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Figure 1. Touchstone2 experiments consist of interactive “bricks” 1⃝ that specify independent variables, blocking, counterbal-

ancing and timing, and generate an interactive trial table 2⃝ and an interactive statistical power chart 3⃝.

ABSTRACT
Touchstone2 offers a direct-manipulation interface for gener-

ating and examining trade-offs in experiment designs. Based

on interviews with experienced researchers, we developed

an interactive environment for manipulating experiment

design parameters, revealing patterns in trial tables, and esti-

mating and comparing statistical power. We also developed

TSL, a declarative language that precisely represents experi-

ment designs. In two studies, experienced HCI researchers

successfully used Touchstone2 to evaluate design trade-offs

and calculate how many participants are required for par-

ticular effect sizes. We discuss Touchstone2’s benefits and
limitations, as well as directions for future research.

CCS CONCEPTS
•Human-centered computing→HCI design and eval-

uation methods; Laboratory experiments;
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1 INTRODUCTION
Human-Computer Interaction (HCI) researchers often com-

pare the effectiveness of interaction techniques or other in-

dependent variables with respect to specified measures, e.g.

speed and accuracy. Designing such experiments is decep-

tively tricky: researchers must not only control for extrane-

ous nuisance variables, such as fatigue and learning effects,

but also weigh the costs of adding more conditions or partic-

ipants versus the benefits of higher statistical power.

Unfortunately, the problem is greater than simply helping

individual researchers design experiments. The natural sci-

ences face a “reproducibility crisis” —A recent survey of over

1500 scientists indicated that “more than 70% have tried and

failed to reproduce another scientist’s experiments.” [1]. One

explanation is the number of researcher degrees of freedom:

https://doi.org/10.1145/3290605.3300447
https://doi.org/10.1145/3290605.3300447
https://doi.org/10.1145/3290605.3300447
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the methodological decisions from study design up to publi-

cation [28], including how many participants are recruited

and assigned to which conditions [31]. Cockburn et al. [5]

argue persuasively in favor of pre-registering these decisions,

in line with other scientific disciplines. However, to make

this possible, the HCI community needs a common language

for defining and sharing experiment designs. We also need

tools for exploring design trade-offs, and capturing the final

design for easy comparison with published designs.

Our goal is to help HCI researchers generate and weigh

design choices to balance the inherent trade-offs among alter-

native designs. We present Touchstone2 (Figure 1), a software
tool for creating, comparing and sharing experiments that

includes:

● a visual environment to manipulate experiment designs

and their parameters;

● a graphical interface to weigh alternative designs and

highlight trial table patterns;

● an interactive visualization to assess statistical power;

● an online workspace to compare and share designs; and

● a declarative language, TSL, to describe complex ex-

periments with minimal constructs and operators.

After discussing related work, we present the results of

an interview study that informed the design of Touchstone2.
Next, we present the design rationale for Touchstone2 and the
TSL language, as well as the results of two workshops with

HCI researchers to assess the interface. Finally, we discuss the

benefits and limitations of Touchstone2, as well as directions
for future research.

2 RELATEDWORK
This paper focuses on two aspects of experiment design:

counterbalancing
1
and a priori power analysis. The research

literature includes different conventions for representing

experiment designs, and provides some software packages

for ensuring counterbalancing and assessing power.

Representing experiment designs
Individual research disciplines use various techniques for

optimizing experiment designs. For example, industrial man-

ufacturing uses Response surface design [2] and the Taguchi
method [23] for between-subjects designs. They treat prod-

uct elements as experiment subjects and focus solely on de-

termining the optimal number of levels for each independent

variable. In the natural sciences, Saldatova and King [29] cre-

ated a computer-readable ontology of scientific experiments

(expo) that defines terms related to scientific discovery: re-
search, null and alternative hypotheses, independent (IV) and

1
Statisticians use the more general term randomization design, which in-

cludes counterbalancing. The latter is more common in HCI. We use both

terms interchangeably in this paper.

The intercept often represents the 
baseline response of the DV without 
any influence from the modeled IVs.

IVs (e.g., input devices) are often categorical and are coded in      s. Each coefficient (     ) represents the effect 
of a condition of an IV to a DV (e.g., time). The meaning of each       depends on the coding scheme (e.g., 
treatment vs. baseline).

An interaction effect is captured by 
additional terms, which is usually 
multiplied by several x’s.

Epsilon captures the 
random errors  that 
are unexplained.
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Figure 2. Four experiment designs representations [7]
2
.

dependent variables (DV), and results. This helped automate

hypothesis generation and testing for yeast genomics exper-

iments [16]. However, since experiments in this domain are

restricted to simple Latin square designs, expo omits block-
ing and counterbalancing. Papadopoulos et al. [24] present
veevvie, an ontology that describes Information Visualiza-

tion data at the trial level, which unfortunately precludes

specifying trial order.

The statistical literature [7, 10] argues that experiment

designs serve two primary goals: 1) explaining effects and

2) explaining the assignment of treatment conditions to sub-

jects
3
. To explain effects, generalized linear models (GLM)

determine the appropriate statistical procedures for data

analysis (Figure 2 1⃝). Cell-mean tables 2⃝ summarize lev-

els of dependent variables for each condition (often used in

statistical reports and for power analyses).

