the force of gravity is
constant and always directed downward.

To maintain brevity, we will consider the projectile to be launched at time
t = 0 from the coordinates (0, 0). The initial speed of the projectile will be
denoted as v0, and the angle of launch will be denoted as θ. At the moment
of launch, the projectile will have a vertical velocity of v0 sin θ and a horizontal
velocity of v0 cos θ. As we have assumed that gravity only acts in the vertical
direction, the horizontal velocity of the projectile will remain constant. This
can be expressed mathematically as follows:

d2x

dt2
= 0 (1)

We can multiply both sides by dt and integrate both sides:∫
d2x

dt2
dt =

∫
0 dt

dx

dt
+ c1 = c2

dx

dt
= c2 − c1

(2)

Since a constant minus a constant equals a constant, we can refer to c2 − c1
as c3.

dx

dt
= c3 (3)

We know that

dx

dt

∣∣∣∣
t=0

= v0 cos θ (4)

due to the initial conditions we defined. Combining (3) and (4) gives us
c3 = v0 cos θ.

We integrate (5) in the same way as (2):∫
dx

dt
dt =

∫
v0 cos θdt

x(t) = tv0 cos θ + c5

(5)
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We can add a constant of integration to just one side because constants on
two sides can be compressed into one as we saw in (3) to (5). Since due to our
initial assumptions, x(0) = 0, we can solve for c5 by evaluating (8) at t = 0 :

0 = 0 + c5

c5 = 0
(6)

Therefore, our solution for x(t) is

x(t) = tv0 cos θ (7)

Since the only force acting on the projectile in the y direction is gravity,

d2y

dt2
= −g (8)

We can follow the exact same process we applied for the x direction:∫
d2y

dt2
dt =

∫
−g dt

dy

dt
= −gt+ c1

c1 = v0 sin θ∫
dy

dt
dt =

∫
−gt+ v0 sin θdt

y(t) = −1

2
gt2 + tv0 sin θ

(9)

We can combine x(t) and y(t) into y(x) by solving x(t) for t and substituting
into y(t) :

t =
x

v0 cos θ

y(x) = −1

2
g

x2

v20 cos
2 θ

+
x

v0 cos θ
v0 sin θ

= − gx2

2v20 cos
2 θ

+ x tan θ

(10)

2 Air resistance - low velocity
(5) At low velocities, an appropriate approximation for air resistance is Fair =
kv, where k is an empirical constant dependent upon the projectile and the
atmosphere and F acts opposite to the direction of motion. This assumes that
air pressure and density are near-constant throughout the atmosphere, and that
the effect of wind is negligible. We also assume that the projectile is close enough
to being spherical that its rotation during flight does not appreciably change
the strength of air resistance. We now have

∑
F = ma = Fair + Fg.
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We can apply this formula to each component:

m
d2y

dt2
= −k

dy

dt
−mg

m
d2x

dt2
= −k

dx

dt
+ 0

(11)

Solving the second equation is simpler. Since this is a linear differential
equation containing no constants, the solution will be of the form aert + c.

This gives us:

mar2ert = −karert (12)

Since ert can never equal 0 ,

mar2 = −kar (13)

Since our solution clearly cannot have a or r equal to 0 ,

mr = −k

r = − k

m

(14)

We solve for a and c by substitution of the initial conditions.

v0 cos θ = rae0

v0 cos θ = − k

m
a

a = −m

k
v0 cos θ

0 = −m

k
v0 cos θe

0 + c

c =
m

k
v0 cos θ

(15)

Thus we end up with:

x(t) = −m

k
v0 cos θe

− kt
m +

m

k
v0 cos θ

=
m

k
v0 cos θ

(
−e−

kt
m + 1

) (16)

Since the first equation (12) contains the constant −mg, the solution will be
of the form aert + bt+ c. Substituting:

mar2ert = −k
(
arert + b

)
−mg

mar2ert = −karert − kb−mg

mar2ert + karert = −kb−mg

(17)

We will arrive at a solution if we assume that both sides are equal to zero.
Solving for b :
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0 = −kb−mg

kb = −mg

b = −mg

k

(18)

Solving for r :

mar2 ert + karert = 0

mr + k = 0

r = − k

m

(19)

Solving for a :

v0 sin θ = are0 + b

v0 sin θ = −a
k

m
− mg

k

a = −m

k

(
v0 sin θ +

mg

k

) (20)

Solving for c :

0 = aert + bt+ c

0 = −m

k

(
v0 sin θ +

mg

k

)
e0 + c

c =
m

k

(
v0 sin θ +

mg

k

) (21)

Thus we have:

y(t) = −m

k

(
v0 sin θ +

mg

k

)
e−

kt
m − mgt

k
+

m

k

(
v0 sin θ +

mg

k

)
=

m

k

((
v0 sin θ +

mg

k

)(
−e−

kt
m + 1

)
− gt

) (22)

Which, when consolidated with x(t), gives us

y(x) =
m

k

((
v0 sin θ +

mg

k

)( kx

mv0 cos θ

)
+

mg

k
ln

∣∣∣∣1− kx

mv0 cos θ

∣∣∣∣) (23)

3 Air resistance - high velocity
At high velocities, it is more appropriate to assume that Fair = kv2. We will
keep all of our other assumptions.

