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Abstract

This study explores a possible segregation mechanism assuming fuzzy group
membership. We construct a fuzzy set extension of Schelling’s spatial segregation
model. In the fuzzy Schelling model, each agent is assumed to have fuzzy mem-
bership in groups, which is typically assumed to represent the strength of the
agent’s group identity. The degree of membership is represented by the value of
the membership function. The model assumes that agents want to be with agents
with the same or stronger (less fuzzy) group identity than themselves. Agents
decide whether to stay or move depending on whether their neighborhood satis-
fies their desires. Analyzing a series of simulations reveals that: First, the fuzzy
Schelling model can reproduce segregation at the macro level; here, segregation
is formed by the accumulation of agents’ modest desires and actions. This is the
most important property of the Schelling model. Second, agents’ behavior and
situation differ depending on the fuzziness of their membership. Notably, agents
with less fuzzy membership play an important role in the system’s equilibrium.
Third, the tendency to reach equilibrium differs depending on the density of the
space, required similarity level in the neighborhood, and initial distribution of
membership values. Finally, we discuss the implications of the results.
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1 Introduction

Since Schelling introduced a checkerboard model of spatial segregation [16, 17], this
model has attracted extensive research attention. It has not only inspired studies
directly related to empirical residential segregation phenomena [2] but also those trying
to theoretically understand the model as evolutionary game [25, 27, 28] or pure physical
processes [22].

The Schelling model demonstrates by simulation that members of two initially
randomly scattered groups become distinctly segregated at the macro level as they
repeatedly move. This is driven by their modest desire to be with at least some
neighbors who are of the same group as themselves.

The Schelling model derives macro-level emergent properties (i.e., residential seg-
regation) by applying simple assumptions to agents’ utility and action choices. In
this sense, the model is a pioneering and good example of an agent-based model.
Based on the Schelling model, various extended models with certain characteristics
have been proposed in several fields, and especially in social and computer sciences
[1, 4, 5, 7, 8, 12, 18, 21, 24, 29].

Here, we extend the Schelling model by incorporating a new feature: fuzzy
membership in groups, represented by fuzzy sets.

The simplest Schelling model assumes two distinct groups (e.g., blacks and whites;
and surfers and bathers). The membership in each group can be mathematically rep-
resented by a characteristic function for a conventional set (crisp set). For example,
for two sets A and B where all people are members of one of them and there is no
overlap, membership in A and B can be represented by the characteristic functions
φA and φB , respectively as follows:

φA(x) =

{
1 x ∈ A

0 x /∈ A
, φB(x) = 1− φA(x). (1)

However, in reality, there are limited cases in which all individuals have clearly
defined memberships at all times. Rather, the definitions or boundaries of groups are
typically ambiguous, or the criteria for group membership vary from individual to
individual. For example, membership in a racial or ethnic group leaves a gray area
in terms of both the individual’s self-perception and others’ perception depending on
the race and ethnicity of one’s parents; gradations of appearance such as skin, eye, or
hair color; and differences in language and cultural background. This is true even for
seemingly clear and distinct groups, such as the Japanese [10, 23].

As a general model that allows for such ambiguous group membership, this study
attempts to extend the Schelling model by adopting the fuzzy set framework, first
proposed by Zadeh [26]; in particular, we consider the idea of a membership function.
In this fuzzy set framework, the membership function of fuzzy set A, denoted as µA(x),
is defined as a function that maps an element x in the universe X to a real value in the
interval from 0 to 1; that is, µA : X → [0, 1], representing the degree of membership
of x in set A, where 1 is full membership, 0 is complete non-membership, and 0.5
represents the midpoint that signifies neither full nor a non-membership. Thus, by
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extending the Schelling model with fuzzy membership functions, we can construct a
general residential segregation model that allows for fuzzy membership.

This extension allows us to understand how segregation can occur when people have
different group identities. This can help us in understanding some of the mechanisms
of historical events, such as those in Croatia and Rwanda, where ethnic boundaries
that were originally not clearly perceived were brought to the fore by agitation and
collective fear, leading to violent ethnic conflict [6, 9].

Hereafter, for simplicity, we call the fuzzy set extension of the Schelling model as
the “fuzzy Schelling model.” The remainder of this article proceeds as follows. We
first describe the assumptions of the fuzzy Schelling model in Section 2, and then
present the results of a series of model simulations in Section 3. Finally, we discuss
the implications of our results in Section 4.