Treatment condition assignments are often displayed as

trial tables, with one trial per line 3⃝, but their length and

complexity make them cumbersome to manipulate. Design
matrices provide two-dimensional representations of GLM

coefficients, but without order information 4⃝, as each row

in a design matrix may correspond to multiple replicated

trials. Text descriptions are also possible, but the lack of

agreed-upon formats and minimum ‘completeness’ require-

ments increases the likelihood of incomplete or ambiguous

experiment descriptions, especially within the page limita-

tions required by publishers. We argue that comparative

exploration of experiment designs requires a compact, yet

flexible, formal specification of how treatment conditions

are assigned to each participant.

2
There are multiple ways to model the error term in a GLM. See

dwoll.de/rexrepos/posts/anovaMixed.html based on [32].

3Subjects is the statistical term; we use participants for human subjects.

http://www.dwoll.de/rexrepos/posts/anovaMixed.html
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Software for specifying counterbalancing
Counterbalancing a design is the process of assigning treat-

ments to experiment units, e.g. participants. Experiments

using a within-participant factor must counterbalance the

treatment order to avoid systematic errors, minimize ran-

dom errors, and ensure that interaction effects—if present—

are captured [7]. Some statistical software packages, e.g.

JMP DOE [27], Design-Expert4, and the R package skpr [21]

support part of this process. Experimenters must specify a

GLM in order to generate trial tables with ordered sets of

treatment conditions per participant. The IV levels are then

optimized for maximum efficiency in large-scale, between-

subjects experiments. However, most HCI experiments are

small scale, with few participants [15], and often include

within-participant factors.

The crossdes R package [26] generates trial tables and

tabulates treatment frequencies by row, column, or concur-

rence, but only for within-subject designs. Each system offers

a wizard-style dialogue for entering parameters. Some in-

clude examples, but few are directly relevant to traditional

HCI experiments and none support comparing alternatives.

Both Touchstone [19] and later NexP [20] were designed

explicitly for HCI experiments that assess how human partic-

ipants interact with specific technologies. Both offer novice

researchers step-by-step instructions, with templates and

menus to gather the parameters needed to generate a trial

table. The Touchstone design platform leads users through

a series of screens that specify independent variables and

levels, blocking, counterbalancing, and timing. In-context

help encourages users to evaluate potential negative conse-

quences of particular decisions. The Touchstone run platform
presents the resulting counterbalanced sets of trials to ex-

periment participants. NexP offers an alternative question-

answer approach to enter experiment design parameters.

Both systems help users weigh the pros and cons of various

decisions, but are designed for tweaking one design at a time,

rather than systematically comparing alternatives. Neither

offers a direct manipulation interface for generating exper-

iment designs, nor an underlying declarative language for

uniquely specifying each experiment.

Software for a priori power analysis
The HCI literature typically sets alpha levels to 0.05, low-

ering the risk of false alarms, i.e. Type I errors that claim
an effect that does not exist. However, HCI experiments are

often small, with only 12-16 participants. While these may

detect large effect sizes, e.g., Bubble cursor’s [11] 30% speed

increase, they significantly increase the probability ofmisses,
i.e. Type II errors that do not find a real effect (Figure 3).

4
jmp.com, statease.com

What is true in the population?

Conclusion 
reached in 
a study

Power

Has no effect

Has no effect

Has an effect

Has an effect
Correct conclusion
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Correct conclusion

(p = 1 – β)
Type I Error
(p = α)

Type II Error
(p = β)

Figure 3. Type I and Type II errors, statistical power.

An a priori power analysis5 lets experimenters determine

the number of participants necessary to detect an effect of

a specified size, given a significance criterion. Several cal-

culators
6
and R packages, such as pwr [4], support power

analysis. G*Power [9], currently the most comprehensive

such, provides a form to enter the above parameters and cal-

culates the minimum sample size. The resulting power chart
shows relationships among sample size, power, and effect

sizes, helping users assess the trade-offs between the bene-

fits of additional power (detecting smaller effect sizes) and

the cost of adding participants. No current HCI experiment

design platform offers power analysis.

We argue that existing HCI experiment design platforms

should be extended to support generating and visualizing

alternative designs, based on randomization, power analysis,

and other factors. This requires a common format for repre-

senting experiments, so they can be replicated and shared

within the HCI community.

3 INTERVIEW STUDY
Prior to designing the Touchstone2 interface, we investigated
how experienced researchers currently design experiments:

What challenges do they face and how do they resolve them?

Participants. We recruited 10 researchers who had designed,

run and published one or more controlled experiments: 2

post-docs, 7 Ph.D. students and 1 graduate assistant, in Eco-

nomics (1), Biology (1), Psychology (2) and HCI (6).

Procedure. We interviewed participants at work for 30-60

minutes, using the critical incident technique [18]. We asked

them to describe, step-by-step, the design of their current or

most recent experiment, including any relevant tools or arti-

facts, e.g. spreadsheets. We probed for associated tasks, e.g.

how they counterbalanced conditions across participants.

