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Abstract  

Perception results from complex interactions among sensory and cognitive processes across 
hierarchical levels in the brain. Intermodulation (IM) components, used in frequency tagging 
neuroimaging designs, have emerged as a promising direct measure of such neural interactions. IMs 
have initially been used in electroencephalography (EEG) to investigate low-level visual processing. 
In a more recent trend, IMs in EEG and other neuroimaging methods are being used to shed light on 
mechanisms of mid- and high-level perceptual processes, including the involvement of cognitive 
functions such as attention and expectation.  

Here, we provide an account of various mechanisms that may give rise to IMs in neuroimaging data, 
and what these IMs may look like. We discuss methodologies that can be implemented for different 
uses of IMs and we demonstrate how IMs can provide insights into the existence, the degree and the 
type of neural integration mechanisms at hand. We then review a range of recent studies exploiting 
IMs in perception research, placing an emphasis on high-level visual processes. We conclude by 
suggesting future directions that can enhance the benefits of IM-methodology in perception 
research. 
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Highlights  

·         Intermodulation (IM) components provide a measure of signal interaction in perception 

·         IMs can provide insights about the existence, degree and type of signal interactions 

·         We synthesize recent developments in IM research and methods  

·         We provide clear suggestions for analysis and interpretation of IM data  



 

1. Introduction 

The elaborate and rich perceptions we experience every moment are the result of complex 
interactions between diverse sensory and cognitive processes across multiple hierarchical levels in 
the brain. Obtaining a direct physiological measure for such neural interactions is a long-term 
aspiration for the study of perception. This review focuses on a suggested direct measure of (non-
linear) signal interactions, namely the intermodulation (IM) frequency components associated with 
frequency tagging methodologies.  

IM studies are based on the use of frequency tagging methods in which stimuli are modulated at a 
given frequency over time. As activity at the neural populations processing these stimuli becomes 
synchronized with the stimuli, the evoked response in the brain will exhibit the same periodicities 
that exist in the stimuli. This ‘neural entrainment’ specificity will remain for the duration that stimuli 
are being processed, resulting in a so-called steady-state response. In the well-known visual 
frequency tagging method, the steady-state visual evoked potential (SSVEP) is typically elicited by 
modulating the stimuli’s contrast or luminance at given frequency. Frequency-domain analyses of 
the recorded neural response then allow matching frequency-specific brain activity to the processing 
of the modulated stimulus. A peak in the signal’s power spectrum at the stimulus modulation 
frequency provides a marker or ‘tag’ for the stimulus-specific neural response (for a review see 
(Norcia et al., 2015)). (Such methods should not to be confused with various frequency-band 
analyses that examine spontaneous neural oscillations occurring at typical frequency ranges which 
may not be present in the stimulus itself.) 

In more advanced designs, different elements of the stimulus can be modulated using more than 
one frequency (e.g., F1 and F2; note that throughout this paper we use uppercase letters to denote 
input/stimulus frequencies and lowercase letters to denote output/response frequencies). 
Importantly, not only does this allow one to separate and match specific elements of the recorded 
neural responses to well-defined elements of the stimulus, it can provide an additional measure for 
the interaction between those signals in the form of IM frequency components (also known by other 
names, such as IM terms, IM products, IM distortion, cross-modulation components). In such 
experimental designs, peaks in the power spectrum of the signal may appear at the fundamental 
modulation frequencies (e.g. f1 and f2), their harmonics, which are integer multiples of the 
fundamental frequencies (e.g. 2f1, 3f2, etc.) and their IMs, which appear as linear combinations of 
the input frequencies (e.g. 2f1+f2, f2-f1, etc.) (Figures 1 and 2). Crucially, such IMs appear as a result 
of, and provide direct evidence for, the non-linear integration of the neural signals driven by the 
differentially modulated stimulus elements (Regan and Regan, 1988b).  

  



 

 

Figure 1- Basic principles of intermodulation components in perception research 

Intermodulation studies are based on the use of two (or more) temporal modulations of a stimulus. Different elements of 
the stimulus are modulated using distinct frequencies. Brain activity is recorded during stimulus presentation and is later 
analysed in the frequency-domain. Neural responses entrained by the stimulus can yield peaks in power at the frequencies 
at which the stimulus was modulated. Given the myriad non-linear neural processes occurring in the brain, peaks are likely 
to be found also at various harmonics (integer multiples) of the fundamental modulation frequencies. Any non-linear 
integration of the signals that are driven by the unique modulation frequencies may result in peaks at additional 
frequencies - the intermodulation (IM) components (i.e. any linear combination of the fundamental frequencies). Such IMs 
do not arise when the signals do not interact (e.g. (Fuchs et al., 2008)). As such, IMs provide direct neurophysiological 
evidence for the non-linear integration of the different neural signals. 

 

IM components have been demonstrated in EEG data as early as 1982 when Ratliff and Zemon 
reported preliminary experiments in which the contrast of adjacent segments of a windmill-
dartboard pattern was modulated using two different frequencies. They observed that these 
patterns evoked power at some intermodulation frequencies and concluded they result from lateral-
interactions along the visual processing pathway (Zemon and Ratliff, 1982). 

IMs are being used in recent years to shed light not only on low-level visual processes but also on 
mechanisms of mid- and high-level perception (e.g. (Boremanse et al., 2013; Giani et al., 2012)), 
including the involvement of cognitive functions such as attention and expectation (e.g. (Gordon et 
al., 2017; Kim et al., 2017)). IMs have also recently been extended to Brain Computer Interface 
studies (Chen et al., 2013), underscoring the potential of IMs in the neurosciences.  

Utilizing IMs for the study of mid- or high-level perception requires the use of more advanced 
experimental designs and analyses. In terms of experimental stimuli, for example, various visual 
illusions can be tailored to elicit IM components (Aissani et al., 2011; Alp et al., 2016; Gundlach and 
Müller, 2013). Other studies have combined contrast-modulation SSVEP methods with more 
advanced image-content based frequency tagging (e.g. Semantic Wavelet-Induced Frequency 
Tagging (SWIFT; (Koenig-Robert and VanRullen, 2013)) to induce IMs across multiple hierarchical 
levels (Gordon et al., 2017).  

However, in spite of the increasing prominence and potential of IMs in neuroscience, the literature 
remains scattered and experimental methodologies are largely exploratory. The goal of this review is 
to provide an understanding of the various mechanisms that may give rise to IMs, organise the 
knowledge one can obtain from IMs and discuss methodologies that can be implemented for various 
experimental purposes. The review focuses on the use of IMs in electroencephalography (EEG) and 
magnetoencephalography (MEG) studies, placing a particular emphasis on the benefit of IMs in the 
study of high-level visual processes.  



 

1.2 Definitions 

IM components are linear combinations of the input frequencies that result from the non-linear 
integration of multiple input frequencies. This definition can be unpacked as follows: 

Non-linear integration of multiple input frequencies- A system or function is considered non-linear if 
the combination of two inputs does not necessarily yield the sum of their respective outputs (i.e. 
when the additivity property f(x+y)= f(x) + f(y) is not satisfied for all x and y values. (Note that for 
simplicity this review does not consider the other requirement of linearity in mathematics, namely 
the homogeneity property: f(ax)=af(x) for all a). A system being non-linear implies that its behaviour 
cannot be described just in terms of its constituent parts. Rather, its overall function (output) 
depends also on interactions which may vary across different input values.   

The mathematician Stanislaw Ulman said that “Using a term like non-linear science is like referring 
to the bulk of zoology as the study of non-elephants”  (Campbell et al., 1985). This conveys the 
notion that the vast majority of natural systems are, in reality, non-linear. This includes cortical 
function. To begin with, synaptic transmissions - the primary neuronal communication method -  are 
to a large extent non-linear (Markram, 2003). Spike-thresholding, rectification and saturating 
transduction are all examples for non-linear stimulus-response relationships at the single-neuron 
level. It has been suggested that non-linear behaviors of local neural activity can generate 
approximately linear behaviors at the more macroscopic levels (Boynton et al., 1996; Shapley, 2009). 
Nevertheless, numerous non-linear neural processes, as well as psychophysical outcomes, have been 
described in the literature. Pooling neuronal responses across multiple units can allow non-linear 
normalization and gain control mechanisms (Carandini and Heeger, 2011). Indeed, non-linear 
neuronal responses have been repeatedly demonstrated across different areas in the cortex (e.g. 
sigmoid-like response profiles, phase invariance in complex V1 cells (Zhu and Rozell, 2013)) and 
various neuronal circuitries for implementing non-linear neuronal operations have been suggested 
(Kouh and Poggio, 2008).  

