Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated. First, the sampling variance of the PCC cannot assumed to be known, because the sampling variance is a function of the PCC. Second, the sampling distribution of each primary study's PCC is not normal since PCCs are bounded between -1 and 1. I advocate applying the Fisher's z transformation analogous to applying Fisher's z transformation for Pearson correlation coefficients, because the Fisher's z transformed PCC is independent of the sampling variance and its sampling distribution more closely follows a normal distribution. Reproducing a simulation study by Stanley and Doucouliagos and adding meta-analyses based on Fisher's z transformed PCCs shows that meta-analysis based on Fisher's z transformed PCCs had lower bias and root mean square error than meta-analyzing PCCs. Hence, meta-analyzing Fisher's z transformed PCCs is a viable alternative to meta-analyzing PCCs, and I recommend to accompany any meta-analysis based on PCCs with one using Fisher's z transformed PCCs to assess the robustness of the results.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.