Main content

Contributors:
  1. Walter Lai

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: How does prior experience shape skilled performance in structured environments? We use skilled typing of natural text to evaluate correspondence between performance (keystroke timing) and structure in the environment (letter uncertainty). We had ~350 typists copy-type english text. We reproduced Ostry's (1983) analysis of interkeystroke interval as a function of letter position and word length, that showed prominent first-letter and mid-word slowing effects. We propose a novel account that letter position and word length effects on keystroke dynamics reflect informational uncertainty about letters in those locations, rather than resource limited planning/buffering processes. We computed positional uncertainty for letters in all positions of words from length one to nine using Google's n-gram database. We show that variance in inter-keystroke interval by letter position and word length tracks natural variation in letter uncertainty. Finally, we provide a model showing how a general learning and memory process could acquire sensitivity to patterns of letter uncertainty in natural english. In doing so, we draw an equivalence between Logan's (1988) instance theory of automatization and Shannon's measure of entropy (H) from information theory. Instance theory's predictions for automatization as a function of experience follow exactly the uncertainty in the choice set being automatized. As a result, instance theory stands as a general process model explaining how context-specific experiences in a structured environment tune skilled performance.

Wiki

Add important information, links, or images here to describe your project.

Files

Loading files...

Redirect Link

This project contains a forward to .

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.