Home

Menu

Loading wiki pages...

View
Wiki Version:
<p>Current benchmarks for optical flow algorithms evaluate the estimation either directly by comparing the predicted flow fields with the ground truth or indirectly by using the predicted flow fields for frame interpolation and then comparing the interpolated frames with the actual frames. In the latter case, objective quality measures such as the mean squared error are typically employed. However, it is well known that for image quality assessment, the actual quality experienced by the user cannot be fully deduced from such simple measures. Hence, we conducted StudyMB 2.0, a subjective quality assessment crowdscouring study for the interpolated frames provided by one of the optical flow benchmarks, Middlebury interpolation benchmark.</p> <p>StudyMB 2.0 contains interpolated frames from 155 methods applied to each of 8 contents. We collected forced-choice paired comparisons between interpolated images and corresponding ground truth. To increase the sensitivity of observers when judging minute difference in paired comparisons we introduced a new method to the field of full-reference quality assessment, called artefact amplification. From the crowdsourcing data (3720 comparisons of 20 votes each) we reconstructed absolute quality scale values according to Thurstone's model.</p>
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.