

[awaiting peer review]

The inner structure of time

Open Mathematics Collaboration*†

June 20, 2022

Abstract

Based on the idea that time is computation, we discuss one interpretation regarding the inner structure of time that explains quantum superposition.

keywords: time, quantum superposition, graph

The most updated version of this white paper is available at https://osf.io/chmqy/download https://zenodo.org/record/6672667

Introduction

- 1. This white paper is the *evolution* of [1,2], inspired by [3].
- 2. According to the Wolfram Model [3–6],

time = computation.

^{*}All authors with their affiliations appear at the end of this white paper.

[†]Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

Notation

- 3. $R_i := \text{binary relation}$
- 4. (a,b) := ordered pair
- 5. $r := \text{rule that transforms } R_i \text{ into } R_j$
- $6. \subset := proper subset relation$

Spin up/down

- 7. Let $R_1 = \{(1,0)\}$ and $R_2 = \{(0,1)\}$.
- 8. $r: R_1 \to R_2$
- 9. In the light of (2), in a physical system governed by r, **time** is the edge of the graph of Fig. 1, where each arrow represents one unit of time.
- 10. Classical time evolution $t_0 \to t_1 \to t_2 \to \dots$ then reads

$$(1,0) \to (0,1) \to (1,0) \to \dots$$

Figure 1: Graph representing the spin flip.

- 11. Assign the following meaning to the vertices:
 - $1 := |1\rangle := \text{spin up},$
 - $0 := |0\rangle := \text{spin down}.$

12. Thus, it is quite logical to assign (8) to describe the qubit

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |0\rangle).$$

- 13. A measurement of this quantum system occurring at time t_n results in the collapsed state $|1\rangle$ or $|0\rangle$.
- 14. Considering that the "length" of time is the same for each quantum computational calculation in (10), (13) yields a probability 1/2 for the collapse of each state.

Time composition

15. Note that there are two arrows in the spin up/down system since

$$(1,0) \equiv (1 \to 0).$$

16. Then the rule (8) is given by

$$r: (1 \xrightarrow{\tau} 0) \xrightarrow{t} (0 \xrightarrow{\tau} 1).$$

- 17. t := classical time
- 18. $\tau :=$ quantum time required to flip the spin of the quantum particle
- 19. Consider the following experiment

$$(1 \stackrel{\tau_0}{\rightarrow} 0) \stackrel{t_0}{\rightarrow} (0 \stackrel{\tau_1}{\rightarrow} 1) \stackrel{t_1}{\rightarrow} (0 \stackrel{\tau_2}{\rightarrow} 1) \stackrel{t_2}{\rightarrow} \dots,$$

where $|\tau_0| < t_0 < |\tau_1| < t_1 < |\tau_2| < t_2 < \dots$

- 20. If the observer measures the spin of the particle at t such that $t_0 < t < |\tau_1|$, then the spin collapses to $|0\rangle$.
- 21. If the observer measures the spin of the particle at t such that $|\tau_1| < t < t_1$, then the spin collapses to $|1\rangle$.

Final Remarks

- 22. In summary,
 - (i) classical time = map between relations,
 - (ii) quantum time := arrow within a graph.
- 23. Is time a composite dimension?
- 24. $\tau \in t$?
- 25. $\tau \subset \mathbb{C}$?

Open Invitation

Review, add content, and co-author this white paper [7,8]. Join the **Open Mathematics Collaboration**. Send your contribution to mplobo@uft.edu.br.

Open Science

The **latex file** for this white paper together with other supplementary files are available in [9, 10].

How to cite this paper?

https://doi.org/10.31219/osf.io/chmqy https://zenodo.org/record/6672667

Acknowledgements

+ Center for Open Science https://cos.io

+ Open Science Framework

https://osf.io

+ Zenodo

https://zenodo.org

+ The Wolfram Physics Project

https://www.wolframphysics.org

Agreement

The author agrees with [8].

License

CC-By Attribution 4.0 International [11]

References

[1] Lobo, Matheus P. "The Logistics of Quantum Spacetime." *OSF Preprints*, 10 May 2021.

https://doi.org/10.31219/osf.io/s2dnt

[2] Lobo, Matheus P. "Time Is a Discrete Dynamical System." *OSF Preprints*, 21 May 2021.

https://doi.org/10.31219/osf.io/8f4yg

- [3] Wolfram, Stephen. A Project to Find the Fundamental Theory of Physics. Wolfram Media, Inc., 2020. https://bit.ly/3n0JRvl
- [4] Wolfram, Stephen. A New Kind of Science. Wolfram Media, Inc., 2002. https://bit.ly/3n5MqMG
- [5] Wolfram, Stephen. "A class of models with the potential to represent fundamental physics." arXiv preprint arXiv:2004.08210 (2020).

- [6] The Wolfram Physics Project: An Approach to the Fundamental Theory of Physics (& more). https://www.wolframphysics.org
- [7] Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [8] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." *OSF Preprints*, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [9] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://osf.io/6hzyp/files
- [10] https://zenodo.org/record/6672667
- [11] CC. Creative Commons. CC-By Attribution 4.0 International. https://creativecommons.org/licenses/by/4.0

The Open Mathematics Collaboration

 $\label{eq:Matheus Pereira Lobo} \mathbf{Matheus\ Pereira\ Lobo}^{1,2,3}\ (\texttt{lead\ author,mplobo@uft.edu.br}) \\ \texttt{https://orcid.org/0000-0003-4554-1372}$

¹Federal University of Tocantins (Brazil)

²Federal University of Northern Tocantins (Brazil)

³Universidade Aberta (UAb, Portugal)