Linear Transformations

Open Mathematics Collaboration* ${ }^{*}$

March 22, 2021

Abstract

LINEAR TRANSFORMATION and its underlying definitions are presented in this white paper [knowledge base (http://omkb.org)].

keywords: linear transformation, vector space, abstract algebra, knowledge base

The most updated version of this white paper is available at https://osf.io/cjdwg/download

[^0]
Definition

1. Linear Transformation (Vector Space Homomorphism)

$$
T: V \rightarrow W
$$

(a) $\forall u, v \in V: T(u+v)=T(u)+T(v), \quad(T$ is additive $)$,
(b) $\forall k \in F \forall v \in V: T(k v)=k T(v)$, (T is homogeneous).
$T:=$ function
$V, W:=$ vector spaces over F
F := field
[1]

Example

2. Dilation

$$
S: V \rightarrow V \text { such that } \forall v \in V, \forall m \in \mathbb{R}, S(v)=m v
$$

$S:=$ function
$V:=$ vector space over \mathbb{R}
[1]

Prerequisites

3. Vector Space over a Field (F-vector space)

$$
(V, \mathcal{F}, \oplus, \cdot)
$$

(a) $(V, \oplus):=$ commutative group
(b) Closure under (left) scalar multiplication:
$\forall k \in F, \forall v \in V, k v \in V$
(c) Scalar (left) multiplication identity: $(1 \in F, v \in V) \rightarrow(1 v=v)$
(d) Associativity of (left) scalar multiplication:
$\forall j, k \in F, v \in V,(j k) v=j(k v)$
(e) (left) Distributivity of 1 scalar over 2 vectors:
$\forall k \in F, v, w \in V, k(v+w)=k v+k w$
(f) (left) Distributivity of 2 scalars over 1 vector:
$\forall j, k \in F, v \in V,(j+k) v=j v+k v$
$V, F:=$ sets
$\mathcal{F}:=$ field
$\oplus:=$ binary operation on V
$\cdot:=$ scalar multiplication (between elements of F and V)
$\therefore: F \times V \rightarrow V$
$\mathcal{F}=(F,+, \cdot)$

+ : binary operation on F
: := binary operation on F
[1,2]

4. Field

$$
(F,+, \cdot)
$$

(a) $(F,+)$:= commutative group
(b) $\left(F^{*}, \cdot\right):=$ commutative group
(c) Multiplication is distributive over addition in F
(d) $0 \neq 1$
$F:=$ set, $\quad F^{*}=F \backslash\{0\}$
$+, \cdot:=$ binary operations on F (addition and multiplication)
$0:=$ additive identity, $1:=$ multiplicative identity
[1,2]
5. Group

$$
(G, \star)
$$

(a) Associativity: $\forall x, y, z \in G,(x \star y) \star z=x \star(y \star z)$
(b) Identity: $\exists e \in G: \forall x \in G, e \star x=x \star e=x$
(c) Inverse: $\forall x \in G \exists y \in G: x \star y=y \star x=e$
$G:=$ set
*:= binary operation
[1]
6. Commutative group (Abelian)

$$
\begin{gathered}
G_{b} \\
\forall g_{1}, g_{2} \in G_{b}, g_{1} g_{2}=g_{2} g_{1}
\end{gathered}
$$

G_{b} := group
[2]

7. Distributive

$$
\begin{array}{ll}
\forall x, y, z \in R: x \cdot(y+z)=x \cdot y+x \cdot z & \text { left distributive } \\
\forall x, y, z \in R:(y+z) \cdot x=y \cdot x+z \cdot x & \text { right distributive } \tag{1-3}
\end{array}
$$

8. Homomorphism

$$
f^{h}
$$

(a) $f^{h}: G \rightarrow H$

$$
\forall x, y \in G: f^{h}(x * y)=f^{h}(x) \circ f^{h}(y)
$$

$f^{h}:=$ function
$G, H:=$ sets
*, ○:= binary operations
$(G, *),(H, \circ):=$ groups
[1,2,4]
9. Function from A to B

$$
\begin{gathered}
f: A \rightarrow B \\
\forall a \in A \exists!b \in B((a, b) \in f)
\end{gathered}
$$

$f, A, B:=$ sets
$\exists!:=$ exists exactly one
$(a, b):=$ ordered pair
[5]
10. Cartesian product

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

$A, B:=$ sets
$A \times B:=$ Cartesian product
$(a, b):=$ ordered pair
[5]
11. Ordered pair

$$
(a, b)=\{\{a\},\{a, b\}\}
$$

$a:=$ first coordinate
$b:=$ second coordinate
$[1,5]$

12. Binary operation

$$
\star: S \times S \rightarrow S
$$

$S:=$ set
$S \times S:=$ Cartesian product
[1]

Open Invitation

Review, add content, and co-author this white white paper [6,7]. Join the Open Mathematics Collaboration.
Send your contribution to mplobo@uft.edu.br.

Open Science

The latex file for this white paper together with other supplementary files are available in [8].

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [9], please cite it accordingly [10]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

Acknowledgements

+ Center for Open Science https://cos.io
+ Open Science Framework
https://osf.io

References

[1] Warner, Steve. Abstract Algebra for Beginners. GET 800, 2018. https://books.google.com/books?id=UFleyAEACAAJ
[2] Dummit, David Steven, and Richard M. Foote. Abstract Algebra. Vol. 3. Hoboken: Wiley, 2004.
https://books.google.com/books?id=znzJygAACAAJ
[3] Cain, Alan J. Nine Chapters on the Semigroup Art. AJC Porto \& Lisbon, 2020. http://www-groups.mcs.st-and.ac.uk/alanc
[4] Rotman, Joseph J. A first course in abstract algebra. Pearson College Division, 2000. https://books.google.com/books?id=ctEZAQAAIAAJ
[5] Velleman, Daniel J. How to prove it: A structured approach. Cambridge University Press, 2019.
https://books.google.com/books?vid=ISBN0521861241
[6] Lobo, Matheus P. "Microarticles." OSF Preprints, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
[7] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
[8] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020.
https://doi.org/10.17605/osf.io/6hzyp
https://osf.io/6hzyp/files
[9] COS. Open Science Framework. https://osf.io
[10] Lobo, Matheus P. "Linear Transformations." OSF Preprints, 22 Mar. 2021. https://doi.org/10.31219/osf.io/cjdwg

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br) ${ }^{1,2}$ https://orcid.org/0000-0003-4554-1372
${ }^{1}$ Federal University of Tocantins (Brazil)
${ }^{2}$ Universidade Aberta (UAb, Portugal)

[^0]: *All authors with their affiliations appear at the end of this white paper.
 ${ }^{\dagger}$ Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