Non-linear integration of multiple input frequencies- the terms integration and interaction are often 
used in relation to IMs. In the context of frequency analyses, linear interactions may refer, for 
example, to neural synchronization at the same frequency (e.g. stimulus F1→ output f1) whereas 
non-linear interactions can refer to synchronization between multiple frequencies such as harmonics 
and IMs. Throughout this paper we will therefore refer either to the non-linear integration of, or to 
the interaction between neural signals (avoiding the use of ‘non-linear interactions’). Non-linear 
processes can of course involve single-frequency inputs as well, in which case the recorded response 
signal may include harmonics of the fundamental modulation frequency regardless of any 
interactions. This should be kept in mind since, as we discuss later, extracting the greatest 
interpretive value from the IMs requires considering them in conjunction with the fundamental and 
harmonic frequencies.  

1.3 Examples of intermodulations in simple simulations  

To illustrate possible input-output relationships, and conditions under which harmonics and IMs 
appear in the output, Figure 2 shows different mathematical functions and their respective 
frequency decompositions. The inputs of most functions were based on two sinusoids of different 
frequencies (1.3Hz and 10 Hz) with additional uncorrelated random Gaussian noise: X= 
sin(2π*1.3t)+εt1 and  Y= sin(2π *10t)+εt2 (ε represents independent and identically distributed noise 



 

terms added to better approximate neural responses which are not perfectly sinusoidal and to 
demonstrate the relative robustness of IMs to such noise). In addition to sinusoids, we used a 
rectification function (Rec (x) = x if x>0 and 0 otherwise) as well as a square wave (Sq(x) is defined as 
1 if sin(x)>0 and -1 otherwise).  

 

 

Figure 2- Examples of different mathematical functions and their respective spectra 

Different mathematical functions and their respective frequency decompositions. Peaks at the fundamental frequencies 
are marked with black numbers, at harmonic frequencies with blue numbers and at IM components with red numbers. The 
term ‘fundamental’ frequencies denotes the frequencies of the input signal (1.3 Hz and 10 Hz here), the term ‘harmonic’ 
denotes any integer multiple of the fundamental (e.g. the 3rd harmonic of F=1.3 Hz is 3*1.3 Hz= 3.9 Hz). The fundamental 
frequency is, by this definition, the 1st harmonic), and the term intermodulation (IM) denotes, any linear combination of 
the fundamental frequency (i.e. nf1+mf2 ; n,m=+-1,+-2,+-3…). The IM ‘order’ refers to the sum of the absolute values of the 
integer coefficients defining the IM component (e.g. 13.9 Hz here is considered a 4th order IM since 13.9 Hz= 3*1.3 + 1*10 
Hz and 3+1=4, and 8.7 Hz is considered 2nd order as 8.7= (-1)*1.3+1*10 and abs(-1)+1=2.). Table 1 below describes the 
different functions used here, their potential relevance to neural processes, and the dominant frequencies in their output 
spectra. 

 

Table 1.  

 Function Description Potential neural 
relevance 

Output spectrum Comment 

1 3X 
 

A single input 
frequency processed 
linearly 

 Only the fundamental 
frequency.  

Linear functions don’t 
yield harmonics or IMs. 

2 Rec(X) 
 

Non-linear processing 
of a single input. A half 
rectifier (negative 
values replaced with 
0). 

Inhibitory influences 
can bring firing rates 
down to 0 but not 
below 

The fundamental and 
harmonics (in this case 
only the 2nd).  

Non-linear processing 
yields harmonics. 



 

3 Rec(X)  
    +  
0.5*Y 

One input processed 
non-linearly (half 
rectified) and the other 
linearly. Input signals 
do not interact. 

Parallel processing of 
different neural 
signals 

The fundamental and 
2nd harmonic of the 
first input term and 
the fundamental of 
the second input term.  

Non-linearity results in 
harmonics, but pure 
linear summation of 
signals (without 
interaction) does not 
yield IMs. 

4 (X+0.2) 
     * 
(Y+0.4) 

The two inputs interact 
via multiplication  

Multiplicative 
operations have been 
demonstrated in 
various sensory 
systems (e.g. 
(Gabbiani et al., 2004; 
Pena and Konishi, 
2004)) 

Strong second order 
IMs.  

Under certain 
interaction conditions 
the IMs can be stronger 
than the fundamentals. 

5 Rec(X) 
   * Rec(Y) 

The two inputs are first 
half-rectified and then 
interact via a 
multiplication term  

A sequence of neural 
computations  

Fundamentals, 
harmonics, 2nd and 3rd 
order IMs 

 
In addition to the types 
of non-linear operations 
See 2-4), the spectra 
depends on the order at 
which they are carried 
out (compare 5 and 6). 

6 Rec(XY) The two inputs first 
interact via a 
multiplication term and 
are then half rectified 
together.  

Harmonics and IMs, 
but notably different 
than the previous 
example, e.g. the 
absence of 
fundamentals  

7 Square 
wave 1  
     +  
Square 
wave 2 

Sum of two square 
waves. 

Sustained input from 
ON/OFF cells 

Many odd-order 
harmonics (1st, 3rd, 5th, 
etc.)  

The Fourier 
decomposition of non-
sinusoidal signals 
contains power at 
harmonic frequencies. 
Square waves yield 
many odd-order 
harmonics. 

8 Square 
wave 1  
     * 
Square 
wave 2 

Multiplication of two 
square waves. 

Coincidence detection 
of ON/OFF cells 

Many low and high-
order IMs including all 
combinations of the 
harmonics seen in the 
previous function.  

Interactions between 
non-sinusoidal waves 
can result in many high-
order IMs. 

9   e(X+Y)  / 
(e(X+Y)+1) 

A sigmoid function with 
the exponent being the 
sum of the two inputs 

Firing rates often 
modelled as sigmoids 

Fundamentals and 3rd 
order IMs 

 

 

As demonstrated in Figure 2, the emergence of IMs occur uniquely from the interaction between 
input signals, and the output spectra depends on the specific integration mechanisms at play. The 
functions used in this figure are arguably much simpler than real neural processes, which result from 
complex and multi-layered interactions. Nevertheless, they illustrate why, as further discussed in 
section 3, the output spectrum of steady-state responses may provide insight into the existence, 
degree and type of neural interactions at hand. These interactions have been evoked by a variety of 
methodologies in the empirical literature, which we now review.  

 

 



 

2. Methodologies 

The majority of IM studies have been performed using EEG, though we discuss results from some 
studies that used MEG and ElectroCorticoGraphy (ECoG) as well. All these methods enjoy a higher 
temporal precision compared to other neuroimaging methods (such as fMRI and PET) and provide a 
direct measure of population-wide neural activity (Cohen, 2017). As such, they are particularly 
suitable for the examination of precisely-defined individual frequency components in the context of 
perception and cognitive function.  

A wide range of stimulus parameters and analysis methods have been used across different IM 
studies. While it is difficult to a priori determine the optimal methods for each purpose, it is 
important to be aware of the notable impact these choices may have on the results. In this section, 
we discuss some of the essential differences between stimulus parameters and analysis methods 
used across studies. 

2.1 Stimulus parameters and analysis methods 

An important choice is which modulation frequencies to use. Various modulation frequencies have 
been applied, typically ranging from 1 Hz to 20 Hz. The use of different frequencies can impact 
various aspects of a study since neural mechanisms may be tuned differently to specific input 
frequencies (Vialatte et al., 2010). Indeed, different cortical networks have been shown to be 
maximally tagged by different flicker frequencies (Ding et al., 2006), a phenomenon known as 
‘resonance frequency’ (Herrmann, 2001). In addition, both sinusoidal (e.g. (Boremanse et al., 2014; 
Tsai et al., 2012)) and square (e.g. (Gundlach and Müller, 2013; Hou et al., 2003)) waveforms have 
been applied at various modulation depths. As demonstrated in Figure 2, using square or sinusoidal 
waves can result in significantly different output spectra. This should be kept in mind when 
comparing results across different studies.   

