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Abstract



Bayesian hypothesis testing presents an attractive alternative to p value hy-
pothesis testing. Part I of this series outlined several advantages of Bayesian
hypothesis testing, including the ability to quantify evidence and the abil-
ity to monitor and update this evidence as data come in, without the need
to know the intention with which the data were collected. Despite these
and other practical advantages, Bayesian hypothesis tests are still reported
relatively rarely. An important impediment to the widespread adoption of
Bayesian tests is arguably the lack of user-friendly software for the run-
of-the-mill statistical problems that confront psychologists for the analy-
sis of almost every experiment: the t-test, ANOVA, correlation, regres-
sion, and contingency tables. In Part II of this series we introduce JASP
(jasp-stats.org), an open-source, cross-platform, user-friendly graphical
software package that allows users to carry out Bayesian hypothesis tests
for standard statistical problems. JASP is based in part on the Bayesian
analyses implemented in Morey and Rouder’s BayesFactor package for R.
Armed with JASP, the practical advantages of Bayesian hypothesis testing
are only a mouse click away.

Keywords: Hypothesis test; Statistical evidence; Bayes factor; Posterior
distribution.

As demonstrated in part I of this series, Bayesian inference unlocks a series of advan-
tages that remain unavailable to researchers who continue to rely solely on classical inference
(Wagenmakers et al., in press). For example, Bayesian inference allows researchers to up-
date knowledge, to draw conclusions about the specific case under consideration, to quantify
evidence for the null hypothesis, and to monitor evidence until the result is sufficiently com-
pelling or the available resources have been depleted. Generally, Bayesian inference yields
intuitive and rational conclusions within a flexible framework of information updating. As
a method for drawing scientific conclusions from data, we believe that Bayesian inference
is more appropriate than classical inference.

Pragmatic researchers may have a preference that is less pronounced. These re-
searchers may feel it is safest to adopt an inclusive statistical approach, one in which clas-
sical and Bayesian results are reported together; if both results point in the same direction
this increases one’s confidence that the overall conclusion is robust. Nevertheless, both
pragmatic researchers and hardcore Bayesian advocates have to overcome the same hurdle,
namely, the difficulty in transitioning from Bayesian theory to Bayesian practice. Unfortu-
nately, for many researchers it is difficult to obtain Bayesian answers to statistical questions

The development of JASP was supported by the European Research Council grant “Bayes or bust: Sensi-
ble hypothesis tests for social scientists”. Supplementary materials are available at https://osf.io/m6bi8/.
The JASP team can be reached through GitHub, twitter, Facebook, and the JASP Forum. Corre-
spondence concerning this article may be addressed to Eric-Jan Wagenmakers, University of Amster-
dam, Department of Psychology, PO Box 15906, 1001 NK Amsterdam, the Netherlands. Email address:
EJ.Wagenmakers@gmail.com.
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for standard scenarios involving correlations, the t-test, analysis of variance (ANOVA), and
others. Until recently, these tests had not been implemented in any software, let alone
user-friendly software. And in the absence of software, few researchers feel enticed to learn
about Bayesian inference and few teachers feel enticed to teach it to their students.

To narrow the gap between Bayesian theory and Bayesian practice we developed
JASP (JASP Team, 2017), an open-source statistical software program with an attrac-
tive graphical user interface (GUI). The JASP software package is cross-platform and can
be downloaded free of charge from jasp-stats.org. Originally conceptualized to offer
only Bayesian analyses, the current program allows its users to conduct both classical and
Bayesian analyses.1 Using JASP, researchers can conduct Bayesian inference by dragging
and dropping the variables of interest into analysis panels, whereupon the associated output
becomes available for inspection. JASP comes with default priors on the parameters that
can be changed whenever this is deemed desirable.

This article summarizes the general philosophy behind the JASP program and then
presents five concrete examples that illustrate the most popular Bayesian tests implemented
in JASP. For each example we discuss the correct interpretation of the Bayesian output.
Throughout, we stress the insights and additional possibilities that a Bayesian analysis
affords, referring the reader to background literature for statistical details. The article
concludes with a brief discussion of future developments for Bayesian analyses with JASP.

The JASP Philosophy

The JASP philosophy is based on several interrelated design principles. First, JASP
is free and open-source, reflecting our belief that transparency is an essential element of
scientific practice. Second, JASP is inferentially inclusive, featuring classical and Bayesian
methods for parameter estimation and hypothesis testing. Third, JASP focuses on the sta-
tistical methods that researchers and students use most often; to retain simplicity, add-on
modules are used to implement more sophisticated and specialized statistical procedures.
Fourth, JASP has a graphical user interface that was designed to optimize the user’s expe-
rience. For instance, output is dynamically updated as the user selects input options, and
tables are in APA format for convenient copy-pasting in text editors such as LibreOffice and
Microsoft Word. JASP also uses progressive disclosure, which means that initial output is
minimalist and expanded only when the user makes specific requests (e.g., by ticking check
boxes). In addition, JASP output retains its state, meaning that the input options are
not lost – clicking on the output brings the input options back up, allowing for convenient
review, discussion, and adjustment of earlier analyses. Finally, JASP is designed to facili-
tate open science; from JASP 0.7 onward, users are able to save and distribute data, input
options, and output results together as a .jasp file. Moreover, by storing the .jasp file on
a public repository such as the Open Science Framework (OSF), reviewers and readers can
have easy access to the data and annotated analyses that form the basis of a substantive
claim. As illustrated in Figure 1, the OSF has a JASP previewer that presents the output
from a .jasp file regardless of whether the user has JASP installed. In addition, users with
an OSF account can upload, download, edit, and sync files stored in their OSF repositories
from within JASP. The examples discussed in this article each come with an annotated

1Bayesian advocates may consider the classical analyses a Bayesian Trojan horse.
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Figure 1. The JASP previewer allows users to inspect the annotated output of a .jasp file
on the OSF, even without JASP installed and without an OSF account. The graph shown
on the cell phone displays the Anscombosaurus (see http://www.thefunctionalart.com/2016/

08/download-datasaurus-never-trust-summary.html). Figure available at https://osf.io/

m6bi8/ under under a CC-BY license.

.jasp file available on the OSF at https://osf.io/m6bi8/. Several analyses are illustrated
with videos on the JASP YouTube channel.