Data collection. We recorded audio (5) and hand-written

notes (5). We took pictures of whiteboards and copied par-

ticipants’ hand-written notes, printed documents, scripts or

spreadsheets used to create or communicate their designs.

Results
Participants highlighted the following design challenges:

5
Shortened to power analysis in the paper

6
For example http://www.macorr.com/sample-size-calculator.htm and

http://www.dssresearch.com/KnowledgeCenter/toolkitcalculators.aspx

https://www.jmp.com
https://www.statease.com
http://www.macorr.com/sample-size-calculator.htm
http://www.dssresearch.com/KnowledgeCenter/toolkitcalculators.aspx
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Time constraints (8/10): P3 works with small children

with short attention spans — so sessions can last at most five

minutes. P9’s pointing experiment was limited to 30 minutes

to avoid fatigue.

Weighing design alternatives (6/10): P8 ran multiple

pilot tests over four months that detected subtle, confounded

learning effects. She ran a between-participants part to avoid

learning effects and a within-participants part to let them

compare the techniques. This required 27 participants, which

was costly to recruit and run.

Counterbalancing problems (6/10): P4 spent several

days unsuccessfully using a spreadsheet to generate a Latin

square for a complex experiment. Despite the color-coding,

his advisor was unable to verify his table and ended up

recreating it from scratch, using her own counterbalancing

method. P8 discovered a counterbalancing error at the third

level of an independent variable after running her experi-

ment. Fortunately, a post-hoc analysis showed no significant

carryover effect. P9 created a trial table with a Python script

but was not sure if it was counterbalanced correctly.

Representing experiment designs (7/10): P3 sketched

her design on paper and on a tablet, with figures created in

PowerPoint and Word, and P6 and P7 drew their designs on

paper to get feedback. All had to recreate these representa-

tions after the design was changed.

Power analysis to select sample size (4/10): None of

the HCI researchers used power analysis to choose the num-

ber of participants. Instead, they used the “at least 12” rule

of thumb for small-n statistics, plus whatever was neces-

sary for correct counterbalancing. Non-HCI participants

treated power analysis as a suggestion and made adjust-

ments later. For example, P1 added extra participants in case

some dropped out of his online experiments. Others pre-

ferred smaller sample sizes due to restricted access, e.g. P2’s

studies of hospital employees; or the cost of samples, e.g.

P10’s studies of RNA sequences. P3 recruited as many chil-

dren as possible and conducted post-hoc power analyses to

demonstrate statistical power.

Discussion
We found that participants face numerous constraints, some

predictable, e.g. P3’s limited session time; some emergent, e.g.

P8’s discovery of a learning effect. They struggle to weigh the

costs and benefits of different parameters and lack a standard

way to represent and thus communicate their experiments.

They also lack reliable methods for generating and verifying

counterbalanced trial tables and assessing statistical power.

4 DESIGNING TOUCHSTONE2
Touchstone introduced a streamlined process for counterbal-

ancing trials [19, Table 1], later adopted by NexP [20, Fig-

ure 1], with different views accessible in different tabs. The

Generate IVs and DVs

Operationalize DVs

Select and define IV levels

Design blocking structure

Determine number of replications for each block

Determine counterbalancing strategy for each block

Satisfy constraints?

Trial table

Narrative description
of the design 
parameters

Narrative description
of the variables

Randomization design

Testing

Conceptualization Generated artifacts

Refined description
of the constraints

[ … ][ … ]Yes

No

Discuss or pilot test the candidate design

Figure 4. Counterbalancing is highly iterative: Multiple arti-

facts (right) capture, reveal, and communicate the design.

Found a feasible N?

Select and define IV levels

Determine effect size scenariosPilot test
Literature

Convention 

Calculate statistical power

Explore trade-offs from the chart

Power analysisRandomization 
design

Conceptualization

Yes

No

0

.8

Total sample size

Po
we

r

20 24

f = 0.3
f = 0.25

Figure 5. Power chart: Compare several possible effect sizes.

results from our interviews highlight the iterative and col-

laborative nature of the process, the multiplicity of artifacts

generated to communicate designs (Figure 4), and the need

to support power analysis (Figure 5).

Counterbalancing process: Researchers generate artifacts (Fig-
ure 4, right) to explore or communicate experiment designs,

testing each candidate against constraints, e.g. number of par-

ticipants or maximum session duration. Such constraints are

often initially ill-defined, so researchers refine them based on

pilot tests or suggestions from colleagues, in order to fully

operationalize the design. Changes in earlier steps of the

process affect later steps. For example, adding one level to an

IV forces regeneration of the entire trial table. Both Touch-
stone and NexP let users repeat the operationalization step to

automatically generate new trial tables. However, users must

essentially start over if they make changes after importing

a trial table into a spreadsheet to explore counterbalancing

strategies or share with colleagues. Touchstone2 therefore

supports multiple parallel designs for easy comparison.
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Power analysis process: Statistical power (1 − β) is the prob-
ability of detecting a real population effect from the partici-

pants sampled in an experiment. This is computed from the

sample sizeN 7
, probabilityα of Type I errors

8
, and effect size9

in the real population. Studies with high statistical power are

more likely to detect smaller effect sizes, but require larger

numbers of participants.