Spectral responses at different frequencies may stand out more or less depending on those of of 
their neighborhood frequencies (e.g., spontaneous alpha waves (8-12 Hz) or common muscular 
artifacts (MEG; ~20-300 Hz (Muthukumaraswamy, 2013)). Influences of the neighborhood 
frequencies can be mitigated by calculating the signal-to-noise ratio (SNR) of the spectral output, by 
which the power at each frequency is compared to the power at closely spaced neighbourhood 
frequencies. A common method for calculating SNRs is to divide the power (or amplitude) at a given 
frequency by the mean power (or amplitude) of several adjacent frequency bins from each side (if 
the geometric mean is used, rather than the arithmetic mean, log of the SNR is equivalent to 
subtracting the arithmetic mean of the logarithm of the power across nearby frequencies from that 
at a given frequency). Non-specific artifact or background activity typically evoke a broadband 
spectral response, thus the SNR between neighbouring frequencies is typically low. Conversely, the 
defining frequencies of steady-state responses are narrow-band, thus their SNR in the frequency 
domain can be high.  

The Fourier half-bandwidth (Δf: the frequency resolution which signifies the ability to separate 
frequency components of a Fourier transform) is inversely determined by the duration of the 
stimulus (Δf=1/duration(sec) for a single taper Fourier transform (Mitra and Pesaran, 1999)). Using 
longer stimulus durations can therefore increase narrow-band SNRs and significantly improve the 
ability to separate stimulus-specific neural responses from non-specific activity (Srinivasan et al., 



 

2006). It is therefore important to select modulation frequencies and epoch durations that yield a 
fourier half-bandwidth small enough to distinguish the frequencies-of-interest (fundamentals, 
harmonics, and IMs) from one another in subsequent analysis. 

Some theoretical considerations may bias the choice of modulation frequencies toward specific 
ranges. These may include, for example, the resonance characteristic of the region or modality of 
interest (Gulbinaite et al., 2017; Herrmann, 2001; Lea-Carnall et al., 2016). It is nevertheless difficult 
to determine a priori whether one set of parameters would be superior to another for any given 
application. This is partly due to individual differences in the efficacy of SSVEP entrainment, as the 
strength of spectral output can be determined by endogenous brain oscillations (Gulbinaite et al., 
2017). Each parameter combination may also allow specific aspects of neural processes to be 
revealed more so than others, depending on the type of non-linear computations that can be 
implemented by the neural mechanism at hand, the specific non-lineraties that can be induced by 
the experimental stimuli, and the ability of the imaging method (EEG, ECoG, etc.) to reveal them.  

Choosing parameters therefore remains, to a considerable extent, an empirical and study-specific 
matter. Therefore, direct comparisons between studies are not trivial and require considering the 
specific measures and parameters used for both stimulus preparation and data analysis.  

2.2 Amplitude vs Phase analysis   

Distinct aspects of non-linear interactions may be revealed by examining both phase and amplitude 
of the spectrum. Most IM studies used derivatives of the Fourier transform amplitude at each 
frequency component to quantify IM strength. This includes the amplitude (e.g. (Gundlach and 
Müller, 2013; Tsai et al., 2012)), its squared value (i.e. power ; e.g. (Katyal et al., 2016)) and their 
respective SNRs (e.g. (Boremanse et al., 2014; Cunningham et al., 2017; Kim et al., 2017)). 
Conversely, phase analyses have only recently been applied in IM studies.  

The reason that only few studies have implemented phase analyses for IMs might be that traditional 
phase-synchrony measures (Palva and Palva, 2012) are less suitable for studying multiple IMs. The 
consistency of a single frequency phase is characterized in two ways. The first popular measure 
focuses on a single channel and analyzes the inter-trial phase consistency at any given frequency 
with respect to exogenously triggered repeated events. The second one instead focuses on the 
phase relationship between channels, which can characterize phase consistency over time with or 
without aligning the responses with respect to exogenous events. While IM research can benefit 
from these two approaches, the more interesting and promising measure would be the one that 
examines relationship among the phases of any given IM component and the driving (fundamental) 
frequencies. Phase-synchrony measures, such as the bi-phase locking value (bPLV) have been 
proposed to quantify the phase-coupling between two fundamental frequencies and their IM 
frequency, however, these methods are limited only to the 2nd order sum IM (f1+f2).  

Recently, Yang et al introduced a novel phase-coupling measure for quantifying any IM component 
(Yang et al., 2016). This phase measure - the multi-spectral phase coherence (MSPC) - is especially 
useful for the study of IMs since it quantifies the consistency of the phase relationships among an IM 
component and the fundamental frequencies within a single channel (Figure 3A and 3B, and see 
additional details in section 3.3). In section 3.3 we discuss recent developments introduced by 
Gordon et.al (Gordon et al., 2018) that expand the use of MSPC analyses in the context of 
hierarchical perceptual processing. 



 

 

Figure 3- Multi-spectral phase coherence (MSPC)  

The MSPC measure quantifying IM components. MSPC quantifies the consistency of the phase relationships among the 
driving fundamental frequencies and the the IM across trials within a single channel. (A) Examples of stronger (left) and 
weeker (right) MSPC values. The angle of each orange vector in the unit circle is calculated from a single trial/epoch and 
represents the relationship between the phase of the IM component and the phases of the fundamental frequencies 
within that trial. The greater the consistency e) of the difference phase angles across trials, the greater the mean vector 
length (pink vector). (B) Comparison between the classical phase-locking-value (PLV) and the MSPC. For the PLV, the phase 
term within each trial is based on a single frequency or frequency band (either within a single channel or the inter-channel 
phase difference). For MSPC, the phase term is based on the difference (Δφ) between the phase of the IM component 
(φfIM) and the (weighted) sum of the phases of the fundamental frequencies (n1φf1+n2φf2) within each channel and each 
epoch. This way, the MSPC aims to quantify the degree to which the phase of the IM is driven by the phases of the 
fundamental frequencies. Gordon et al. (Gordon et al., 2018) further distinguished between what they termed ‘MSPCstim’ 
and ‘MSPCres’ which use either the stimulus phases (the on-screen image, bottom left, upper-case F1 and F2), or the EEG 
response phases (right, lower case f1 and f2) as the driving fundamental frequencies. The weights of the fundamental 
frequencies, n1 and n2, are the coefficients that define the IM frequency (e.g., given F1= 1.2 Hz and F2= 15 Hz, the weights 
for the 3rd order IM component 2*F1 + F2= 17.4 Hz would be n1=2 and n2=1). (C) A functional dissociation between 
MSPCstim and MSPCres. Gordon et al. examined how the integration of top-down and bottom-up signals is modulated by 
expectation and attention (Gordon et al., 2018). To do so, they used the Hierarchical Frequency Tagging (HFT) method in 
which two frequency tagging methods are combined – a global contrast modulation to induce steady-state visual evoked 
potentials (SSVEP) and a semantic wavelet-induced frequency tagging (SWIFT) which tags category-specific activity at 
higher visual levels. Using the MSPC measure, the authors showed that both expectation and attention increase the degree 
of integration between top-down and bottom-up information, albeit via distinct pathways as reflected by the different 
modulations of the MSPCstim and MSPCres measures.  

The interaction between distinct frequency bands have also been characterized using the phase-
amplitude cross-frequency coupling (CFC) measure which quantifies the dependence between the 
phase of a low-frequency band and the amplitude (or power) of a high-frequency component 
(Canolty and Knight, 2010). To the best of our knowledge the CFC measure has not been applied to 
IMs, though it is possible that such CFC methods can be generalized for use with multiple IM 
components in much the same way as the MSPC measure generalized the phase-synchrony 
approach for this purpose.  
 



 

3. What we can learn from IMs 

IM analyses can provide insights into the existence, the degree and the type of the neural 
interactions at hand. Here, we discuss the methodologies required to inform each of these aspects. 
Notably, they require an increasing level of sophistication, arguably accompanied by a decreased 
ability to draw unequivocal and decisive conclusions.  