The JASP GUI is familiar to users of SPSS and has been programmed in C++, html,
and javascript. The inferential engine is based on R (R Development Core Team, 2004)
and –for the Bayesian analyses– much use is made of the BayesFactor package devel-
oped by Morey and Rouder (2015) and the conting package developed by Overstall and
King (2014b). The latest version of JASP uses the functionality of more than 110 dif-
ferent R packages; a list is available on the JASP website at https://jasp-stats.org/

r-package-list/. The JASP installer does not require that R is installed separately.

Our long-term goals for JASP are two-fold: the primary goal is to make Bayesian
benefits more widely available than they are now, and the secondary goal is to reduce the
field’s dependence on expensive statistical software programs such as SPSS.
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Example 1: A Bayesian Correlation Test for the Height Advantage
of US Presidents

For our first example we return to the running example from Part I. This example
concerned the height advantage of candidates for the US presidency (Stulp, Buunk, Verhulst,
& Pollet, 2013). Specifically, we were concerned with the Pearson correlation ρ between
the proportion of the popular vote and the height ratio (i.e., height of the president divided
by the height of his closest competitor). In other words, we wished to assess the evidence
that the data provide for the hypothesis that taller presidential candidates attract more
votes. The scatter plot was shown in Figure 1 of Part I. Recall that the sample correlation
r equaled .39 and was significantly different from zero (p = .007, two-sided test, 95% CI
[.116, .613]); under a default uniform prior, the Bayes factor equaled 6.33 for a two-sided
test and 12.61 for a one-sided test (Wagenmakers et al., in press).

Here we detail how the analysis is conducted in JASP. The left panel of Figure 2
shows a spreadsheet view of the data that the user has just loaded from a .csv file using the
file tab.2 Each column header contains a small icon denoting the variable’s measurement
level: continuous, ordinal, or nominal (Stevens, 1946). For this example, the ruler icon
signifies that the measurement level is continuous. When loading a data set, JASP uses a
“best guess” to determine the measurement level. The user can click the icon, and change
the variable type if this guess is incorrect.

After loading the data, the user can select one of several analyses. Presently the
functionality of JASP (version 0.8.1) encompasses the following procedures and tests:

• Descriptives (with the option to display a matrix plot for selected variables).
• Reliability analysis (e.g., Cronbach’s α, Gutmann’s λ6, and McDonald’s ω).
• Independent samples t-test, paired samples t-test, and one sample t-test. Key

references for the Bayesian implementation include Jeffreys (1961), Ly, Verhagen, and Wa-
genmakers (2016b, 2016a), Rouder, Speckman, Sun, Morey, and Iverson (2009) and Wetzels,
Raaijmakers, Jakab, and Wagenmakers (2009).

• ANOVA, repeated measures ANOVA, and ANCOVA. Key references for the
Bayesian implementation include Rouder, Morey, Speckman, and Province (2012), Rouder,
Morey, Verhagen, Swagman, and Wagenmakers (in press), and Rouder, Engelhardt, Mc-
Cabe, and Morey (in press).

• Correlation. Key references for the Bayesian implementation include Jeffreys
(1961), Ly et al. (2016b), and Ly, Marsman, and Wagenmakers (in press) for Pearson’s
ρ, and van Doorn, Ly, Marsman, and Wagenmakers (in press) for Kendall’s tau.

• Linear regression. Key references for the Bayesian implementation include Liang,
Paulo, Molina, Clyde, and Berger (2008), Rouder and Morey (2012), and Zellner and Siow
(1980).

• Binomial test. Key references for the Bayesian implementation include Jeffreys
(1961) and O’Hagan and Forster (2004).

• Contingency tables. Key references for the Bayesian implementation include Gunel
and Dickey (1974) and Jamil et al. (in press).

2JASP currently reads the following file formats: .jasp, .txt, .csv (i.e., a plain text file with fields separated
by commas), .ods (i.e., OpenDocument Spreadsheet, a file format used by OpenOffice), and .sav (i.e., the
SPSS file format).
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Figure 2. JASP screenshot for the two-sided test for the presence of a correlation between the
relative height of the US president and his proportion of the popular vote. The left panel shows
the data in spreadsheet format; the middle panel shows the analysis input options; the right panel
shows the analysis output.

• Log-linear regression. Key references for the Bayesian implementation include
Overstall and King (2014b) and Overstall and King (2014a).

• Principal component analysis and exploratory factor analysis.

Except for reliability analysis and factor analysis, the above procedures are available both in
their classical and Bayesian form. Future JASP releases will expand this core functionality
and add logistic regression, multinomial tests, and a series of nonparametric techniques.
More specialized statistical procedures will be provided through add-on packages so that
the main JASP interface retains its simplicity.

The middle panel of Figure 2 shows that the user selected a Bayesian Pearson cor-
relation analysis. The two variables to be correlated were selected through dragging and
dropping. The middle panel also shows that the user has not specified the sign of the ex-
pected correlation under H1 – hence, JASP will conduct a two-sided test. The right panel
of Figure 2 shows the JASP output; in this case, the user requested and received:

1. The Bayes factor expressed as BF10 (and its inverse BF01 = 1/BF10), grading the
intensity of the evidence that the data provide for H1 versus H0 (for details see Part I).

2. A proportion wheel that provides a visual representation of the Bayes factor.
3. The posterior median and a 95% credible interval, summarizing what has been

learned about the size of the correlation coefficient ρ assuming that H1 holds true.
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4. A figure showing (a) the prior distribution for ρ under H1 (i.e., the uniform distri-
bution, which is the default prior proposed by Jeffreys, 1961 for this analysis; the user can
adjust this default specification if desired), (b) the posterior distribution for ρ under H1,
(c) the 95% posterior credible interval for ρ under H1, and (d) a visual representation of the
Savage-Dickey density ratio, that is, grey dots that indicate the height of the prior and the
posterior distribution at ρ = 0 under H1; the ratio of these heights equals the Bayes factor
for H1 versus H0 (Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010).

Thus, in its current state JASP provides a relatively comprehensive overview of Bayesian
inference for ρ, featuring both estimation and hypothesis testing methods.

Before proceeding we wish to clarify the meaning of the proportion wheel or “pizza
plot”. The wheel was added to assist researchers who are unfamiliar with the odds for-
mulation of evidence – the wheel provides a visual impression of the continuous strength
of evidence that a given Bayes factor provides. In the presidents example BF10 = 6.33,
such that the observed data are 6.33 times more likely under H1 than under H0. To vi-
sualize this odds, we transform it to the 0-1 interval and plot the resulting magnitude as
the proportion of a circle (e.g., Tversky, 1969, Figure 1; Lipkus & Hollands, 1999). For in-
stance, the presidents example has an odds of BF10 = 6.33 and a corresponding proportion
of 6.33/7.33 ≈ 0.86;3 consequently, the red area (representing the support in favor of H1)
covers 86% of the circle and the white area (representing the support in favor of H0) covers
the remaining 14%.

