RINGS: Almost a ring, semiring, zero, integral domain

Open Mathematics Collaboration*i

March 9, 2021

Abstract

RING, commutative ring, almost a ring, semiring, zero ring, zero property, zero divisors, domain, integral domain, and their underlying definitions are presented in this white paper (knowledge base).

keywords: ring, zero, domain, abstract algebra, knowledge base

The most updated version of this white paper is available at
https://osf.io/bzugr/download

[^0]
Definitions

1. RING

$$
(R,+, \cdot)
$$

(a) $(R,+)$:= commutative group
(b) $(R, \cdot):=$ monoid
(c) Multiplication is distributive over addition in R
$R:=$ set
$+, \cdot:=$ binary operations on R (addition and multiplication)
[1,2]
2. Commutative Ring := multiplication is commutative in R $[1,2]$
3. Almost a Ring (rng)

$$
(R,+, \cdot)
$$

$(R,+)$:= commutative group
$(R, \cdot):=$ semigroup
[1,2]
4. Semiring (rig)

$$
(S,+, \cdot)
$$

$(S,+)$:= commutative monoid
($S, \cdot \cdot$) := monoid
[1,2]
5. Zero Ring

$$
(\{0\},+, \cdot)
$$

[1,2]
6. Zero property

$$
\forall x \in R: 0 \cdot x=x \cdot 0=0
$$

$R:=$ set

- : $=$ binary operation on R
[1,2]

7. Zero divisors := nonzero elements whose product is zero [1,2]
8. Domain := a ring that does NOT contain any zero divisors [1,2]
9. Integral domain := commutative domain [1,2]

Prerequisites

10. Ordered pair

$$
(a, b)=\{\{a\},\{a, b\}\}
$$

$a:=$ first coordinate
$b:=$ second coordinate
$[1,3]$

11. Cartesian product

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

$A, B:=$ sets
$A \times B:=$ Cartesian product
$(a, b):=$ ordered pair
[3]
12. Binary operation

$$
\star: S \times S \rightarrow S
$$

$S:=$ set
$S \times S:=$ Cartesian product
[1]

13. Group

$$
(G, \star)
$$

(a) Associativity: $\forall x, y, z \in G,(x \star y) \star z=x \star(y \star z)$
(b) Identity: $\exists e \in G: \forall x \in G, e \star x=x \star e=x$
(c) Inverse: $\forall x \in G \exists y \in G: x \star y=y \star x=e$
$G:=$ set

* := binary operation
[1]

14. Commutative group (Abelian)

$$
\begin{gathered}
G_{b} \\
\forall g_{1}, g_{2} \in G_{b}, g_{1} g_{2}=g_{2} g_{1}
\end{gathered}
$$

$G_{b}:=$ group
[2]
15. Associative binary operation

$$
\forall x, y, z \in S: x \circ(y \circ z)=(x \circ y) \circ z
$$

- := binary operation
[4]

16. Semigroup

$$
\mathcal{S}=(S, \circ)
$$

$S:=$ non-empty set
$\circ:=$ associative binary operation
[4]
17. Monoid := a semigroup $\mathcal{S}=(S, \circ)$ that contains an identity $e \in S$ such that

$$
\forall x \in S: e \circ x=x \circ e=x
$$

[4]

18. Distributive

$$
\begin{array}{ll}
\forall x, y, z \in R: x \cdot(y+z)=x \cdot y+x \cdot z & \text { left distributive } \\
\forall x, y, z \in R:(y+z) \cdot x=y \cdot x+z \cdot x & \text { right distributive } \tag{1,2}
\end{array}
$$

Open Invitation

Review, add content, and co-author this white white paper $[5,6]$. Join the Open Mathematics Collaboration. Send your contribution to mplobo@uft.edu.br.

Open Science

The latex file for this white paper together with other supplementary files are available in [7].

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [8], please cite it accordingly [9]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

Acknowledgements

+ Center for Open Science https://cos.io
+ Open Science Framework https://osf.io

References

[1] Warner, Steve. Abstract Algebra for Beginners. GET 800, 2018. https://books.google.com/books?id=UFleyAEACAAJ
[2] Dummit, David Steven, and Richard M. Foote. Abstract Algebra. Vol. 3. Hoboken: Wiley, 2004.
https://books.google.com/books?id=znzJygAACAAJ
[3] Velleman, Daniel J. How to prove it: A structured approach. Cambridge University Press, 2019.
https://books.google.com/books?vid=ISBN0521861241
[4] Cain, Alan J. Nine Chapters on the Semigroup Art. AJC Porto \& Lisbon, 2020. http://www-groups.mcs.st-and.ac.uk/alanc
[5] Lobo, Matheus P. "Microarticles." OSF Preprints, 28 Oct. 2019.
https://doi.org/10.31219/osf.io/ejrct
[6] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019.
https://doi.org/10.31219/osf.io/fk836
[7] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020.
https://doi.org/10.17605/osf.io/6hzyp
https://osf.io/6hzyp/files
[8] COS. Open Science Framework. https://osf.io
[9] Lobo, Matheus P. "RINGS: Almost a Ring, Semiring, Zero, Integral Domain." OSF Preprints, 8 Mar. 2021.
https://doi.org/10.31219/osf.io/bzugr

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br) ${ }^{1,2}$ https://orcid.org/0000-0003-4554-1372
${ }^{1}$ Federal University of Tocantins (Brazil)
${ }^{2}$ Universidade Aberta (UAb, Portugal)

[^0]: *All authors with their affiliations appear at the end of this white paper.
 ${ }^{\dagger}$ Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