Determining the experiment’s sample size requires α and

1− β thresholds, usually .05 and .80 [6, p. 56], and estimating

the effect size (Figure 5). The latter is difficult and may dis-

courage users from conducting a power analysis [17, p. 47].

Indeed, “power analysis cannot be done without knowing the
effect size in advance, but if we already know the size of the
effect, why do we need to conduct the study?”[22, p. 17].
To cope with this conundrum, researchers usually visu-

alize the relationships among N , power, and possible effect

sizes in a power chart (Figure 5, right) to weigh the benefits of
more power against the cost of more participants. In Figure 5

(left), increasing the sample size from 20 to 24 makes it easier

to correctly detect a smaller effect size of 0.25 instead of 0.3.

Power analysis may be conducted either in parallel or

after counterbalancing, depending on whether effect sizes

are known, either from the literature or prior work. If such

data is missing, researchers must either guess or run a pilot

study. Not surprisingly, few HCI researchers run power anal-

yses. Of 665 CHI 2018 papers we examined, 519 include the

term “experiment”. Of these, 111 mention counterbalancing,

but only five mention power analysis for choosing sample

size. Our interviews indicate that, even though some HCI

researchers know about power analysis, few use it, which

increases the likelihood of missing small effects. Touchstone2
facilitates power analysis, which helps researchers assess the

risks of low power and make better-informed choices.

5 TOUCHSTONE2
The goal of Touchstone2 is to facilitate exploration of experi-

ment designs. We describe the user interface for specifying

and comparing alternatives according to diverse criteria,

e.g. randomization strategies (counterbalancing, blocking,

replication), session length, and statistical power. Next, we

describe the TSL language for specifying experiment designs.

Touchstone2 User Interface
Each experiment consists of nested bricks that represent
the overall design, blocking levels, independent variables,

and their levels. Experiments can be assembled from scratch

or cloned from a template, e.g. a [2x3] design. Parameters

such as variable names, counterbalancing strategy and trial

7
Number of participants

8
Claiming an effect when one does not exist.

9
How much DVs (measures) change according to different IV levels.

bob_alice_1

Suitable for a multiple of 18 Participants

I plan to recruit 18 participants

Order effect coverage 100%

participant (or sub-block)

Latin square of 3 replications not serial

T Technique

Popup ( 5 sec )

Marking ( 5 sec )

I Item

5 ( 1 sec )

10 ( 1 sec )

15 ( 1 sec )

bob_alice_2

Suitable for a multiple of 6 Participants

I plan to recruit 24 participants

Order effect coverage 100 %

Marking ( 5 sec )

Popup ( 5 sec )

T Technique

Latin square of 3 replications not serial

participant (or sub-block)

Latin square of 1 replications not serial

I Item

5 ( 1 sec )

10 ( 1 sec )

15 ( 1 sec )

1 2

Figure 6. Two blocking strategies for a [2x3] within-

participants design to compare popup and markingmenus.

duration are specified in the bricks and used to compute

the minimum number of participants for a balanced design,

account for learning effects, and estimate session length. An

experiment summary appears below each brick assembly,

documenting the design.

In Figure 6, Design 1⃝ is a [2x3] within-participants design

to compare menus, where techniqe has two values: popup

and marking, and item has three values: 5, 10, and 15. Trials

are replicated three times. Design 2⃝ is blocked by technique,

using a Latin square.

Counterbalancing: Users arrange bricks in a 2D workspace to

enable side-by-side comparisons of alternatives. For example,

in Figure 6, Design 1⃝ features a Latin Square brick that

contains two bricks, one for each IV. This counterbalances

all variables within the same blocking level, resulting in a

balanced design for multiples of 18 participants. Design 2⃝

uses two Latin Square bricks. The brick that contains the

Item IV is nested inside the brick that contains the Technique
IV. This creates a blocked design, where trials are grouped

by Technique level (Figure 7). As a result, the design is now

balanced for multiples of only six participants.

Participant 1 P2 P3
Technique# Item T# I T# I

Figure 7. Trial Table Inspection with Fish-eye View
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Inspecting trial tables: Manipulating bricks immediately gen-

erates a corresponding trial table (Figure 7) that shows the
distribution of experiment conditions across participants.

Trial tables are faceted by participant. The width and height

of each table correspond to the numbers of participants and

trials, respectively, to facilitate comparison.

Touchstone2 provides two tools for in-depth trial table

inspection:

(1) Brushing [30]: clicking on one or more cells highlights

those corresponding to the same condition; clicking

on one or more rows highlights those corresponding

to the same combination of conditions.

(2) Fish-Eye Views to show a Table Lens [25] visualiza-

tion: The trial table shrinks to an overview, magnified

around the cursor for readability.

Users can easily compare among participants and among

designs on one screen, and examine their trade-offs. For

example, more independent variables will increase the study

duration for each participant, hence the height of the table

will be larger. Used together, these tools make it easy to

inspect patterns of trial conditions and compare experiment

designs. For example, Figure 7 highlights eachMarking level

to show how they are grouped in consecutive trials.