Figure 3 gives three further examples of proportion wheels. In each panel, the red
area represents the support that the data y provide for H1, and the white area represents
the complementary support for H0. Figure 3 shows that when BF10 = 3, the null hypothesis
still occupies a non-negligible 25% of the circle’s area. The wheel can be used to intuit the
strength of evidence even more concretely, as follows. Imagine the wheel is a dart board.
You put on a blindfold and the board is attached to a wall in a random orientation. You
then throw a series of darts until the first one hits the board. You remove the blindfold and
observe that the dart has landed in the smaller area. How surprised are you? We propose
that this measure of imagined surprise provides a good intuition for degree of evidence that
a particular Bayes factor conveys (Jamil, Marsman, Ly, Morey, & Wagenmakers, in press).
The top panel of Figure 3, for instance, represents BF10 = 3. Having the imaginary dart
land in the white area would be somewhat surprising, but in most scenarios not sufficiently
surprising to warrant a strong claim such as the one that usually accompanies a published
article. Yet many p-values near the .05 boundary (“reject the null hypothesis”) yield evi-
dence that is weaker than BF10 = 3 (e.g., Berger & Delampady, 1987; Edwards, Lindman,
& Savage, 1963; Johnson, 2013; Wagenmakers et al., in press; Wetzels et al., 2011). The
dart board analogy is elaborated upon in the appendix.

The proportion wheel underscores the fact that the Bayes factor provides a graded,
continuous measure of evidence. Nevertheless, for historical reasons it may happen that
a discrete judgment is desired (i.e., an all-or-none preference for H0 or H1). When the
competing models are equally likely a priori, then the probability of making an error equals
the size of the smaller area. Note that this kind of “error control” differs from that which is

3An odds of x corresponds to a proportion of x/(x+ 1).
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Figure 3. Proportion wheels visualize the strength of evidence that a Bayes factor provides. Odds
are transformed to a magnitude between 0 and 1 and plotted as the proportion of a circular area.
Imagine the wheel is a dartboard; you put on a blindfold, the wheel is attached to the wall in random
orientation, and you throw darts until you hit the board. You then remove the blindfold and find
that the dart has hit the smaller area. How surprised are you? The level of imagined surprise
provides an intuition for the strength of a Bayes factor. The analogy is visualized in the appendix.

sought by classical statistics. In the Bayesian formulation the probability of making an error
refers to the individual case, whereas in classical procedures it is obtained as an average
across all possible data sets that could have been observed. Note that the long-run average
need not reflect the probability of making an error for a particular case (Wagenmakers et al.,
in press).

JASP offers several ways in which the present analysis may be refined. In Part I
we already showed the results of a one-sided analysis in which the alternative hypothesis
H+ stipulated the correlation to be positive; this one-sided analysis can be obtained by
ticking the check box “correlated positively” in the input panel. In addition, the two-sided
alternative hypothesis has a default prior distribution which is uniform from −1 to 1; a user-
defined prior distribution can be set through the input field “Stretched beta prior width”.
For instance, by setting this input field to 0.5 the user creates a prior distribution with
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smaller width, that is, a distribution which assigns more mass to values of ρ near zero.4

Additional check boxes create sequential analyses and robustness checks, topics that will
be discussed in the next example.

Example 2: A Bayesian T-test for a Kitchen Roll Rotation
Replication Experiment

Across a series of four experiments, the data reported in Topolinski and Sparenberg
(2012) provided support for the hypothesis that clockwise movements induce psychological
states of temporal progression and an orientation toward the future and novelty. Concretely,
in their Experiment 2, one group of participants rotated kitchen rolls clockwise, whereas the
other group rotated them counterclockwise. While rotating the rolls, participants completed
a questionnaire assessing openness to experience. The data from Topolinski and Sparenberg
(2012) showed that, in line with their main hypothesis, participants who rotated the kitchen
rolls clockwise reported more openness to experience than participants who rotated them
counterclockwise (but see Francis, 2013).

We recently attempted to replicate the kitchen roll experiment from Topolinski and
Sparenberg (2012), using a preregistered analysis plan and a series of Bayesian analyses
(Wagenmakers et al., 2015, https://osf.io/uszvx/). Thanks to the assistance of the
original authors, we were able to closely mimic the setup of the original study. The apparatus
and setup for the replication experiment are shown in Figure 4.

Before turning to a JASP analysis of the data, it is informative to recall the stopping
rule procedure specified in the online preregistration form (https://osf.io/p3isc/):

“We will collect a minimum of 20 participants in each between-subject con-
dition (i.e., the clockwise and counterclockwise condition, for a minimum of 40
participants in total). We will then monitor the Bayes factor and stop the ex-
periment whenever the critical hypothesis test (detailed below) reach a Bayes
factor that can be considered “strong” evidence (Jeffreys, 1961); this means that
the Bayes factor is either 10 in favor of the null hypothesis, or 10 in favor of the
alternative hypothesis. The experiment will also stop whenever we reach the
maximum number of participants, which we set to 50 participants per condition
(i.e., a maximum of 100 participants in total). Finally, the experiment will also
stop on October 1st, 2013. From a Bayesian perspective the specification of
this sampling plan is needlessly precise; we nevertheless felt the urge to be as
complete as possible.”

In addition, the preregistration form indicated that the Bayes factor of interest is the
default one-sided t-test as specified in Rouder et al. (2009) and Wetzels et al. (2009). The
two-sided version of this test was originally proposed by Jeffreys (1961), and it involves
a comparison of two hypothesis for effect size δ: the null hypothesis H0 postulates that
effect size is absent (i.e., δ = 0), whereas the alternative hypothesis H1 assigns δ a Cauchy
prior centered on 0 with interquartile range r = 1 (i.e., δ ∼ Cauchy(0, 1)). The Cauchy

4Statistical detail: the stretched beta prior is a beta(a, a) distribution transformed to cover the interval
from −1 to 1. The prior width is defined as 1/a. For instance, setting the stretched beta prior width equal
to 0.5 is conceptually the same as using a beta(2, 2) distribution on the 0-1 interval and then transforming
it to cover the interval from −1 to 1, such that it is then symmetric around ρ = 0.
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Figure 4. The experimental setting from Wagenmakers et al. (2015): (a) the set-up; (b) the
instructions; (c) a close-up of one of the sealed paper towels; (d) the schematic instructions; Photos
(e) and (f) give an idea of how a participant performs the experiment. Figure available at https:

//www.flickr.com/photos/130759277@N05/, under CC license https://creativecommons.org/

licenses/by/2.0/.

distribution is similar to the normal distribution but has fatter tails; it is a t-distribution
with a single degree of freedom. Jeffreys chose the Cauchy because it makes the test
“information consistent”: with two observations measured without noise (i.e., y1 = y2) the
Bayes factor in favor of H1 is infinitely large. The one-sided version of Jeffreys’s test uses
a folded Cauchy with positive effect size only, that is, H+ : δ ∼ Cauchy+(0, 1).

