Main content
Mapping neural activity patterns to contextualized fearful facial expressions onto callous-unemotional (CU) traits: intersubject representational similarity analysis reveals less variation among high-CU adolescents
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Project
Description: Callous-unemotional (CU) traits are early-emerging personality features characterized by deficits in empathy, concern for others, and remorse following social transgressions. One of the interpersonal deficits most consistently associated with CU traits is impaired behavioral and neurophysiological responsiveness to fearful facial expressions. However, the facial expression paradigms traditionally employed in neuroimaging are often ambiguous with respect to the nature of threat (i.e., is the perceiver the threat, or is something else in the environment?). In the present study, 30 adolescents with varying CU traits viewed fearful facial expressions cued to three different contexts ("afraid for you," "afraid of you," "afraid for self") while undergoing functional magnetic resonance imaging. Univariate analyses found that mean right amygdala activity during the "afraid for self" context was negatively associated with CU traits. With the goal of disentangling idiosyncratic stimulus-driven neural responses, we employed intersubject representational similarity analysis to link intersubject similarities in multi-voxel neural response patterns to contextualized fearful expressions with differential intersubject models of CU traits. Among low-CU adolescents, neural response patterns while viewing fearful faces were most consistently similar early in the visual processing stream and among regions implicated in affective responding, but were more idiosyncratic as emotional face information moved up the cortical processing hierarchy. By contrast, high-CU adolescents' neural response patterns consistently aligned along the entire cortical hierarchy (but diverged among low-CU youths). Observed patterns varied across contexts, suggesting that interpretations of fearful expressions depend to an extent on neural response patterns and are further shaped by levels of CU traits.