Touchstone2 orders trial tables so as to maximize counter-

balancing coverage for each successive participant, in case

too few participants are recruited or one drops out. Figure 8

illustrates this algorithm: Suppose we pick a trial table Pi for
the i-th participant. The table for the next participant, Pi+1,
is selected from those whose sequence of first-order effects

are least similar according to the Jaro similarity measure

(number of row-transpositions) [13].

A B
B C
C D

2 0 0Jaro similarity of the first order sequence w.r.t. P1:

Therefore, for P2, 
either table 2 or 3 
are preferred.

A  B  C  D
C D
D A
A B

C  D  A  BTrial order:
First-order sequences:

Participant1 Table 1

D C
C B
B A

D  C  B  A
Table 2

B A
A D
D C

B  A  D  C
Table 3

Figure 8. The Jaro similarity measure ensures maximum

counterbalancing coverage for each successive participant.

Power analysis: Touchstone2 starts with a set of default param-

eters
10
and plots a power chart for each active experiment

design in the workspace (Figure 9). Each power curve is a

function of the number of participants, and thus increases

monotonically. Dots on the curves denote numbers of par-

ticipants for a balanced design. The pink area corresponds

to a power less than the 0.8 criterion: the first dot above it

indicates the minimum number of participants.

10
Cohen’s medium effect size f = 0.25, Type II error β = 0.2, Nonsphericity

correction ϵ = 1. These default parameters can also be globally customized.

0.0

0.2

0.4

0.6

0.8

1.0

0 6 12 18 24 30 36
Number of Participants

P
ow

er

Design 1 (f = 0.25) Design 2 (f = 0.167 ± 0.03)

At the Cohen’s f = 0.167,
30 participants gives the
power of 0.85

Figure 9. Power analysis: With 18 participants Design 1 is

likely to find the effect. Design 2 needs 30 participants.

To refine this estimate, users can choose among Cohen’s

three conventional effect sizes [6, Chapter 8], directly enter

a numerical effect size, or use a calculator to enter mean

values
11
for each treatment of the dependent variable (often

from a pilot study). Users can select the factors and interac-

tions to include in the power calculation, which automati-

cally adjusts the degrees of freedom used to determine power.

By default, all factors are included without interactions (Fig-

ure 10).

The power chart is a common representation in power

analysis which is also available in G*Power. In Touchstone2’s
chart, the user can comparemultiple experiment designs and

interact with them: Hovering the mouse cursor displays

a vertical ruler that snaps to valid sample sizes. Users can

click on any experiment in the workspace to highlight the

associated curve. Users can also specify a margin of uncer-

tainty around the estimated effect size. The power chart then

displays an error band showing the corresponding margin

of error on the power calculation.

11
For skewed data, e.g. task completion time, users can instead input a

more robust central tendency estimate, e.g. geometric mean or median. We

leave non-interval data, e.g. Likert items, for future work.

5

5

10

15

10

15

Popup

T I Measurement

Popup

Popup

Marking

Marking

Marking

Figure 10. Calculating effect size from pilot data.



Touchstone2 CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk

Critical F
Type I error probability α

Type II error probability β

Non-central F distribution
Central F distribution Direction of piecewise integration

Stop when negligibly small

Figure 11. In the power calculation, the direction of integral

calculation were optimized for responsiveness.

Touchstone2 uses Cohen’s f as the measure of effect size as

it applies to multiple types of experiments, including within-

participant and mixed designs
12
. Type I and Type II error

rates (α , β) are calculated by integrating the probability dis-

tribution of a central and a non-central F distribution (Fig-

ure 11). Since this calculation
13
can reduce responsiveness,

we optimize the numerical integration by adjusting the di-

rection of each iteration according to the overlap between

the distributions (Figure 11, callout). On average, each curve

can be calculated in 300 ms with a single thread running on

a 2.5 GHz Intel Core i7 processor. We also spawn one thread

per curve to parallelize the calculation.

Online help: Touchstone2 displays contextual help to the right
of the screen, encouraging users to weigh specific trade-offs

relevant to their current design. Note that Touchstone2 is

not intended as a standalone tutorial or replacement for an

introductory course and assumes a basic understanding of

experiment design. Of course, Touchstone2 can complement

an HCI experiment design course.

Collaboration and sharing: Workspaces can be shared asyn-

chronously using a simple web server. Users can export their

trial tables in CSV format for use with statistical or other

software, e.g., to log data. Users can publish experiments

using the TSL format (described below), which contains a

concise description of variables and nesting. Users can also

export an entire workspace, including spatial placement of

the bricks, comments, and power analysis input parame-

ters, into an XML file. Touchstone2 can export Touchstone-
compatible XML files and load them into its run platform to

present the experiment [19].

Supported platforms: Touchstone2 is implemented as a web

application that works on Safari, Chrome, and Firefox.

The code relevant to experiment design is written in 3477

SLOC of JavaScript with extensive use of Google’s Blockly

12
According to the experiment design and selected effects (Figure 10, top),

Touchstone2 adjusts how the means values (Figure 10, bottom) are aggre-

gated and how the degrees of freedom in the F distributions are calculated

from the number of participants. See [9, Table 3] for detailed mathematical

formulae.