The specification H+ : δ ∼ Cauchy+(0, 1) is open to critique. Some people feel that
this distribution is unrealistic because it assigns too much mass to large effect sizes (i.e.,
50% of the posterior mass is on values for effect size larger than 1); in contrast, others feel
that this distribution is unrealistic because it assigns most mass to values near zero (i.e.,
δ = 0 is the most likely value). It is possible to reduce the value of r, and, indeed, the
BayesFactor package uses a default value of r = 1

2

√
2 ≈ 0.707, a value that JASP has

adopted as well. Nevertheless, the use of a very small value of r implies that H1 and H0

closely resemble one another in the sense that both models make similar predictions about
to-be-observed data; this setting therefore makes it difficult to obtain compelling evidence,
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especially in favor of a true H0 (Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, in
press). In general, we feel that reducing the value of r is recommended if the location
of the prior distribution is also shifted away from δ = 0. Currently JASP fixes the prior
distribution under H1 to the location δ = 0, and consequently we recommend that users
deviate from the default setting only when they realize the consequences of their choice.5

Note that Gronau, Ly, and Wagenmakers (2017) recently extended the Bayesian t-test to
include prior distributions on effect size that are centered away from zero. We plan to add
these “informed t-tests” to JASP in May 2017.

We are now ready to analyze the data in JASP. Readers who wish to confirm our
results can open JASP, go to the File tab, Select “Open”, go to “Examples”, and select
the “Kitchen Rolls” data set that is available at https://osf.io/m6bi8/. As shown in the
left panel of Figure 5, the data feature one row for each participant. Each column corre-
sponds to a variable; the dependent variable of interest here is in the column “mean NEO”,
which contains the mean scores of each participant on the shortened 12-item version of
the openness to experience subscale of the Neuroticism–Extraversion–Openness Personality
Inventory (NEO PI-R; Costa & McCrae, 1992; Hoekstra, Ormel, & de Fruyt, 1996). The
column “Rotation” includes the crucial information about group membership, with entries
either “counter” or “clock”.

In order to conduct the analysis, selecting the “T-test” tab reveals the option
“Bayesian Independent Samples T-test”, the dialog of which is displayed in the middle
panel of Figure 5. We have selected “mean NEO” as the dependent variable, and “Rota-
tion” as the grouping variable. After ticking the box “Descriptives”, the output displayed in
the right panel of Figure 5 indicates that the mean openness-to-experience is slightly larger
in the counterclockwise group (i.e., N = 54;M = .71) than in the clockwise group (i.e.,
N = 48; M = .64) – note that the effect goes in the direction opposite to that hypothesized
by Topolinski and Sparenberg (2012).

For demonstration purposes, at first we refrain from specifying the direction of the
test. To contrast our results with those reported by Wagenmakers et al. (2015), we have
set the Cauchy prior width to its JASP default r = 0.707 instead of Jeffreys’s value r = 1.
We have also ticked the plotting options “Prior and posterior” and “Additional info”. This
produces the plot shown in the right panel of Figure 5. It is evident that most of the posterior
mass is negative. The posterior median is −0.13, and a 95% credible interval ranges from
−0.50 to 0.23. The Bayes factor is 3.71 in favor of H0 over the two-sided H1. This indicates
that the observed data are 3.71 times more likely under H0 than under H1. Because the
Bayes factor favors H0, in the input panel we have selected “BF01” under “Bayes Factor”
– it is easier to interpret BF01 = 3.71 than it is to interpret the mathematically equivalent
statement BF10 = 0.27.

After this initial investigation we now turn to an analysis of the preregistered order-
restricted test (with the exception of using r = 0.707 instead of the preregistered r = 1).
The output of the “Descriptives” option has revealed that “clock” is group 1 (because it is
on top), and “counter” is group 2. Hence, we can incorporate the order restriction in our
inference by ticking the “Group one > Group two” box under “Hypothesis” in the input

5For an indication of how Bayes factors can be computed under any proper prior distribution see http:

//jeffrouder.blogspot.nl/2016/01/what-priors-should-i-use-part-i.html, also available as a pdf file
at the OSF project page https://osf.io/m6bi8/.
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Figure 5. JASP screenshot for the two-sided test of the kitchen roll replication experiment (Wagen-
makers et al., 2015). The left panel shows the data in spreadsheet format; the middle panel shows
the analysis input options; the right panel shows the analysis output. NB. The “%error” indicates
the size of the error in the integration routine relative to the Bayes factor, similar to a coefficient of
variation.

panel, as is shown in the middle panel of Figure 6.

The output for the order-restricted test is shown in the right panel of Figure 6. As
expected, incorporating the knowledge that the observed effect is in the direction opposite
to the one that was hypothesized increases the relative evidence in favor of H0 (see also
Matzke et al., 2015). Specifically, the Bayes factor has risen from 3.71 to 7.74, meaning
that the observed data are 7.74 times more likely under H0 than under H+.

As an aside, note that under H+ the posterior distribution is concentrated near zero
but does not have mass on negative values, in accordance with the order-restriction imposed
by H+. In contrast, the classical one-sided confidence interval ranges from −.23 to∞. This
classical interval contrasts sharply with its Bayesian counterpart, and, even though the
classical interval is mathematically well-defined (i.e., it contains all values that would not
be rejected by a one-sided α = .05 significance test, see also Wagenmakers et al., in press), we
submit that most researchers will find the classical result neither intuitive nor informative.