3.1 The existence of neural interactions. On the most basic level, finding statistically significant 
IM components in the recorded output provides a direct and definite indication for the existence of 
interactions between distinct neural signals. To understand IM’s directness and definiteness, 
consider popular alternative methods in neuroimaging. For example, multisensory integration has 
been classically identified using conjunction or interaction analyses in fMRI. In conjunction analyses, 
multisensory integration is inferred if a single region responds to inputs from two (or more) sensory 
modalities. However, one limitation of the conjunction analyses is that it cannot detect interactions 
in which the signal from one sensory modality modulates the response elicited by the other 
modality, despite no significant response being elicited by the first modality when presented alone. 
In interaction analyses, interactions are inferred by examining whether the response to a 
multisensory stimulus differs from the sum of the responses to each of the unisensory stimuli 
(Calvert et al., 2001; James and Stevenson, 2012). However, there are several downsides to this 
approach as well. For example, ambiguities may be introduced by nonlinearities or ceiling effects in 
the BOLD, rather than the neuronal response (Noppeney, 2012). In comparison, the presence of the 
IMs does not pose these problems as it definitively shows direct evidence of the presence of non-
linear integration mechanisms.    

3.2 The degree of signal integration. Comparing between IMs obtained in different, yet 
carefully controlled conditions, may shed additional light on the degree of non-linear integration 
underlying different perceptual or cognitive processes. For example, one can try to determine if the 
neural signals driven by the different stimulus modulations are integrated more efficiently under one 
experimental condition than another. The ability to link IM modulations to condition-dependent 
changes in non-linear integration nevertheless requires analysing the IMs also in relation to the 
fundamental and harmonic frequencies. For example, consider a case where the power at the IMs is 
proportional to the power at the fundamental and harmonic frequencies. This finding suggests that 
100% of the variation in IM power can be accounted for by variations in the power at the 
fundamental and harmonic frequencies. In such a case, changes in IM power are unlikely to reflect 
modulations of the actual integration processes. Conversely, Figure 4 shows examples from two 
different studies where IMs increased as a function of the experimental condition while the power at 
the fundamental and/or the harmonics in fact decreased. Effects such as these are not possible to 
explain in terms of a simple dependency of IMs on the fundamentals. Indeed, it is notably easier to 
link IMs to condition-specific variations in signal-integration when the fundamental frequencies (and 
their harmonics) do not exhibit the same trend as the IMs, or when they even behave in opposite 
ways (Figure 4; e.g. (Gordon et al., 2017; Zhang et al., 2011). Arguably, normalising the total power 
across a wide range of IMs by the total power across the fundamental and harmonic frequencies, 
within each participant, may also provide a valid measure for the dissociation of changes in IMs from 
changes in the fundamental frequencies (Zhang et al., 2011).   

 



 

 

Figure 4- Dissociating responses at IMs from responses at the fundamental and harmonics  

IMs needs to be interpreted in relation to the fundamentals and it is important to examine whether the changes in IMs can 
be accounted for by changes in the fundamental and harmonic frequencies. A) and B) are the exemplars in which the 
power at IMs are dissociated from the power at the fundamentals. This effect cannot be explained by a simple dependency 
of IMs on the fundamentals. (A) In a Hierarchical Frequency Tagging study by Gordon et al. the authors combined two 
frequency-tagging methods - the steady-state visual evoked potential (SSVEP) and the semantic wavelet-induced frequency 
tagging (SWIFT) to tag activity at lower and at higher visual levels, respectively (reproduced with permission from (Gordon 
et al., 2017)). They showed that the IMs increased with certainty (expectation) despite the opposite trend at the 
fundamental tagging frequencies and concluded that the integration of top-down and bottom-up signals increases with 
expectation. (B) In a study by Zhang et al. the authors presented different flickering stimuli to each eye to induce binocular 
rivalry (reproduced with permission from (Zhang et al., 2011)). Comparing between attended and unattended conditions, 
they demonstrated a significant increase in IM power during the unattended condition despite a decrease in power at the 
fundamental and harmonics. They concluded that the interaction between the two eyes' signals was stronger when 
attention was withdrawn. 

 

To provide evidence that variations in IM responses indeed signify more than simple variations in the 
strength of the ‘input’ signals, one should demonstrate that the amplitude, the power or the SNR of 
these values at the IMs do not correlate strongly with those at the fundamental and harmonics, or 
that the IMs can better account for behavioral outcomes than the fundamental and harmonics can.  

Such a need to dissociate the IM response from the response at the fundamental and harmonic 
frequencies may be relaxed to some degree when using the phase-based MSPC measure (see 
section 2.2). This is because MSPC, in itself, quantifies the consistency of the relationship between 
the fundamental frequencies and the IMs. In other words, a significant difference in MSPC between 
different conditions directly implies significant changes in the relationships among the fundamentals 
and IMs.   

3.3 The type of non-linear integration. While IMs indicate the integration of distinct streams of 
neural signals, they do not readily point at the exact mechanisms (or type of non-linearity) that gave 
rise to them. Figure 2 illustrates how the pattern of harmonics and IMs could, in principle, reveal 
something about the underlying mechanisms, however, the functions in that figure are a clear 



 

simplification compared to real neural processes. Moreover, several processes involving different 
sequences of signal integration may occur in parallel, yielding various IM components in the 
recorded signal. Disentangling different IM components from each other and distinguishing between 
the contribution of different computational processes to the same IM component is a significant 
challenge. This is perhaps in much the same way as a signed business contract indicates there were 
interactions going on between two parties, but might not, on its own, provide clear insight regarding 
the specific back-and-forth negotiations that took place behind the scenes. For example, in a recent 
study by Katyal et al. the authors presented coherent and conflicting gratings separately to each eye 
(Katyal et al., 2018). The simultaneous presentation of conflicting monocular signals can result in 
binocular rivalry, a phenomenon whereby conscious perception alternates between each eye’s 
image over time. Katyal et al. interpreted the significant f2-f1 IM component to reflect conflict-
detecting binocular neurons yet the authors acknowledged that the same frequency component 
may be generated also by processes of integration of inputs from both eyes. 

Despite this challenge, one can apply various analyses to seek better understanding of the 
underlying mechanisms that generated them. We discuss three approaches that have been 
implemented in different studies for this purpose.  

Experimentally testing competing options  

One way to evaluate the potential contribution of different neural mechanisms to the generation of 
the observed IMs is to design additional experiments that examine competing options in isolation. 
This approach was demonstrated nicely by Zhang et al (Zhang et al., 2011). There, the authors 
sought to examine the role of attention in resolving interocular competition in binocular rivalry. To 
do so, they presented two different checkerboard patterns (one to each eye) each flickering at a 
different frequency (6.6 and 7.5 Hz). The authors introduced a central attention task to distinguish 
between attended and unattended conditions. Analyses were performed only on the six most 
posterior channels (this is important to keep in mind when comparing results from this and other 
studies). Notably, while the power of the harmonics increased with attention, the power at the IMs 
(five components ranging from 2nd to 5th order which had high power at frequencies below 22Hz) 
were strongest during the unattended condition. Two possible mechanisms were explored by the 
authors to explain this apparent enhancement of integration during the unattended condition. The 
first one was an abolishment of rivalry accompanied by ‘fused’ perceptions where IMs are 
generated, for example, by neurons combining local signals from both eyes in early visual areas. The 
second possibility was an increase in patchwise rivalry where IMs are generated, for example, at 
later visual areas where receptive fields are large enough to integrate responses from adjacent 
patches. To compare these options, the authors created and presented participants with two new 
sets of stimuli, each allowing for the emergence of either a fusion-like or a patchwise percept. Only 
the fusion-like simulation produced IM power compatible with the increased IM power during the 
unattended condition. Such a comparison allowed the authors to attribute greater likelihood for an 
underlying ‘fusion’ process. The authors concluded that without attention, rivalry ceases and the 
two eyes' signals locally combine in the visual cortex.  

This demonstrates how additional controlled experiments can, at times, allow one to distinguish 
between different plausible interaction mechanisms that may account for the generation of the IMs 
in the recorded signal. 



 

Modelling  

Physiologically-inspired computational models can be compared against the empirical spectrum to 
obtain stronger support for one model over competing ones.  

Regan and Regan suggested such a systematic approach and demonstrated how the examination of 
IM responses (including high order terms) across a wide range of input amplitudes allowed to 
support, or reject, specific physiologically relevant computational models (Regan and Regan, 1989). 
To do so, they presented participants with a stimulus comprising two superimposed circular patches 
of light, while modulating the luminance of each patch with a different sinusoidal frequency. They 
then characterised how each IM component- reaching as high as 5th order terms – changed as a 
function of varying input amplitudes, and compared various computational models against their 
empirical results. This allowed some candidate models to firmly be rejected, and others to gain 
varying levels of support.  

