Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Euclidean geometry has formed the foundation of architecture, science, and technology for millennia, yet the development of human’s intuitive reasoning about Euclidean geometry is not well understood. The present study explores the cognitive processes and representations that support the development of intuitive reasoning about Euclidean geometry. One-hundred-twenty-five 7-12-year-old children and 30 adults completed a localization task in which they visually extrapolated missing parts of fragmented planar triangles and a reasoning task in which they answered verbal questions about the general properties of planar triangles. While basic Euclidean principles guided even young children’s visual extrapolations, only older children and adults reasoned about triangles in ways that were consistent with Euclidean geometry. Moreover, a relation between visual extrapolation and reasoning appeared only in older children and adults. Reasoning consistent with Euclidean geometry may thus emerge when children abandon incorrect, axiomatic-based reasoning strategies and come to reason using mental simulations of visual extrapolations.

Wiki

Add important information, links, or images here to describe your project.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.