Next we turn to a robustness analysis and quantify the evidential impact of the width
r of the Cauchy prior distribution. The middle panel of Figure 7 shows that the option
“Bayes factor robustness check” is ticked, and this produces the upper plot in the right
panel of Figure 7. When the Cauchy prior with r equals zero, H1 is identical to H+, and
the Bayes factor equals 1. As the width r increases and H+ starts to predict that the effect
is positive, the evidence in favor of H0 increases; for the JASP default value r = .707, the
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Figure 6. JASP screenshot for the one-sided test of the kitchen roll replication experiment (Wagen-
makers et al., 2015). The left panel shows the data in spreadsheet format; the middle panel shows
the analysis input options; the right panel shows the analysis output.

Bayes factor BF0+ = 7.73; for Jeffreys’s default r = 1, the Bayes factor BF0+ = 10.75; and
for the “ultrawide” prior r =

√
2 ≈ 1.41, the Bayes factor BF0+ = 15.04. Thus, over a

wide range of plausible values for the prior width r, the data provide moderate to strong
evidence in favor of the null hypothesis H0.

Finally, the middle panel of Figure 7 also shows that the options “Sequential analysis”
and “robustness check” are ticked, and these together produce the lower plot in the right
panel of Figure 7. The sequential analysis is of interest here because it was part of the
experiment’s sampling plan, and because it underscores how researchers can monitor and
visualize the evidential flow as the data accumulate. Closer examination of the plot reveals
that for the preregistered value of r = 1, Wagenmakers et al. (2015) did not adhere to their
preregistered sampling plan to stop data collection as soon as BF0+ > 10 or BF+0 > 10:
after about 55 participants, the dotted line crosses the threshold of BF0+ > 10 but data
collection nonetheless continued. Wagenmakers et al. (2015, p. 3) explain: “This occurred
because data had to be entered into the analysis by hand and this made it more difficult
to monitor the Bayes factor continually. In practice, the Bayes factor was checked every
few days. Thus, we continued data collection until we reached our predetermined stopping
criterion at the point of checking.”

One of the advantages of the sequential robustness plot is that it provides a visual
impression of when the Bayes factors for the different priors have converged, in the sense that
their difference on the log scale is constant (e.g., Gronau & Wagenmakers, in press). For the
current situation, the convergence has occurred after testing approximately 35 participants.
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To understand why the difference between the log Bayes factors becomes constant after
an initial number of observations, consider data y that consists of two batches, y1 and
y2. As mentioned above, from the law of conditional probability we have BF0+(y) =
BF0+(y1) × BF0+(y2 | y1). Note that this expression highlights that Bayes factors for
different batches of data (e.g., participants, experiments) may not be multiplied blindly; the
second factor, BF0+(y2 | y1), equals the relative evidence from the second batch y2, after the
prior distributions have been properly updated using the information extracted from the
first batch y1 (Jeffreys, 1961, p. 333). Rewriting the above expression on the log scale we
obtain log BF0+(y) = log BF0+(y1) + log BF0+(y2 | y1). Now assume y1 contains sufficient
data such that, regardless of the value of prior width r under consideration, approximately
the same posterior distribution is obtained. In most situations, this posterior convergence
happens relatively quickly. This posterior distribution is then responsible for generating the
Bayes factor for the second component, log BF0+(y2 | y1), and it is therefore robust against
differences in r.6 Thus, models with different values of r will make different predictions
for data from the first batch y1. However, after observing a batch y1 that is sufficiently
large, the models have updated their prior distribution to a posterior distribution that is
approximately similar; consequently, these models then start to make approximately similar
predictions, resulting in a change in the log Bayes factor that is approximately similar as
well.

In the first example we noted that the Bayes factor grades the evidence provided by
the data on an unambiguous and continuous scale. Nevertheless, the sequential analysis
plots in JASP make reference to discrete categories of evidential strength. These categories
were inspired by Jeffreys (1961, Appendix B). Table 1 shows the classification scheme used
by JASP. We replaced Jeffreys’s labels “worth no more than a bare mention” with “anecdo-
tal” (i.e., weak, inconclusive), “decisive” with “extreme”, and “substantial” with “moder-
ate” (Lee & Wagenmakers, 2013); the moderate range may be further subdivided by using
“mild” for the 3-6 range and retaining “moderate” for the 6-10 range.7 These labels facili-
tate scientific communication but should be considered only as an approximate descriptive
articulation of different standards of evidence. In particular, we may paraphrase Rosnow
and Rosenthal (1989) and state that, surely, God loves the Bayes factor of 2.5 nearly as
much as he loves the Bayes factor of 3.5.

6This also suggests that one can develop a Bayes factor that is robust against plausible changes in r: first,
sacrifice data y1 until the posterior distributions are similar; second, monitor and report the Bayes factor
for the remaining data y2. This is reminiscent of the idea that underlies the so-called intrinsic Bayes factor
(Berger & Pericchi, 1996), a method that also employs a “training sample” to update the prior distributions
before the test is conducted using the remaining data points. The difference is that the intrinsic Bayes factor
selects a training sample of minimum size, being just large enough to identify the model parameters.

7The present authors are not all agreed on the usefulness of such descriptive classifications of Bayes
factors. All authors agree, however, that the advantage of Bayes factors is that –unlike for instance p values
which are dichotomized into “significant” and “non-significant”– the numerical value of the Bayes factor can
be interpreted directly. The strength of the evidence is not dependent on any conventional verbal description,
such as “strong”.
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Figure 7. JASP screenshot for the one-sided test of the kitchen roll replication experiment (Wa-
genmakers et al., 2015). The right panel shows the analysis output: the upper plot is a robustness
analysis, and the bottom plot is a sequential analysis combined with a robustness analysis.

Table 1: A descriptive and approximate classification scheme for the interpretation of Bayes factors
BF10 (Lee and Wagenmakers 2013; adjusted from Jeffreys 1961).

Bayes factor Evidence category

> 100 Extreme evidence for H1

30 - 100 Very strong evidence for H1

10 - 30 Strong evidence for H1

3 - 10 Moderate evidence for H1

1 - 3 Anecdotal evidence for H1

1 No evidence
1/3 - 1 Anecdotal evidence for H0

1/10 - 1/3 Moderate evidence for H0

1/30 - 1/10 Strong evidence for H0

1/100 - 1/30 Very strong evidence for H0

< 1/100 Extreme evidence for H0

Example 3: A Bayesian One-Way ANOVA to Test Whether Pain
Threshold Depends on Hair Color

An experiment conducted at the University of Melbourne in the 1970s suggested that
pain threshold depends on hair color (McClave & Dietrich II, 1991, Exercise 10.20). In
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Figure 8. Boxplots and jittered data points for the hair color experiment. Figure created with
JASP.

the experiment, a pain tolerance test was administered to 19 participants who had been
divided into four groups according to hair color: light blond, dark blond, light brunette,
and dark brunette.8 Figure 8 shows the boxplots and the jittered data points. There are
visible differences between the conditions, but the sample sizes are small.