13
To produce smooth curves, we calculate power for sample sizes between

1 and 50. ?the sample size of {1, 2, . . . , 50}. At each step, we integrate the

probability distribution piecewise, in 0.1 increments, and adaptively increase

precision 10 times until the resulting curve increases monotonically.

library
14
. We debounce the change events within 200 ms

before recomputing the trial table in a Web Worker
15

to

avoid blocking the user interface. Touchstone2 can be used

locally or in conjunction with a lightweight web server (18

SLOC PHP script) for sharing designs.

Touchstone language (TSL)
The counterbalancing strategy specified by Touchstone2 bricks
is converted into a text specification using the Touchstone

language (TSL), a domain-specific declarative language for

describing randomization designs, e.g. counterbalancing. The

TSL design goals are to:

(1) Provide a concise and unambiguous description of ran-

domization designs;

(2) Cover a broad class of randomization designs;

(3) Minimize operators for composing such designs; and

(4) Reuse existing conventions as much as possible.

Each TSL experiment design is described by an assembly of

experiment design blocks that specify the counterbalancing

strategy, the independent variables and their levels, and the

number of replications. For example, a Latin-square block

with a 3-level IV device and four replications is written as:

<Latin(Device={M,T,J}, 4)>

Blocks can be assembled into a complex experiment design

using four operators: nest (A(B)), cross (A x B), concatenate

(< A, B >) and replicate (10 * A). For example, consider a

mixed-design experiment with one between-subject factor
16
:

pointer (accelerated, static), and a within-subjects factor:

device (mouse, trackpad, joystick). This experiment tests

different indices of difficulty ID with one training session

and ten test sessions. In the training session, the order of

the device is randomized, and the ID is fixed between 2 to 3.

In the test session, both factors are counterbalanced with a

Latin square. This experiment can be described in TSL as:

< Training = Between(Pointer = {A,S}, 1,
Random(Device = {M,T,J,R}, 2,

Fix(ID = {2,3}, 1))),
10 * Between(Pointer = {A,S}, 1,

Latin(Device = {M,T,J,R}, 3,
Latin(ID = {2,3,5,6}, 1))) >

TSL can express within-subjects, between-subjects, and

mixed designs. It implements four counterbalancing algo-

rithms frequently used in HCI studies: Latin-square, com-

plete permutation, random assignment, and fixed order. More

sophisticated counterbalancing algorithms can be added as

plug-ins. TSL also supports replications and multi-session

designs, which are currently beyond the scope of the Touch-
stone2 block-based interface.

14
https://developers.google.com/blockly/

15
https://www.w3schools.com/html/html5_webworkers.asp

16
Independent variables or IVs are also referred to as factors.

https://developers.google.com/blockly/
https://www.w3schools.com/html/html5_webworkers.asp
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The TSL generator is written in TypeScript
17
and com-

piled into JavaScript. The full TSL grammar comprises 12

production rules written in jison
18
. The generator can be

used from the command line (as a Node.js application) or

in a web application (as a JavaScript package) to generate a

trial table from a TSL specification.

TSL offers a compact and unambiguous format for com-

municating experiment designs, and could be used to pre-

register HCI experiments [5]. The textual format allows

changes to be easily identified with a diff tool and tracked

with a version control system. The Touchstone2 interface is
more convenient for exploring experiment designs, and can

both read and export TSL specifications.

6 EVALUATION
We ran two evaluation studies. A workshop assessed the

Touchstone2 interface to see how well pairs of experienced

researchers could counterbalance an experiment created by

one partner and explore design alternatives. A second ob-

servational study focused on how individual participants

assessed the statistical power of their earlier designs.

Workshop: Reproducing an Experiment
Participants. We recruited 17 experienced HCI researchers:

11 Ph.D. students, two post-docs and four faculty members.

Apparatus. Each teamworked with an early version of Touch-
stone2 on one of their personal laptops. This version sup-

ported within-participant designs, contextual help and fish-

eye views of trial tables.

Procedure. 16 participants worked in pairs, with at least one

highly experienced researcher in each team. The remaining

participant, a senior faculty member, worked alone. The

workshop was conducted around a U-shaped table to let

teams easily participate in the group discussion.

The workshop lasted approximately 90 minutes, begin-

ning with a 15-minute introduction to Touchstone2 and a

description of the following tasks:

(1) Choose your own current or recently published exper-

iment;

(2) Reproduce it with Touchstone2; and
(3) Explore at least two variations of the experiment.

Participants had 60 minutes to work. Two authors ob-

served the teams, answered questions about Touchstone2 and
noted any bugs, problems, desired features or suggestions for

improvement. We encouraged participants to write any feed-

back or observations in the text area provided. Participants

shared their impressions of Touchstone2 in a final plenary

discussion (15 minutes).

17
https://typescriptlang.org

18
https://zaa.ch/jison/

Data collection: We collected logs of each team’s experiment

creation process, their final experiment design(s) and their

written feedback, as well as the observers’ notes.

Results
Most teams (8/9) successfully reproduced their chosen ex-

periment in Touchstone2. (The unsuccessful team produced

a simpler variation of their experiment instead.) The experi-

ment designs that participants reproduced were relatively

complex: Six teams reproduced experiment designs that in-

volve three variables. Among these, half organized variables

into two nesting levels, and the rest used three nesting levels.