Several studies implemented a similar approach to test contrast normalisation, gain-control and 
conjunction detection models against EEG data obtained when presenting various black and white 
patterns such as checkerboards, grating and plaids (e.g. (Candy et al., 2001; Cunningham et al., 
2017). For example, Tsai et al. presented two checkerboard-like random noise patterns, contrast-
modulated at 5.14 Hz and 7.2 Hz (Tsai et al., 2012). EEG response spectra were then compared 
against three models based on the hyperbolic ratio function. The hyperbolic ratio function is 
commonly used to model cortical responses that follow saturating transducer non-linearities 
involving contrast gain control mechanisms from nearby units. The basic model was expressed as R = 
C^p/(Z^q + C^q), where R is the neural response measured as EEG power at certain frequencies, C is 
the contrast of the stimulus, with Z, p, q to be fitted with the data. They extended this model for use 
with two input-signals. The three models were able to predict the fundamental frequencies and their 
harmonics to a comparable degree, however, only one of the models was able to account for the 
characteristics of the f1+f2 IM component (specifically, a model that incorporated temporal 
integration in the gain pool with a duration of approx. 26ms.).  

Cunningham, Baker and Peirce sought to relate IMs to mechanisms beyond V1 that are sensitive to 
compound stimuli (Cunningham et al., 2017). Pairs of sinusoidal gratings of different spatial 
frequencies were superimposed and contrast-modulated at different temporal frequencies, 2.3 and 
3.75 Hz. The resulting stimuli looked either like a checkerboard plaid (considered the “coherent” 
stimuli) or like transparently overlaid gratings (considered the “noncoherent” stimuli). A significant 
response at the 2f1 + 2f2 IM component was found only for the coherent condition. The authors 
argued that this does not reflect simple lateral suppressive interactions (such as cross-orientation 
suppression) since such effects were not dependent on the coherency of the patterns. Comparing 
the data against different computational models (based on the same hyperbolic ratio function 
described above) the data was best accounted for by a two-stage model involving conjunction 
detection based on a logical AND operation. 

By applying a similar methodology, Baker and Wade identified a ‘winning’ contrast response model 
which they argue may reflect a generic ‘system-wide’ signal-combination algorithm in perception 
(Baker and Wade, 2017). There, six models were compared against each other, differing in terms of 
the stage at which the two inputs could be summed in relation to the non-linearities defined by the 
hyperbolic ratio function. The authors performed two experiments, one aimed at testing how signals 



 

projecting at different spatial positions within the same eye are combined and a second aimed at 
testing how signals projecting at the same retinal location from both eyes are combined in the brain. 
The greatest predictive power (fit) was afforded by a ‘late summation’ model in which the input 
signals were summed at both the numerator and denominator only after their individual 
exponentiation.  

The above examples demonstrate how one can gain insights that go beyond the mere existence and 
measurement of the degree of neural interactions. Indeed, by comparing the results of 
computational models to the empirical data obtained in the experiment, one can obtain evidence 
providing greater support for one plausible mechanism over another.  

MSPC measures 

The MSPC measure introduced by Yang (Yang et al., 2016) and discussed above (section 2.2) 
quantifies the degree to which the IMs are driven by the fundamental frequencies.  

Gordon et al (Gordon et al., 2018) have expanded the use of this measure in several ways. First, they 
introduced the distinction between what they termed MSPCstim and MSPCres - two measures that 
may allow a distinction between interactions occurring at lower and higher levels of hierarchical 
processing (Figure 3B). Specifically, this was done in the context of the Hierarchical-Frequency-
Tagging paradigm in which two different modulation methods are simultaneously applied on the 
stimuli ((Gordon et al., 2017); A brief description of the method is provided in section 4.2.3). The 
difference between the MSPCstim and MSPCres measures lies in which phases are considered the 
‘driving’ phases of the IM response. For MSPCstim, the fundamental frequency phases used in the 
MSPC calculation are those of the stimulus (i.e. the image on the screen) while MSPCres uses the 
phases of the EEG response (as obtained by the FFT) at the fundamental frequencies. The authors 
argue that the stimulus phases should be more tightly related to non-linear integration at earlier 
visual processing while the EEG response phases should reflect additional processing from the later 
stages. In other words, the MSPCstim and MSPCres measures may point at non-linear integration 
occurring at lower and at higher hierarchical levels, respectively. Indeed, the authors found that the 
MSPCstim and MSPCres measures of the IM response were differentially modulated by expectation 
and attention (Figure 3C), cognitive factors believed to impact descending and ascending signals, 
respectively (Feldman and Friston, 2010). More direct evidence for such a distinction may be 
afforded by additional analyses such as source localization and dynamic causal modelling (DCM).  

Second, the authors performed further analyses to examine the sequence of computations leading 
to the 4th order IMs. Specifically, they tested which one of the following sequences are more likely: 
A) an early interaction between signals at the fundamental frequency followed by an additional non-
linearity, or B) an early non-linear process performed on each of the signals at the fundamental 
frequencies followed by an interaction between them. Then, they defined the driving frequencies as 
the second order IMs (f2+f1 and f2-f1) for sequence A and as the 2nd order harmonics (2f1 and 2f1) 
for sequence B. They found that the MSPCres measure was significantly higher for sequence B than 
A and that the increase of MSPCres for 4th order IM due to allocation of endogenous attention 
measure was explained better by sequence B than A. Consistent with the association of MSPCres 
with interactions occurring at higher hierarchical levels, these results support the option in which 
the signals driven by each of the stimulus modulation methods are first processed individually and 
then interact at a later stage.  



 

The above examples demonstrate how, despite IMs not pointing conclusively at specific neural 
processes to which they could be mapped, valuable insights can nevertheless be gained by applying 
additional controlled experiments, comparing empirical spectra against physiologically-plausible 
computational models, or complementing amplitude-based measures with MSPC analyses. These 
methods enable one to test different plausible neural integration mechanisms and to examine 
whether the observed experimental IM effects are more likely to be caused by one mechanism 
rather than another. 

 

4. IMs in perception research- from low to high-level processes 

IM measures have been used to examine various levels of perceptual processing. Here, we first 
present several representative studies exploring low- and mid-level visual processing. We then 
review more recent studies that examine the influence of cognitive factors on non-linear integration 
also at higher levels of the visual hierarchy.  

4.1 Low- and mid-level visual processing  

Most IM studies have focused on low and mid-level visual processes, including simple feedforward 
receptive field interactions (Regan and Regan, 1989), figure-ground segregation (Appelbaum et al., 
2008), perceptual binding (Aissani et al., 2011; Boremanse et al., 2014) and integration of multiple 
visual features (Giani et al., 2012) (Figure 5). 

 

 

Figure 5- IM experimental designs 

A sample of various IM paradigms used in visual perception studies. (A) Gestalt formation. Alp et al. examined IMs as a 
neural signature of the global integration required for illusory surface perception using a variant of the Kanizsa figure and 
modulating the two diagonal ‘pacman’ shapes at different frequencies (reproduced with permission from (Alp et al., 2016). 
The blue text was added here for clarification.) (B)  Multiple feature integration. Giani et al. used IMs to investigate the 
integration of multiple stimulus features within and across sensory modalities (reproduced with permission from (Giani et 
al., 2012). The blue text was added here for clarification.) The example above depicts the stimulus used to examine the 
integration of visual size and luminance. Each feature was modulated using distinct frequencies. (C) Perceptual learning. 
Vergeer et al. applied an IM analysis to examine how different spatial features are combined during holistic shape 
representation and perceptual learning (reproduced with permission from (Vergeer et al., 2018). The blue text was added 
here for clarification.) The table on the left shows a family of unfamiliar shapes that are highly similar to each other. 
Participants were trained to discriminate between two categories of these shapes (separated by the diagonal line in the 
table). Successful categorization relied on the combination of spatial features across both halves of the shape. Activity 
related to the processing of the two sides of each shape was tagged using different contrast-modulation frequencies (right 
figure). 