The data may be analyzed with a classical one-way ANOVA. This yields a p-value of
.004, suggesting that the null hypothesis of no condition differences may be rejected. But
how big is the evidence in favor of an effect? To answer this question we now analyze the
data in JASP using the Bayesian ANOVA methodology proposed by Rouder et al. (2012)
(see also Rouder et al., in press). As was the case for the t-test, we assign Cauchy priors
to effect sizes. What is new is that the Cauchy prior is now multivariate, and that effect
size in the ANOVA model is defined in terms of distance to the grand mean.9 The analysis
requires that the user opens the data file containing 19 pain tolerance scores in one column
and 19 hair colors in the other column. As before, each row corresponds to a participant.

8The data are available at http://www.statsci.org/data/oz/blonds.html.
9The Cauchy prior width rt for the independent samples t-tests yields the same result as a two-group

one-way ANOVA with a fixed effect scale factor rA equal to rt/
√

2. With the default setting rt = 1/2 ·
√

2,
this produces rA = 0.5. In sum, for the default prior settings in JASP the independent samples t-test and
the two-group one-way ANOVA yield the same result. For examples see https://cran.r-project.org/

web/packages/BayesFactor/vignettes/priors.html.
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Figure 9. JASP output table for the Bayesian ANOVA of the hair color experiment. The blue text
underneath the table shows the annotation functionality that can help communicate the outcome of
a statistical analysis.

The user then selects “ANOVA” from the ribbon, followed by “Bayesian ANOVA”. In the
associated analysis menu, the user drags the variable “Pain Tolerance” to the input field
labeled “Dependent Variable” and drags the variable “Hair Color” to the input field “Fixed
Factors”. The resulting output table with Bayesian results is shown in Figure 9.

The first column of the output table, “Models”, lists the models under consideration.
The one-way ANOVA features only two models: the “Null model” that contains the grand
mean, and the “Hair Color” model that adds an effect of hair color. The next point of
interest is the “BF10” column; this column shows the Bayes factor for each row-model
against the null model. The first entry is always 1 because the null model is compared
against itself. The second entry is 11.97, which means that the model with hair color
predicts the observed data almost 12 times as well as the null model. As was the case for
the output of the t-test, the right-most column, “% error”, indicates the size of the error in
the integration routine relative to the Bayes factor; similar to a coefficient of variation, this
means that small variability is more important when the Bayes factor is ambiguous than
when it is extreme.

Column “P(M)” indicates prior model probabilities (which the current version of
JASP sets to be equal across all models at hand); column “P(M|data)” indicates the updated
probabilities after having observed the data. Column “BFM” indicates the degree to which
the data have changed the prior model odds. Here the prior model odds equals 1 (i.e.,
0.5/0.5) and the posterior model odds equals almost 12 (i.e., 0.923/0.077). Hence, the
Bayes factor equals the posterior odds. JASP offers the user “Advanced Options” that can
be used to change the prior width of the Cauchy prior for the model parameters. As the
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Figure 10. Relation between voice pitch, gender, and height (in inches) for data from 235 singers
in the New York Choral Society in 1979. Error bars show 95% confidence intervals. Figure created
with JASP.

name suggest, we recommend that the user exercises this freedom only in the presence of
substantial knowledge of the underlying statistical framework.

Currently JASP does not offer post-hoc tests to examine pairwise differences in one-
way ANOVA. Such post-hoc tests have not yet been developed in the Bayesian ANOVA
framework. In future work we will examine whether post-hoc tests can be constructed by
applying a Bayesian correction for multiple comparisons (i.e., Scott & Berger, 2006, 2010;
Stephens & Balding, 2009). Discussion of this topic would take us too far afield.

Example 4: A Bayesian Two-Way ANOVA for Singers’ Height as a
Function of Gender and Pitch

The next data set concerns the heights in inches of the 235 singers in the New York
Choral Society in 1979 (Chambers, Cleveland, Kleiner, & Tukey, 1983).10 The singers’
voices were classified according to voice part (e.g., soprano, alto, tenor, bass) and recoded
to voice pitch (i.e., very low, low, high, very high). Figure 10 shows the relation between
pitch and height separately for men and women.

10Data available at https://stat.ethz.ch/R-manual/R-devel/library/lattice/html/singer.html.



EXAMPLE APPLICATIONS WITH JASP 18

Figure 11. JASP output table for the Bayesian ANOVA of the singers data. Note that JASP uses
exponential notation to represent large numbers; for instance, “3.807e +37” represents 3.807× 1037.

Our analysis concerns the extent to which the dependent variable “height” is as-
sociated with gender (i.e., male, female) and/or pitch. This question can be examined
statistically using a 2 × 4 ANOVA. Consistent with the visual impression from Figure 10,
a classical analysis yields significant results for both main factors (i.e., p < .001 for both
gender and pitch) but fails to yield a significant result for the interaction (i.e., p = .52).
In order to assess the extent to which the data support the presence and absence of these
effects we now turn to a Bayesian analysis.

In order to conduct this analysis in JASP, the user first opens the data set and then
navigates to the “Bayesian ANOVA” input panel as was done for the one-way ANOVA.
In the associated analysis menu, the user then drags the variable “Height” to the input
field labeled “Dependent Variable” and drags the variables “Gender” and “Pitch” to the
input field “Fixed Factors”. The resulting output table with Bayesian results is shown in
Figure 11.

The first column of the output table, “Models”, lists the five models under consid-
eration: the “Null model” that contains only the grand mean, the “Gender” model that
contains the effect of gender, the “Pitch” model that contains the effect of Pitch, the “Gen-
der + Pitch” model that contains both main effects, and finally the “Gender + Pitch +
Gender × Pitch” model that includes both main effects and the interaction. Consistent
with the principle of marginality, JASP does not include interactions in the absence of the
component main effects; for instance, the interaction-only model “Gender × Pitch” may
not be entertained without also adding the two main effects (for details, examples, and
rationale see Bernhardt & Jung, 1979; Griepentrog, Ryan, & Smith, 1982; McCullagh &
Nelder, 1989; Nelder, 1998, 2000; Peixoto, 1987, 1990; Rouder et al., in press, in press;
Venables, 2000).