One team produced a design for four independent variables

in two blocks. All teams used a Latin square counterbal-

ancing strategy at least once. Two teams created a dummy

independent variable to denote training vs. testing trials.

All teams adjusted parameters within each design, e.g.

number of participants or counterbalancing strategies, and

inspected how trial tables change. Most teams (6/9) created

multiple versions of an experiment design (Mdn = 2,Max =
4). Two teams saved designs with different time estimates and

numbers of replications. Two others produced versions with

different nesting structures; one even split an independent

variable into two variables at the same nesting level.

In seven teams, only one partner knew the experiment

details. They mentioned that the visual representation of

the experiment made it much easier to explain the design.

They also mentioned that automatically updating trial tables

encouraged them to explore more alternatives.

Two teams found it difficult to keep track of the reasons

why they adjusted their design and suggested adding an an-

notation feature to document the process. Although some

were interested in highlighting trial tables, teams that ex-

plored more complex designs emphasized the need for high-

lighting the pattern of all conditions in a row. We added

these features to Touchstone2.

Observational study: Analyzing power
Participants. Ten individuals from the workshop were avail-

able for the second study: 5 Ph.D. students, 2 post-docs (P2,

P10) and 3 faculty members (P6–8).

Apparatus. Participants worked on a computer with a revised

version of Touchstone2 that included power analysis. We

uploaded the participant’s final experiment design from the

workshop.

Procedure. Sessions lasted approximately 30 minutes. The

experimenter presented the interface changes in Touchstone2
(v0.2), using one of the participant’s experiment designs as

an example, and explained the concept of statistical power,

when necessary. Participants were then shown how to toggle

the power analysis mode.

https://typescriptlang.org
https://zaa.ch/jison/
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Participants were asked to replicate their experiment, first

reassessing the current design and then determining the

appropriate number of participants. We used a think-aloud

protocol, with periodic reminders. At the end of the session,

the experimenter conducted a semi-structured interview.

Questions included how statistical power analysis affected

the number of participants they decided to recruit, as well

as comments about the user interface.

Data collection. We screen recorded 9/10 sessions and audio

recorded all 10 interviews. The interviewer and an additional

silent observer also took field notes.

Results
We selectively transcribed the audio and video based on field

notes. Two authors analyzed the transcripts using thematic

analysis [3] using a bottom-up approach, i.e. without prede-

fined research questions.

Attitude: P1–4 were explicitly skeptical of power analysis

because of (1) the difficulty in recruiting participants (P1–

3), (2) the existence of minimum sample size conventions

(P3,P4): “in my statistics courses, the rule is if you want to say
anything that is relevant [sic] grab 30 or more.” (P4), and (3)

the lack of incentive to run power analyses (P2,P4): “until it is
mandatory in a submission I would never do it” (P2)). However,
P2–4 mentioned its benefits while using Touchstone2.

Interpreting power charts: Five participants actively inter-

preted the power chart. Three wanted the power “above [the
threshold of 0.8] because it’s red” (P2). Three noted the di-

minishing returns as the power curve starts to plateau: “The
curve also gives you information how worth it is to keep adding
participants beyond [the plateau]” (P5). Three said that power
differences would influence their recruitment decisions: “If
recruiting participants is not very hard I would probably per-
haps [add more]. It seems more sound.” (P10). One said she

would use the power chart to justify recruiting fewer par-

ticipants. “If I am struggling [recruiting], I think the chart is
useful to say OK, no.” (P3)
Four participants said that power analysis would help

make “a stronger case” (P4) in their paper submissions, es-

pecially with small numbers of participants. As a reviewer,

P4 would judge a paper with power analysis more favorably,

although P6 was neutral about it.

Barriers to power analysis: Understanding standardized ef-

fect size was a barrier for 9/10 participants (one of them is

even an expert in statistics). Five said that they do not know

how to interpret standardized effect size: “What would be the
range of values that would normally be?” (P2); “What’s the
intuition behind that? [...] and it is related to a specific domain
although for me it doesn’t say much” (P8, an expert in statis-

tics). Of these, three are knowledgeable about simple effect

sizes, e.g. percentage difference. Participants felt it would

be cumbersome to manually fill in the cells in the cell-mean

table (3/10), and asked about how to deal with outliers in

the data (3/10). The two experts in statistics wanted greater

transparency in how effect size is calculated.

Summary
These results suggest that Touchstone2 encourages users to
explore alternative counterbalancing designs. However, 5/9

teams iterated their designs within a single experiment brick

assembly and did not take advantage of the ability to manage

multiple designs in the workspace. A possible reason is that

the trial table is updated immediately after a change, making

it easy to spot the effect of the change. However, this loses

track of earlier designs. We could address this by improving

the interface for accessing historical versions, and by making

it even easier to duplicate a design.

Although participants quickly understood the benefits of

the interactive power chart, the costs of estimating and in-

terpreting standard effect size proved to be a major barrier.

We thus revised the Touchstone2 interface to first present the
power chart, using Cohen’s medium effect convention, and

then provided options for controlling effect size in increasing

order of complexity (see section 5). We also added an expla-

nation about standardized effect sizes and their calculation

in the context-sensitive help.