m
d2y

dt2
= −k

(
dy

dt

)2

−mg

m
d2x

dt2
= −k

(
dx

dt

)2

+ 0

(24)
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Again, we can solve the second equation first. Since this is a nonlinear
differential equation, the conjectured solution we used last time won’t work.
Let’s substitute u for dx

dt :

m
du

dt
= −ku2

1

u2
du = − k

m
dt∫

1

u2
du =

∫
− k

m
dt

− 1

u
= −kt

m
+ c1

u =
1

kt
m + c1

(25)

Solving for c1 :

v0 cos θ =
1

c1

c1 =
1

v0 cos θ

(26)

We repeat the integration-substitution step:∫
u dt =

∫
1

kt
m + 1

v0 cos θ

dt (27)

Let’s substitute w for kt
m + 1

v0 cos θ , where dw = k
m d.

x(t) =

∫
1

w

(m
k

dw
)

=
m

k

∫
1

w
dw

=
m

k
ln |w|+ c2

c2 = −m

k
ln

∣∣∣∣ 1

v0 cos θ

∣∣∣∣
(28)

This gives us:

x(t) =
m

k
ln |w|+−m

k
ln

∣∣∣∣ 1

v0 cos θ

∣∣∣∣
=

m

k

(
ln |w| − ln

∣∣∣∣ 1

v0 cos θ

∣∣∣∣)
=

m

k
ln |wv0 cos θ|

=
m

k
ln

∣∣∣∣ktv0 cos θm
+ 1

∣∣∣∣
(29)
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y(x) is slightly more difficult. We substitute u for dy
dt :

m
du

dt
= −ku2 −mg

m du
dt

−mg − ku2
= 1∫

m du
dt

−mg − ku2
dt =

∫
dt

−1

g

∫ du
dt

1 +
( √

ku√
gm

)2 dt = t+ c1

(30)

Substitute w for
√
ku√
gm , where dw

dt =
√
k√
mg

du
dt :

−1

g

∫ √
mg√
k

dw
dt

1 + w2
dt = t+ c1

−1

g

√
mg
√
k

∫
1

1 + w2
dw = t+ c1

−
√
m√
gk

tan−1 w = t+ c1

w = tan

(
− t

√
gk√
m

+ c1

)
u =

√
mg
√
k

tan

(
− t

√
gk√
m

+ c1

)
c1 = tan−1

(√
kv0 sin θ√

mg

)

(31)

Solving for y(t) :∫
u dt =

∫ √
gm
√
k

tan

(
− t

√
gk√
m

+ tan−1

(√
kv0 sin θ√

mg

))
dt (32)

Let’s substitute q for − t
√
gk√
m

+ tan−1
(√

kv0 sin θ√
mg

)
, where dq =

√
gk√
m

dt:

y(t) =

√
mg
√
k

√
m√
gk

∫
tan q dq

=
m

k
ln | cos q|+ c2

c2 = −m

k
ln

∣∣∣∣∣cos
(
tan−1

(√
kv0 sin θ√

mg

))∣∣∣∣∣
(33)

We consolidate x(t) and y(t) to get:
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y(x) =
m

k
ln

∣∣∣∣∣∣∣∣∣∣∣∣

cos

−
√
mgk

(
e
kx
m −1

)
kv0 cos θ + tan−1

(√
kv0 sin θ√

mg

)
cos
(
tan−1

(√
kv0 sin θ√

mg

))
∣∣∣∣∣∣∣∣∣∣∣∣

(34)

Here, x must be restricted to the domain

x ≤ m

k
ln

∣∣∣∣∣1− kv0 cos θ√
mgk

(
π

2
− tan−1

(√
kv0 sin θ√

mg

))∣∣∣∣∣ (35)

since values of x higher than this are impossible and will thus yield absurd
values of y.

4 Creating a model
In conclusion, the use of differential equations in modeling projectile motion
provides a powerful tool for understanding the dynamics of such motion. By
utilizing analytic solutions, we can derive complex and accurate models that
take into account factors such as the exponential decrease in air pressure with
altitude. However, there are limitations to the precision of these solutions, and
in some cases, no known analytic solutions exist. In these cases, it is necessary
to rely on numerical methods, such as computer simulations, to evaluate the
motion of the projectile. It is important to note that while these numerical
solutions can be highly accurate, they are dependent on the size of the time
iteration chosen.

It is also worth mentioning that while the mathematical models presented
in this paper provide a valuable understanding of projectile motion, there are
other areas of fluid dynamics that also require significant attention and research.
One of the most important and challenging of these areas concerns the Navier-
Stokes equations, which describe the motion of fluids and are fundamental to
understanding a wide range of phenomena, such as turbulent flow and the be-
havior of gases and liquids under extreme conditions. These equations are highly
nonlinear, and despite much research, no general analytic solutions have been
found. Instead, numerical methods and computational simulations must be used
to evaluate the motion of fluids. However, the development of more accurate
and efficient numerical methods for solving the Navier-Stokes equations is an
active area of research and has the potential to lead to many practical applica-
tions, including improved weather forecasting, aircraft and ship design, and the
prediction of fluid flows in industrial processes.
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