Now consider the BF10 column. All models (except perhaps for Pitch) receive over-
whelming evidence in comparison to the Null model. The model that outperforms the
Null model the most is the two main effects model, Gender + Pitch. Adding the interaction
makes the model less competitive. The evidence against including the interaction is roughly
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Figure 12. JASP screenshot and output table for the Bayesian ANOVA of the singers data, with
Gender and Pitch added as nuisance factors.

a factor of ten. This can be obtained as 8.192e+39 / 8.864e+38 ≈ 9.24. Thus, the data are
9.24 times more likely under the two main effects model than under the model that adds
the interaction.

Column “P(M)” indicates the equal assignment of prior model probability across the
five models; column “P(M|data)” indicates the posterior model probabilities. Almost all
posterior mass is centered on the two main effects model and the model that also includes
the interaction. Column “BFM” indicates the change from prior to posterior model odds.
Only the two main effects model has received support from the data in the sense that the
data have increased its model probability.

Above we wished to obtain the Bayes factor for the main effects only model versus
the model that adds the interaction. We accomplished this objective by comparing the
strength of the Bayes factor against the Null model for models that exclude or include
the critical interaction term. However, this Bayes factor can also be obtained directly.
As shown in Figure 12, the JASP interface allows the user to specify Gender and Pitch
as nuisance variables, which means that they are included in every model, including the
Null model. The Bayes factor of interest is BF10 = 0.108; when inverted, this yields
BF01 = 1/0.108 = 9.26, confirming the result obtained above through a simple calculation.
The fact that the numbers are not identical is due to the numerical approximation; the
error percentage is indicated in the right-most column.

In sum, the Bayesian ANOVA reveals that the data provide strong support for the
two main effects model over any of the simpler models. The data also provide good support
against including the interaction term.

Finally, as described in Cramer et al. (2016), the multiway ANOVA harbors a mul-
tiple comparison problem. As for the one-way ANOVA, this problem can be addressed by
applying the proper Bayesian correction method (i.e., Scott & Berger, 2006, 2010; Stephens
& Balding, 2009). This correction has not yet been implemented in JASP.

Example 5: A Bayesian Two-Way Repeated Measures ANOVA for
People’s Hostility Towards Arthropods

In an online experiment, Ryan, Wilde, and Crist (2013) presented over 1300 par-
ticipants with pictures of eight arthropods. For each arthropod, participants were asked
to rate their hostility towards that arthropod, that is, “...the extent to which they either
wanted to kill, or at least in some way get rid of, that particular insect” (p. 1297). The



EXAMPLE APPLICATIONS WITH JASP 20

Figure 13. The arthropod stimuli used in Ryan et al. (2013). Each cell in the 2 × 2 repeated
measures design contains two arthropods. The original stimuli did not show the arthropod names.
Figure adjusted from Ryan et al. (2013).

arthropods were selected to vary along two dimensions with two levels: disgustingness (i.e.,
low disgusting and high disgusting) and frighteningness (i.e., low frighteningness and high
frighteningness). Figure 13 shows the arthropods and the associated experimental condi-
tions. For educational purposes, we ignore the gender factor, we ignore the fact that the
ratings are not at all normally distributed, we analyze data from a subset of 93 participants,
and we side-step the nontrivial question of whether to model the item-effects. The pertinent
model is a linear mixed model, and the only difference with respect to the previous example
is that we now require a prior for the new random factor –in this case, participants– which
is set a little wider because we assume a priori that participants are variable in the main
effect (for an in-depth discussion see Rouder et al., in press).

Our analysis asks whether and how people’s hostility towards arthropods depends on
their disgustingness and frighteningness. As each participant’s rated all eight arthropods,
these data can be analyzed using a repeated measures 2 × 2 ANOVA. A classical analysis
reveals that the main effects of disgustingness and frighteningness are both highly significant
(i.e., p’s < .001) whereas the interaction is not significant (p = 0.146). This is consistent
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Figure 14. Hostility ratings for arthropods that differ in disgustingness (i.e., LD for low disgusting
and HD for high disgusting) and frighteningness (i.e., LF for low frighteningness and HF for high
frighteningness). Error bars show 95% confidence intervals. Data kindly provided by Ryan et al.
(2013). Figure created with JASP.

with the data as summarized in Figure 14: arthropods appear to be particularly unpopular
when they are high rather than low in disgustingness, and when they are high rather than
low in frighteningness. The data do not show a compelling interaction. To assess the
evidence for and against the presence of these effects we now turn to a Bayesian analysis.

To conduct the Bayesian analysis the user first needs to open the data set in JASP.11

Next the user selects the “Bayesian Repeated Measures ANOVA” input panel that is nested
under the ribbon option “ANOVA”. Next the user needs to name the factors (here “Disgust”
and “Fright”) and their levels (here “LD”, “HD”, and “LF”, “HF”). Finally the input
variables need to be dragged to the matching “Repeated Measures Cells”.

The analysis produces the output shown in the top panel of Figure 15. As before,
the column “Models” lists the five different models under consideration. The BF10 column
shows that compared to the Null model, all other models (except perhaps the Disgust-only
model) receive overwhelming support from the data. The model that receives the most
support against the Null model is the two main effects model, Disgust + Fright. Adding

11The data set is available on the project OSF page and from within JASP (i.e., File→ Open→ Examples
→ Bugs).
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the interaction decreases the degree of this support by a factor of 3.240/1.245 = 2.6. This is
the Bayes factor in favor of the two main effects model versus the model that also includes
the interaction. The same result could have been obtained directly by adding “Disgust”
and “Fright” as nuisance variables, as was illustrated in the previous example.

