Main content

Home

Menu

Loading wiki pages...

View
Wiki Version:
The first hypothesis is the here will be significant differences between the groups on whether J--- would be found guilty. We tested this with the following: probit guilty i.condition Iteration 0: log likelihood = -260.14754 Iteration 1: log likelihood = -244.64032 Iteration 2: log likelihood = -243.53838 Iteration 3: log likelihood = -243.51145 Iteration 4: log likelihood = -243.51145 Probit regression Number of obs = 695 LR chi2(6) = 33.27 Prob > chi2 = 0.0000 Log likelihood = -243.51145 Pseudo R2 = 0.0639 ------------------------------------------------------------------------------ guilty1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- condition | 1 | -1.418403 .4001703 -3.54 0.000 -2.202723 -.634084 2 | -.7840627 .422603 -1.86 0.064 -1.612349 .0442241 3 | -1.13126 .4085279 -2.77 0.006 -1.93196 -.3305604 4 | -1.279296 .4043334 -3.16 0.002 -2.071775 -.4868172 5 | -1.290944 .4025409 -3.21 0.001 -2.07991 -.5019787 7 | -1.520112 .3981991 -3.82 0.000 -2.300568 -.7396558 | _cons | 2.333769 .3724239 6.27 0.000 1.603831 3.063706 ------------------------------------------------------------------------------ Afterwards, we tested whether people would recommend the 'harsher' punishment of prison over probation: probit prison i.condition Iteration 0: log likelihood = -458.94825 Iteration 1: log likelihood = -427.35176 Iteration 2: log likelihood = -427.32345 Iteration 3: log likelihood = -427.32345 Probit regression Number of obs = 695 LR chi2(6) = 63.25 Prob > chi2 = 0.0000 Log likelihood = -427.32345 Pseudo R2 = 0.0689 ------------------------------------------------------------------------------ prison | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- condition | 1 | -.9045156 .1835222 -4.93 0.000 -1.264212 -.5448187 2 | -.2369455 .179025 -1.32 0.186 -.587828 .113937 3 | -.9614254 .1867252 -5.15 0.000 -1.3274 -.5954509 4 | -.6973651 .1822121 -3.83 0.000 -1.054494 -.3402359 5 | -1.03343 .1859149 -5.56 0.000 -1.397817 -.6690439 7 | -1.03343 .1859149 -5.56 0.000 -1.397817 -.6690439 | _cons | .3511308 .126917 2.77 0.006 .102378 .5998837 ------------------------------------------------------------------------------ Finally, we will run all seven conditions together on all four dependent variables, allowing all four to correlate with one another. This will provide the most conservative test of the overall hypotheses. This will be done in MPlus, treating all dependnet variables as categorical variables, and dummy coding each of the groups with the control group being the reference group. All covariances between the dummy-coded variables will be set to zero. CATEGORICAL = guilty prison sc1 ts1 fault blame; USEVARIABLES ARE guilty prison fault blame sc1 ts1 tbinospecific genesfor rs16838844 raregene wombtbi tbi; missing are all (9999); Analysis: estimator = WLSMV; ITERATIONS= 10000; Model: guilty ON tbinospecific genesfor rs16838844 raregene wombtbi tbi; prison ON tbinospecific genesfor rs16838844 raregene wombtbi tbi; fault ON tbinospecific genesfor rs16838844 raregene wombtbi tbi; blame ON tbinospecific genesfor rs16838844 raregene wombtbi tbi; sc1 ON tbinospecific genesfor rs16838844 raregene wombtbi tbi; ts1 ON tbinospecific genesfor rs16838844 raregene wombtbi tbi; guilty WITH prison; fault WITH blame sc1 ts1; blame WITH sc1 ts1 ; sc1 WITH ts1; Output: Samp stdYX !Mod(All 4) Residual Cinterval Tech4; STANDARDIZED MODEL RESULTS STDYX Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value GUILTY ON TBINOSPECI -0.448 0.107 -4.199 0.000 GENESFOR -0.246 0.124 -1.985 0.047 RS16838844 -0.351 0.112 -3.126 0.002 RAREGENE -0.397 0.108 -3.658 0.000 WOMBTBI -0.409 0.110 -3.721 0.000 TBI -0.482 0.105 -4.600 0.000 PRISON ON TBINOSPECI -0.296 0.058 -5.129 0.000 GENESFOR -0.077 0.058 -1.327 0.184 RS16838844 -0.309 0.057 -5.383 0.000 RAREGENE -0.224 0.057 -3.916 0.000 WOMBTBI -0.340 0.058 -5.866 0.000 TBI -0.340 0.058 -5.866 0.000 FAULT ON TBINOSPECI -0.443 0.054 -8.195 0.000 GENESFOR -0.206 0.059 -3.521 0.000 RS16838844 -0.412 0.053 -7.735 0.000 RAREGENE -0.454 0.051 -8.834 0.000 WOMBTBI -0.414 0.054 -7.702 0.000 TBI -0.408 0.054 -7.538 0.000 BLAME ON TBINOSPECI -0.304 0.050 -6.049 0.000 GENESFOR -0.037 0.050 -0.753 0.451 RS16838844 -0.266 0.049 -5.461 0.000 RAREGENE -0.230 0.050 -4.621 0.000 WOMBTBI -0.220 0.048 -4.556 0.000 TBI -0.264 0.050 -5.254 0.000 SC1 ON TBINOSPECI 0.063 0.057 1.122 0.262 GENESFOR -0.083 0.059 -1.408 0.159 RS16838844 0.041 0.056 0.745 0.456 RAREGENE 0.061 0.059 1.037 0.300 WOMBTBI -0.035 0.057 -0.605 0.545 TBI -0.002 0.057 -0.026 0.979 TS1 ON TBINOSPECI 0.357 0.043 8.323 0.000 GENESFOR 0.017 0.047 0.361 0.718 RS16838844 0.244 0.042 5.751 0.000 RAREGENE 0.267 0.045 5.917 0.000 WOMBTBI 0.294 0.045 6.565 0.000 TBI 0.340 0.046 7.347 0.000
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.