 

The IM studies carried out throughout the 1980s and 1990s focused primarily on low-level visual 
processing occurring at early visual areas (e.g. simple feedforward receptive field interactions). Early 
studies typically used visual stimuli involving gratings, windmill- and dartboard-like stimuli, in which 
luminance or contrast were modulated using two sine-wave frequencies while measuring visual 
evoked potentials in the EEG (Regan and Regan, 1989; Zemon and Ratliff, 1984). The significance of 
these studies was two-fold. First, they demonstrated how IMs provide a direct physiological measure 
of neural signal integration in the human brain. For example, several studies investigating early 
integration from both eyes demonstrated large differences in IM responses when the two eyes 
receive the same input (monoptic presentation), when only one eye receives input (monocular 
presentation) and when the two eyes receive different inputs (dichoptic presentation) (Suter et al., 
1996) or, when comparing between healthy and stereoblind patients (Baitch and Levi, 1988). 
Second, they demonstrated how plausible their models of neural processes can be by examining the 
response spectrum across frequencies (including harmonics and high order IMs, as detailed above in 
the section 3.3)(Regan and Regan, 1988a).  

The utilization of IMs did not gain much traction in the years following these initial publications but a 
series of studies by Anthony Norcia and others, published from the late 1990s onward, further 
demonstrated the promising utility of IMs in vision research (Norcia et al., 2000; Norcia and Hou, 
2002; Victor and Conte, 2000) .  

4.1.1 Figure-ground segregation  

Appelbaum et al. (Appelbaum et al., 2008) used simple texture-based images consisting of random 
luminance bars to investigate the basic mechanisms allowing object segmentation (Figure 5A). By 
tagging such “figure” and “ground” regions with different temporal frequencies (3.6Hz and 3Hz) and 
applying source-localization analyses (incorporating MRI-enabled individual head models), the 
authors could identify distinct neural networks responsible for the processing of figure and 
background regions, as well as figure-ground interactions. Specifically, the 2nd order IM term f1+f2 
was found to be the most dominant interaction term, strongly depending on orientation cues within 
the stimuli’s regions (figure or ground) as well as on gaps between the regions. This IM component 
was widely distributed throughout occipital areas.  

Interestingly, the 4th order term 2f1+2f2 was present for all cue types, including when regions were 
separated solely based on the modulation frequencies (i.e. with no additional orientation cues). The 
2f1+2f2 term was also less affected by the figure and ground segmentation than the f1+f2 term. The 
authors interpreted the fact that these two IM components exhibited different functional 
specificities as evidence that at least two distinct figure-ground interaction mechanisms were 
involved. In accordance with several other studies (Hou et al., 2003; Victor and Conte, 2000), the 
authors found their data to be consistent with a cascade of two non-linear stages such as an initial 
within-region rectification followed by a second non-linear stage that pools neural activities across 
regions.  

4.1.2 Perceptual binding 

Several studies provide evidence linking IMs to perceptual binding processes that cannot be 
explained by the simple integration of common receptive-field signals (Aissani et al., 2011; 
Boremanse et al., 2014). For example, two studies demonstrated that specific IM components are 
modulated by the formation of illusory images- a process that cannot be attributed to bottom-up 



 

processes alone. Gundlach and Muller presented two ‘pacman’-like shapes that faced each other, 
forming an illusory rectangle (Gundlach and Müller, 2013). In an important control condition, a 
circular ‘ring’ was added in between the pacman shapes, impeding the formation of the illusory 
rectangle. The two pacman shapes were then flickered at two different frequencies (square-wave 
luminance modulation at 8.5 Hz and 14.17 Hz) and an increase in the f1+f2 and 2f1+2f2 IM 
components was observed when the formation of the illusory rectangle was made easy. Importantly, 
this increase could not be explained by an increase at the fundamental tagging frequencies, 
emphasising the role of integration processes. 

In a more recent study, Alp et al. used Kanizsa figures (Kanizsa, 1955) while contrast-modulating the 
two pairs of diagonal pacman-like shapes using different frequencies (2.94 and 3.57 Hz) ((Alp et al., 
2016); Figure 5B). By rotating these shapes around themselves, the formation of the illusory 
rectangle was made possible only during defined time periods (at which neighbouring straight edges 
were aligned). Previous studies have suggested that such perception of an illusory surface manifests 
at multiple visual areas and likely involves feedback loops between higher-level and lower-level 
visual areas (Lee & Mumford, 2003; Stanley & Rubin, 2003). Significant responses in this study were 
found at a range of second and third-order IM components (f2− f1, f1+f2, 2f2−f1, 2f1+f2 and f1+2f2). 
Interestingly, the average IM response increased when the illusory rectangle could be formed (the 
statistical significance of the effect was greatest for the f1+f2 and 2f1+f2 components). The authors 
conclude that some of the long-range signal interactions only take place when the distant visual 
elements of the stimulus form a coherent perception.  

It is worth noting that the responses at the fundamental frequencies were also somewhat higher in 
this study when the illusory surface was perceivable, making it more difficult to attribute the 
increase in the IM responses to interactions that are unique to the perception of the illusory surface. 
To address this issue, the authors examined the relation between the differences in the fundamental 
and the differences in the IM responses across participants. Given no such relation was found, the 
authors concluded that the increase in the IM responses in the illusory condition is not a mere 
consequence of changes in the representation of the individual stimulus elements. 

4.1.3 Integration of multiple sensory features  

IMs generated by the interaction of two different visual features have been demonstrated in several 
studies. For example, Giani et al investigated the integration of multiple sensory features within and 
across sensory modalities (Giani et al., 2012) and found strong intermodulation components when 
simultaneously modulating the luminance and the size of a visual stimulus (Figure 6C) or when 
simultaneously modulating the frequency and the amplitude of an auditory stimulus.  

In addition, in a brain-computer-interface study by Chen et al. (Chen et al., 2013), eight gratings 
were simultaneously presented on the screen and modulated using both an on/off flicker (either 10 
Hz, 12 Hz or 15 Hz) and a colour modulation (red and green colours alternating at a pace of either 
0.5 Hz or 1 Hz). By assigning different luminance and colour frequency combinations to each grating 
(including conditions with no colour modulation), the authors were able to achieve a high average 
classification accuracy of 93.8% based on the amplitude SNR of the IM frequencies at the Oz and 5 
surrounding electrodes. This study demonstrates how IMs generated by the integration of multiple 
visual features can also be harnessed for applied research. 

 



 

4.1.4 Perceptual learning  

In a recent attempt to utilise IMs for the study of perceptual learning, Vergeer et al. created highly 
similar shapes (based on a Fourier Boundary Descriptor method) and trained participants to 
distinguish between sets of stimuli ((Vergeer et al., 2018); Figure 5D). Importantly, the ability to 
correctly categorise and discriminate between such shapes is believed to require holistic 
representations rather than the simple detection of local features and requires participants to rely 
on combinations of spatial features for optimal performance. Only after training and perceptual 
learning were participants able to form unique holistic shape representations for each set of stimuli. 
The right and left parts of the images were contrast-modulated at different frequencies (5.45 and 
7.5 Hz). The average amplitude SNR of various high-order IMs (4th-8th order) were higher when 
participants observed stimuli belonging to a family of shapes they have learned to categorise 
(regardless of whether they have been trained on those specific exemplars or not). The authors 
suggest that this reflects high-level visual interactions related to holistic shape categorization. As a 
cautionary note, the authors did however acknowledge that the effects involved low-power IM 
components that were analysed in a post-hoc manner. Nevertheless, this study demonstrates the 
potential of IMs to be generated by relatively high-level visual processes. 

The studies presented in this section demonstrate the application of IM technique to perception 
research from early studies of low-level visual processing to studies of mid-level processes such as 
perceptual binding and feature integration. In the following section we will see how IMs have been 
used in more recent years to investigate also higher-level processes.  

4.2 Awareness, attention and expectation  

Several recent studies demonstrate the utility of IM components for studying processes involving 
higher visual areas as well as factors such as awareness, expectation and attention (by ‘attention’ in 
this section we refer primarily to volitional, task-relevant, top-down attention as opposed to 
automatic, exogenously captured, bottom-up attention). We present a range of studies using 
binocular rivalry paradigms, or experimental manipulations of spatial attention, feature/object-
based attention, and expectation.  

Notably, the sensory inputs to the visual system in most of these studies were kept constant across 
conditions. Hence, the observed changes in the IMs can be linked specifically to the changes in 
awareness, expectation, and attention rather than to changes in the physical input reaching the 
sensory system. Indeed, the topographical distribution of the IM components in most of these 
studies spanned areas beyond occipital regions, reaching parietal, central and frontal areas as well.   