7 DISCUSSION
Touchstone2 opens several directions for future research for

both practical and statistical aspects of experiment design.

Default parameters and status quo bias
To calculate power, Touchstone2 uses default parameters and

Cohen’s conventions [6, Chapter 8]. These defaults allow us

to clearly signify the presence and the importance of statisti-

cal power without first requiring additional input. Although

these parameters are customizable in the Touchstone2 user
interface, users may leave them unchanged because of status
quo bias [14]. We recognize the risk that Touchstone2 might

encourage blind adoption of certain conventions without

reflection, just as with the .05 threshold for p-values in the

NHST paradigm. However, we argue that this issue arises in

the teaching of statistics and experiment design, as well as

the peer-review process itself. We hope that Touchstone2 can
contribute to the conversation about these issues. Ultimately,

the trade-off between supporting discoverability and the risk

of oversimplification is beyond the scope of this work.

Statistical significance and power analysis
Power analysis in Touchstone2 is a practice under the null-
hypothesis significance testing (NHST) paradigm. The the-

ory of power analysis—regardless of the software tools—can
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be abused for p-hacking. Researchers may calculate power

mid-experiment and add more participants until achieving

statistically significant results. Despite this problem and

other criticisms, conducting transparent and valid research

under the NHST paradigm is still possible through preregis-

trations [5], transparent communication of the results [8, 12],

and reporting effect sizes [12, Chapter 2]. Touchstone2 also
facilitates better NHST practices. For example, Touchstone2
presents the relationship between the number of partici-

pants and statistical power prominently in the UI. It also

facilitates calculating effect size from the results of pilot

studies or using effect sizes from the literature. (The HCI

community has created several guidelines and discussion

such as [12, 33].) We believe that these aids will persuade

researchers to plan experiments with high statistical power

instead of p-hacking.

Integrating data analysis
Experiment design is inextricably linked to data analysis: A

plan to aggregate data influences the experiment design. For

example, Fitts’s law experiments may be susceptible to high

variance between trials due to motoric noise. If multiple trial

replications, i.e. the same user performing the same tech-

nique multiple times, are averaged before statistical analysis,

the number of trials (from the counterbalancing design) will

differ from the sample size (in the power analysis). Therefore,

the researcher should consider a trade-off between adding

participants vs. increasing the number of trial replications

for each participant.

This highlights the need for a clearer link between ex-

periment design and data analysis. We believe that TSL and

Touchstone2 offer a basis for integrating both processes.

8 CONCLUSION
Our primary goal is to improve the quality and reproducibil-

ity of HCI experiments by offering researchers a tool for

specifying and comparing alternative experiment designs.

High-quality experiments require trade-offs: For example,

shorter experiments with fewer conditions are easier to an-

alyze and more comfortable for participants but provide

potentially fewer results. These trade-offs are particularly

challenging for HCI researchers, who commonly use small

numbers of participants and low-power statistical tests. Also,

experiments are more likely to be reproducible when re-

searchers have complete and unambiguous specifications of

experiment designs, which may be unavailable in research

papers due to the lack of common language and page limits.

In this paper, we present four contributions. First, an in-

terview study reveals that experiment design is iterative

and collaborative. Researchers create, revise, and exchange

design specifications and trial tables. However, keeping them

in-sync is tedious and error-prone. Researchers also weigh

the cost of participants against the benefit of statistical power.

Additionally, the cost of calculating statistical power itself

is also weighed against the practicality of its outcome. In

summary, researchers navigate the trade-offs not only about

the design itself but also about their design process.

Based on these findings, we present Touchstone2, a direct
manipulation interface for generating, comparing, and shar-

ing experiment designs. Touchstone2 lets researchers assess
experiment designs with four metrics: (1) learning effects,

(2) session duration, (3) number of participants, and (4) sta-

tistical power. These metrics are supported by instantaneous

feedback on trial tables and power charts as well as an inter-

active visualization for inspecting them. All are provided in

an online sharable workspace.

To improve the reproducibility of experiments, we con-

tribute TSL, a declarative language for experiment de-

signs that can express a large class of designs with few

constructs and operators. TSL lets researchers share their

designs in a concise and unambiguous format. A design ex-

pressed in TSL can be imported into Touchstone2, and can

generate a trial table with a command line. Other GUIs for

experiment design can also use TSL as a backend. TSL could

be integrated into future preregistration, review, and publi-

cation processes to reduce ambiguity of experiment designs.

Future work may extend TSL to, e.g., provide natural lan-

guage descriptions or alternative visualizations.

Touchstone2 was evaluated in two studies. Our results

show that Touchstone2 encourages experienced researchers

to explore alternative experiment designs and to weigh the

cost of additional participants against the benefit of detecting

smaller effects.

Both Touchstone2 and TSL are available as open source

projects
19
. We hope that they will provide a foundation for

creating a repository of HCI experiments that will act as a

resource for researchers, students, and educators to learn

from existing experiment designs, weigh the pros and cons

of specific experiments, and ultimately contribute to the

reproducibility of HCI experiments in the research literature.
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