The “P(M)” column shows the uniform distribution of prior model probabilities across
the five candidate models, and the “P(M|data)” column shows the posterior model proba-
bilities. Finally, the “BFM” column shows the change from prior model odds to posterior
model odds. This Bayes factor also favors the two main effects model, but at the same time
indicates mild support in favor of the interaction model. The reason for this discrepancy
(i.e., a Bayes factor of 2.6 against the interaction model versus a Bayes factor of 1.5 in favor
of the interaction model) is that these Bayes factors address different questions: The Bayes
factor of 2.6 compares the interaction model against the two main effects model (which
happens to be the model that is most supported by the data), whereas the Bayes factor
of 1.5 compares the interaction model against all candidate models, some of which receive
almost no support from the data. Both analyses are potentially of interest. Specifically,
when the two main effects model decisively outperforms the simpler candidate models then
it may be appropriate to assess the importance of the interaction term by comparing the
two main effects model against the model that adds the interaction. However, it may hap-
pen that the simpler candidate models outperform the two main effects model – in other
words, the two main effects model has predicted the data relatively poorly compared to the
Null model or one of the single main effects models. In such situations it is misleading to
test the importance of the interaction term by solely focusing on a comparion to the poorly
performing two main effects model. In general we recommend radical transparency in sta-
tistical analysis; an informative report may present the entire table shown in Figure 15. In
this particular case, both Bayes factors (i.e., 2.6 against the interaction model, and 1.5 in
favor of the interaction model) are “not worth more than a bare mention” (Jeffreys, 1961,
Appendix B); moreover, God loves these Bayes factors almost an equal amount, so it may
well be argued that the discrepancy here is more apparent than real.

As the number of factors grows, so does the number of models. With many candidate
models in play, it may be risky to base conclusions on a comparison involving a small
subset. In Bayesian model averaging (BMA; e.g., Etz & Wagenmakers, in press; Haldane,
1932; Hoeting, Madigan, Raftery, & Volinsky, 1999) the goal is to retain model selection
uncertainty by averaging the conclusions from each candidate model, weighted by that
model’s posterior plausibility. In JASP this is accomplished by ticking the “Effects” input
box, which results in an output table shown in the bottom panel of Figure 15.

In our example, the averaging in BMA occurs over the models shown in the Model
Comparison table (top panel of Figure 15). For instance, the factor “Disgust” features in
three models (i.e., Disgust only, Disgust + Fright, and Disgust + Fright + Disgust * Fright).
Each model has a prior model probability of 0.2, so the summed prior probability of the
three models that include disgust equals 0.6; this is known as the prior inclusion probability
for Disgust (i.e., the column P(incl)). After the data are observed we can similarly consider
the sum of the posterior model probabilities for the models that include disgust, yielding
4.497e-9 + 0.712 + 0.274 = 0.986. This is the posterior inclusion probability (i.e., column
P(incl|data)). The change from prior to posterior inclusion odds is given in the column
“BFInclusion”. Averaged across all candidate models, the data strongly support inclusion
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Figure 15. JASP screenshot for the output tables of the Bayesian ANOVA for the arthropod
experiment. The top table shows the model-based analysis, whereas the bottom panels shows the
analysis of effects, averaging across the models that contain a specific factor. See text for details.

of both main factors Disgust and Fright. The interaction only receives weak support. In
fact, the interaction term occurs only in a single model, and therefore its posterior inclusion
probability equals the posterior model probability of that model (i.e., the one that contains
the two main effects and the interaction).

It should be acknowledged that the analysis of repeated measures ANOVA comes with
a number of challenges and caveats. The development of Bayes factors for crossed-random
effect structures is still a topic of ongoing research. And in general, JASP currently does
not feature an extensive suite of estimation routines to assess the extent to which generic
model assumptions (e.g., sphericity) are violated.

Future Directions for Bayesian Analyses in JASP

The present examples provides a selective overview of default Bayesian inference in
the case of the correlation test, t-test, one-way ANOVA, two-way ANOVA, and two-way
repeated measures ANOVA. In JASP, other analyses can be executed in similar fashion (e.g.,
for contingency tables, Jamil et al., in press, in press; Scheibehenne, Jamil, & Wagenmakers,
in press; or for linear regression Rouder & Morey, 2012). A detailed discussion of the entire
functionality of JASP is beyond the scope of this article.

In the near future, we aim to expand the Bayesian repertoire of JASP, both in terms
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of depth and breadth. In terms of depth, our goal is to provide more and better graphing
options, more assumption tests, more nonparametric tests, post-hoc tests, and corrections
for multiplicity. In terms of breadth, our goal is to include modules that offer the function-
ality of the BAS package (i.e., Bayesian model averaging in regression, Clyde, 2016), the
informative model comparison approach (e.g., Gu, Mulder, Decović, & Hoijtink, 2014; Gu,
2016; Mulder, 2014, 2016), and a more flexible and subjective prior specification approach
(e.g., Dienes, 2011, 2014, 2016; Gronau et al., 2017). By making the additional functionality
available as add-on modules, beginning users are shielded from the added complexity that
such options add to the interface. In the short-term we also aim to develop educational ma-
terials that make JASP output easier to interpret and to teach to undergraduate students.
This entails writing a JASP manual, developing course materials, writing course books, and
designing a Massive Open Online Course.

Our long-term goal is for JASP to facilitate several aspects of statistical practice.
Free and user-friendly, JASP has the potential to benefit both education and research. By
featuring both classical and Bayesian analyses, JASP implicitly advocates a more inclu-
sive statistical approach. JASP also aims to assist with data preparation and aggregation;
currently, this requires that JASP launches and interacts with an external editor (see our
data-editing video at https://www.youtube.com/watch?v=1dT-iAU9Zuc&t=70s); in the
future, JASP will have its own editing functionality including filtering and outlier exclu-
sion. Finally, by offering the ability to save, annotate, and share statistical output, JASP
promotes a transparent way of communicating one’s statistical results. An increase in sta-
tistical transparency and inclusiveness will result in science that is more reliable and more
replicable.

As far as the continued development of JASP is concerned, our two main software
developers and several core team members of the JASP team have tenured positions. The
Psychological Methods Group at the University of Amsterdam is dedicated to long-term
support for JASP, and in 2017 we have received four million euro to set up projects that
include the development of JASP as a key component. The JASP code is open-source and
will always remain freely available online. In sum, JASP is here to stay.

Concluding Comments

In order to promote the adoption of Bayesian procedures in psychology, we have de-
veloped JASP, a free and open-source statistical software program with an interface familiar
to users of SPSS. Using JASP, researchers can obtain results from Bayesian techniques eas-
ily and without tears. Dennis Lindley once said that “Inside every Non-Bayesian, there is
a Bayesian struggling to get out” (Jaynes, 2003). We hope that software programs such
as JASP will act to strengthen the resolve of one’s inner Bayesian and pave the road for a
psychological science in which innovative hypotheses are tested using coherent statistics.
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Appendix
Visualizing the Strength of Evidence

Figure A1. A dart board analogy to intuit the strength of evidence that a Bayes factor provides.
Figure available at https://osf.io/m6bi8/ under under a CC-BY license.