4.2.1 Visual awareness during binocular rivalry 

Binocular rivalry is a type of perceptual rivalry in which perception alternates between different 
images presented to each eye and is often used to study processes related to unconscious and 
conscious perception. Several studies have investigated IMs in binocular rivalry (Katyal et al., 2016; 
Sutoyo and Srinivasan, 2009; Zhang et al., 2011). These reports reveal intriguing neural interactions 
that occur during rivalry. For example, Sutoyo and Srinivasan presented four half-circle gratings- one 
to each eye/hemifield combination, each of which differed according to its colour (either red or 
green) and orientation (one of two orthogonal diagonal orientations) ((Sutoyo and Srinivasan, 2009); 
Figure 7A). These combinations allowed percepts to be formed either by the combination of two 



 

hemifields within the same eye or by the combination of two complementary hemifields- one from 
each eye. Each grating was tagged using a different frequency (sinusoidal luminance modulations at 
7.99Hz, 9.22Hz, 10.90Hz, and 11.99 Hz), allowing distinct f1+f2 combinations to be identified for 
each eye/hemifield combination. 

Intriguingly, the IM power at the f1+f2 IM component was modulated not by changes in conscious 
perception per se but rather by the type of rivalry taking place. In other words, the IMs differed 
between periods of eye-based rivalry (i.e., perception alternating between the stimuli shown to each 
of the two eye) and periods of pattern-based rivalry (i.e., perception alternating between the 
complementary hemifield combinations across both eyes). The spatial topography of the f1+f2 IM 
component was notably more widespread than many of the results obtained in studies of low-level 
visual processes, and spanned also parietal and central electrodes. (It is not clear if the f2-f1 or 
higher order IM terms were analysed in this study.) Such distributions are more similar to those 
found in other studies of high-level visual perception, supporting the notion that the IMs in this 
study reflect neural processes occurring at higher hierarchical levels. The authors conclude that both 
eye-based rivalry and pattern-based rivalry involve competition between percepts and that the 
neural processes related to the binding of the visual hemifields into the two rival percepts take place 
during binocular rivalry even when only one percept is consciously perceived.  

It is interesting to compare the results from this study and those of the binocular rivalry study by 
Zhang et al described above in section 3.3. At first glance, the results of these studies may seem 
inconsistent with each other as the IMs reported in Sutoyo et al are linked to the existence of rivalry 
while the IMs reported in Zhang et al are linked to the cessation of rivalry. A more in-depth 
comparison, on the other hand, highlights why any question such as ‘what do the IMs signify’ must 
always be considered in respect to the individual study at question. 

In this case, the studies by Zhang et al. and Sutoyo et al. differed in a range of important parameters, 
including the modulation methods applied (e.g., two stimuli presented one to each eye versus four 
stimuli presented two to each eye, respectively; square contrast-reversal modulation at 6.6 and 7.5 
Hz versus sinusoidal luminance modulation at 8-12 Hz), the behavioral procedure (tasks involving 
attended and unattended conditions versus only attended conditions), the IM components analyzed 
(a range of low and higher-order IMs versus only the f1+f2 component), and the channels used for 
the analysis (only 6 electrodes near Oz versus all electrodes). While the channels used for the 
analysis in Zhang et al are known to be sensitive to activity at early visual areas, the more 
widespread topography suggested by Sutoyo et al suggests integration processes involving higher 
levels as well.  

In Sutoyo et al., the stimuli appearing at the complementary hemifields were always congruent in 
either one or both visual features (orientation and color), and the observed IMs were only those that 
could arise from the integration of complementary hemifields (either within or across eyes). 
Conversely, Zhang et al. presented only one stimulus to each eye, each with a different form and 
color, and one modulation frequency was used for each eye’s stimulus (hence the IMs could not 
distinguish between hemifields).  

Therefore, the results of both Zhang et al. and Sutoyo et al. indicate that signal integration, as reflect 
by the IMs, depends on the type of rivalry taking place. In Zhang et al, no IMs could be formed from 
the stimulus presented to a single eye. Therefore, if the IMs in these studies are linked to the rivalry 



 

taking place then the IMs in Zhang et al. can be expected to be reduced during eye rivalry. Only 
when attention was removed, the integration of the incongruent stimuli from both eyes increased, 
most likely at low visual areas.    

A possible interpretation of these results is that the interactions reflected by the IMs in both studies 
may relate less to the actual conscious perception per se. but rather to the potential percepts 
(consistent with the Bayesian approach to rivalry; (Hohwy et al., 2008)). The mechanisms underlying 
the observed IMs, and the hierarchical levels at which the ‘potentiality’ of specific percepts are 
determined most likely differ across these studies. While yet highly speculative, this can be tested by 
analyzing dynamic changes in IMs across the different hierarchical levels. 

4.2.2 Spatial attention 

Consistent with the notion that attention modulates the propagation of signal processing along the 
cortical hierarchy, a recent study by Kim et al (Kim et al., 2017) has demonstrated an attention-
dependant emergence of IMs in parietal and prefrontal regions. In this electrocorticography 
(ECoG) study, the authors used wedge-shaped gratings, placed adjacent to each other but flickering 
at different frequencies, to assess the role of selective spatial-attention on stimulus integration 
(Figure 6B). A remarkable dissociation between the propagation of the first harmonics and of the f2-
f1 IM term from the visual cortex to parietal and prefrontal areas was demonstrated.  

When comparing conditions in which participants were prompted to attend away from the wedges 
to conditions in which they were prompted to attend either to one or to both wedges, the authors 
found that selective attention strongly enhanced the signals in the parietal and prefrontal regions 
but not in the occipital region. Specifically, when participants were instructed to attend to one of the 
wedges, the strongest attention-specific enhancement was observed for the first harmonic (of the 
flicker at the attended region). When attending to both wedges, the strongest attention-specific 
enhancement was observed for the f1-f2 IM component.  

Notably, this IM response was evident in the parietal and prefrontal regions even without first-
harmonic responses (which would typically reflect responses to individual stimuli). The authors note 
that the presence of the IM response in the absence of the first harmonic responses in prefrontal 
and parietal cortex implies that SSVEP components are propagated from other brain regions to 
prefrontal and parietal cortex, where the first harmonic components are gated out. While such an 
explanation is plausible, another possibility might be that this reflects a mechanism in which the two 
inputs are processed primarily with respect to one another (i.e. with a significant interaction term 
but with no significant ‘main effect’ terms that reflect separate processing of the individual inputs). 
As demonstrated in Figure 2 (rows 6 and 8), certain systems (or certain types of modulation) can 
indeed yield an output containing primarily IMs.   

A control condition in which fully overlapping gratings were presented (using two flicker 
frequencies) suggested that the IM response in the prefrontal cortex reflects not only a stimulus-
driven integration of two adjacent stimuli but rather the additional attention-dependent response to 
two behaviourally relevant stimuli. Consistent with previous studies (Desimone and Duncan, 1995; 
Maunsell and Cook, 2002), the authors suggest these results reflect the hierarchical processes in 
which the neural representation of the visual scene becomes more highly task-specific as one 
progresses up the cortical hierarchy. The prefrontal and parietal regions, under this framework, 



 

combine stimulus-specific responses according to what is currently relevant for their behavioural 
goal, representing either individual stimuli or their interaction. 

Interestingly, a similar distinction between responses at the fundamental frequencies within the 
occipital lobe and responses at specific IMs within the parietal or the frontal lobes was evident in a 
MEG study by Aissani et al. (Aissani et al., 2011). There, the authors presented participants with a 
series of bars arranged in a square shape. The horizontal and vertical bar pairs moved and oscillated 
vertically and horizontally at two different frequencies and participants reported whether the bars 
were perceived as a single moving shape (‘bound’) or not (‘unbound’). While the power at the 
fundamental motion frequencies was strongest in the occipital lobe and did not differ between 
bound and unbound perception, the f1+f2 IM component was localized at the precentral sulcus 
region and was stronger during perception of bound motion compared to unbound motion. 

4.2.3 Feature/object-based attention and expectation 

The Hierarchical Frequency Tagging (HFT) method has recently been utilized to explore the 
mechanisms by which expectation and attention modulate the integration of top-down and bottom-
up signals in perception. The core idea of the HFT method is the combination of two frequency 
tagging methods - one for tagging activity occurring primarily at low visual areas, and another for 
tagging activity occurring at higher visual areas. In Gordon et al. (Gordon et al., 2017; Gordon et al., 
2018) the authors used SSVEP contrast modulations at 10-15 Hz for the former, and Semantic 
Wavelet-Induced Frequency Tagging (SWIFT; (Koenig-Robert and VanRullen, 2013)) modulations at 
0.8-1.3 Hz for the latter. (A video demonstration can be found here: 
https://figshare.com/s/3c217f2a379dd6735b29.)  

