Main content

Contributors:
  1. Louis Preonas

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: How should researchers design experiments to detect treatment effects with panel data? In this paper, we derive analytical expressions for the variance of panel estimators under non-i.i.d. error structures, which inform power calculations in panel data settings. Using Monte Carlo simulation, we demonstrate that, with correlated errors, traditional methods for experimental design result in experiments that are incorrectly powered with proper inference. Failing to account for serial correlation yields overpowered experiments in short panels and underpowered experiments in long panels. Using both data from a randomized experiment in China and a high-frequency dataset of U.S. electricity consumption, we show that these results hold in real-world settings. Our theoretical results enable us to achieve correctly powered experiments in both simulated and real data. This paper provides researchers with the tools to design well-powered experiments in panel data settings.

Has supplemental materials for Panel Data and Experimental Design on MetaArXiv

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.