In a series of HFT experiments performed by Gordon et.al (Gordon et al., 2018) participants were 
presented various images of houses and faces and were required to perform different behavioral 
tasks through which the authors manipulated expectation (the predictability of upcoming images) 
and attention (the counted image category) (Figure 3C). Importantly, the cognitive manipulations did 
not involve any changes to the visual input itself. Using the MSPC analysis to quantify the degree to 
which the phases of the IMs are driven by the phases of the fundamental frequencies (as described 
in section 3.3) the authors showed that expectation and attention increased the MSPCstim and the 
MSPCres measures, respectively. Consistent with the predictive coding framework of perception, 
where attention and expectation are believed to modulate ascending and descending signals, 
respectively (Feldman and Friston, 2010; Schroger et al., 2015), the authors suggest that the 
MSPCstim and MSPCres measures reflect signal integration occurring at lower and at higher levels of 
the cortical hierarchy, respectively.  

In summary, the studies described in section 4 demonstrate how IMs can aid the investigation of 
various aspects of expectation, awareness and attention (task-relevance) including, but no limited 
to, binocular rivalry, spatial attention and feature/object-based attention.  

We further suggest that these IM studies provide unique support to the notion of attention as a 
dynamic mechanism that constrains the vast amount of possibilities for signal integration, allowing 
only relevant stimulus combinations to propagate up the cortical hierarchy, and defining the types of 
perceptual inferences that engage in competition. 



 

 
Figure 6   

(A) Binocular rivalry. Sutoyo and Srinivasan presented different gratings to each hemifield and eye combination and 
modulated each grating using a different frequency (stimulus and results reproduced with permission from (Sutoyo and 
Srinivasan, 2009). Text was added, and the figure was reorganised here for clarity) This way, distinct f1+f2 IM components 
indicated the integration of signals induced by specific grating combinations. The top and middle rows depict one of 16 
different color and orientation configurations used in the study. IMs increased as a function of the type of rivalry that was 
taking place (i.e. eye- vs pattern- based rivalry; bottom row) rather than the specific conscious perception. (B) Spatial 
attention. Kim et al tested the effect of spatial attention on the integration of adjacent visual stimuli (reproduced with 
permission from (Kim et al., 2017). The figure was reorganised here for clarity). The f2-f1 IM component was found to be 
the frequency component most enhanced when attending to both wedges. This enhancement was evident in the parietal 
and prefrontal regions even in the lack of first-harmonic responses. The authors suggest that these results imply that the 
neural representation of the visual scene becomes more task-specific as one progresses up the cortical hierarchy.  
 

5. Limitations, outstanding questions, and future directions 

We have highlighted the unique ability of IMs to provide a direct and objective physiological 
measure for neural interactions and we have demonstrated the ability to utilize IMs for the study of 
low and mid-level perceptual processes, as well as high-level processes and the involvement of 
cognitive factors such as expectation and attention. We have highlighted the need to consider the 
IMs within each study in conjunction with the fundamental and harmonic frequencies, and we have 
outlined the methodologies that have been used to shed light on the possible mechanisms giving 
rise to the IMs. In Table 2 we list a range of potential future projects that are important for 
advancing the use of IMs in neuroscience even further.  

These methods do not come without limitations. First, a general limitation is posed by the measuring 
tool itself. For example, the majority of IM studies presented above rely on EEG measurements. 



 

These, in turn, reflect only a small portion of neural activity- that which is synchronised across a 
substantial number (>100K) of spatially aligned cortical neurons (Nunez and Srinivasan, 2006). 
Interactions across multiple signals are bound to occur also in much smaller scales than this, and in 
neural populations that may not contribute to a measurable M/EEG signal (e.g. subcortical neurons). 
For example, Giani et al. (Giani et al., 2012) simultaneously presented and modulated two visual 
features and two auditory features using different sets of modulation frequencies (two for each 
modality). The IMs they observed reflected within-modality but not between-modality interactions. 
This null result does not necessarily mean the visual and auditory signals did not interact at any 
cortical level but rather that interactions possibly elicited by that paradigm were not at a scale 
detectable by the measuring tool used in that study (MEG).  

Another aspect worth considering is the predominant use of the Fourier transform for extracting 
frequency-domain amplitude and phase in the spectrum from the raw time-series. While the Fourier 
transform is an extremely useful tool for this purpose, the ability of additional analyses, which do 
not assume sinusoidal rhythms, to provide a complementary characterization of the neural 
oscillations has been raised in relation to various endogenous oscillatory waveforms (Cole and 
Voytek, 2017). This may be true for IM studies as well since even if sinusoidal stimulus modulations 
are used, there is no a priori reason to assume that all entrained neural responses will be perfectly 
sinusoidal as well, particularly when focusing on high-level cortical processes and using advanced 
tagging methods such as the semantic wavelet-induced frequency tagging (Koenig-Robert and 
VanRullen, 2013).  

Future research may provide valuable answers to various other open questions. For example, can 
information theoretic and causal measures, such as transfer entropy (Schreiber, 2000), be applied to 
infer the causality among the various harmonic and IM components? Is there a limit to the spatial 
scales from which IMs in neural data can be used to inform perception research? We’ve presented 
MEG, EEG and ECoG studies in this review. Can IMs be reliably obtained, for example, also from local 
field potentials (LFP) on the one hand and from fMRI on the other? What is the relation between IMs 
and other measures of integration such as integrated information? As integrated information is 
suggested as a possible measure of consciousness (Tononi, 2012), can IMs also serve as a measure of 
consciousness? Spectral decomposition of integrated information is currently being developed and is 
a promising approach for this direction (Cohen, Sasai, Tsuchiya, Oizumi - in preparation) 

The above questions should be tackled at various levels, ranging from theoretical and mathematical 
through computational simulations and modelling to experimental and empirical data, coupled with 
advanced analysis methods. IMs have been proven to be a valuable means for identifying and 
characterising interactions between distinct neural signals in perceptual and cognitive processing, 
and because they are a direct measure of these interactions, they hold promise for unravelling the 
complex hierarchical structure involved in various brain processes.  

  



 

Table 2. Open questions and Potential future IM projects 

1. Systematic studies of fundamentals, harmonics, and IMs. 
Given the multitude of experimental methodologies currently applied in the field, any attempt to 
interpret IMs can only be made in respect to individual studies after carefully considering the 
specific set of parameters used in that study. Is it possible to reach a more general prescription for 
answering a question such as ‘what do the IMs signify’?  
Exploring this possibility requires developing efficient experimental and analyses methods and 
creating a platform that will enable more systematic comparisons across studies. 
Various existing methods can be modified and expanded for use in IM studies. This includes ideas 
such as retinotopic mapping, frequency sweeping, phase-amplitude cross-frequency coupling, and 
others. Establishing a multi-site, pre-registered, large study, which incorporates replication of 
seemingly inconsistent studies (e.g., Sutoyo et al. (Sutoyo and Srinivasan, 2009) versus Zhang et al. 
(Zhang et al., 2011)) with the same subjects, parameters, stimuli, and analysis techniques may 
provide a functional account of IMs that can be generalized better across future studies.   
2. Neuronal circuit level understanding of the origin of the fundamentals, harmonics, and IMs, 

and how they appear at macro M/EEG and ECoG scales. 
The need to better understand how neuronal circuit-level activity translates into macro-level 
signals has been raised in the general context of EEG (Cohen, 2017). Much research has focused 
on understanding the origins of EEG features such the different frequency-band oscillations 
(alpha, gamma, etc.). What can IMs tell us about their unique underlying circuit-level 
computations? 
3. Inter-individual differences in fundamentals, harmonics, and IMs and their sensitivity to 

different paradigms and parameters.                
Can the individual difference in IMs be used as a potential marker for individual traits related to 
binding, attention, expectation, and learning? For example, can IMs explain different learning 
rates in tasks that require forming new associations between sensory features within and across 
modalities? 
4. Relationship between ongoing oscillations (alpha, beta, etc) and evoked fundamentals, 

harmonics, and IMs.                         
Endogenous oscillations have been shown to influence SSVEP studies. Does this apply in the same 
manner to IMs? Is it indeed the case that IM studies should avoid using alpha range frequency 
modulations, for example? 
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