2 Model

2.1 Model assumptions

In the fuzzy Schelling model, as in the conventional Schelling model, each cell of the
grid in the two-dimensional space is assumed to be a residence. A finite number of
agents are assumed to be distributed in the space and occupy one of the cells. In the
actual simulation, the space is assumed to be a torus, which is a space with periodic
boundary conditions.

Agents are assumed to identify with two groups, A and B. The degree of identifi-
cation of agent x with group A is represented by membership function µA(x) ∈ [0, 1].
As a baseline assumption, the degree of identification with the group B is represented
by µB(x) = 1− µA(x), which means that B is the complement of A in a fuzzy theory
framework [26].

Regarding agents’ desires, it is assumed that agents want to be with agents with the
same or stronger (less fuzzy) group identity than themselves. This can be understood
as a way of implementing people’s tendency to conform to the opinions of prototype
group members, as noted in self-categorization theory [13, 14]. Agents decide whether
to stay or move depending on whether their neighborhood satisfies their desires.

Let N(x) be the set of neighborhoods of x; that is, the set of agents residing
in the cells adjacent to the cell of x. As a baseline assumption, we use the Moore
neighborhood, which is the set of agents in the eight cells surrounding cell x.

Let p ∈ [0, 1] be the required similarity rate, which is an exogenous parameter that
determines the level of neighborhood similarity required by agents. Agents stay in
neighborhoods where the actual similarity rate for a group aligning with their identity
is equal to or greater than p; otherwise, they move randomly to an open space.

Specifically, for x who has an identity in the direction of group A, or x such that
µA(x) > 0.5, if

#{y ∈ N(x)|µA(y) ≥ µA(x)}
#N(x)

≥ p (2)
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holds, then x stays in the current position; otherwise x moves, where #S is the number
of elements in set S. Conversely, for x such that µA(x) < 0.5, or x who has an identity
in the direction of group B, if

#{y ∈ N(x)|µA(y) ≤ µA(x)}
#N(x)

≥ p (3)

holds, then x stays; otherwise x moves. For x such that µA(x) = 0.5, or x who has
indifferent identity between groups A and B, x stays as long as there is at least one
agent in the neighborhood. That is, #N(x) ≥ 1. For all types of agents, x is assumed
to move if there is no one in the neighborhood; that is, #N(x) = 0.

Figure 1 shows an example of the moving decision for x such that µA(x) = 0.6 with
the required similarity rate p = 0.5. In the left case, x stays in the current position
because the actual similarity rate in the neighborhood is 0.5, which is equal to p. In
the right case, x moves to the open space because the actual similarity rate in the
neighborhood is 0.33, which is less than p.

Fig. 1 Moving decision for x such that µA(x) = 0.6 and p = 0.5.

2.2 Simulation conditions

In the simulation, the exogenous conditional variables are the size of the space, density
of agents in the space, denoted by d, and required similarity rate p. Given the size and
density of the space, the actual number of agents is determined.

In addition, the results of the simulation depend on the distribution of the values
of the membership function for group A (or B) of the agents. We assume that the
distribution follows a beta distribution. That is, µA ∼ Beta(α, β), where the two
parameters of the beta distribution α and β are used to represent differences in the
shape of the distribution. Here, we consider the following three as typical cases (Figure
2):

• uniform: α = 1, β = 1
• unimodal: α = 2, β = 2
• bimodal: α = 0.5, β = 0.5

The uniform distribution is a case in which agents are randomly distributed with
respect to their group identity; this is the baseline and benchmark assumption. In the
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Fig. 2 Three cases of beta distribution

bimodal distribution, agents are divided into two groups with strong identities. In the
unimodal distribution, the majority of agents have an intermediate identity between
A and B, or weak identities.

In the actual simulation, the membership values vary from 0 to 1 in increments of
0.1 for simplicity.

2.3 Measurements

The following three measures are used to determine the current state of the agents
during the simulation process.

First, the most basic measure is the percentage of agents who are not satisfied with
the current situation in their neighborhood and are willing to move, simply called
“percent unhappy.” When the percent unhappy is zero, no one is moving and the
situation is in equilibrium.

Second, the neighbor similarity of an agent x, denoted by s(x), is defined as follows:

s(x) = 1− 1

#N(x)

∑
y∈N(x)

(µA(y)− µA(x))
2. (4)

s(x) ranges from 0 to 1, indicating that the similarity between x and its neighbors is
low (high) when s(x) is close to 0 (1).

Third, the fuzziness of the group identity is considered. An agent x’s membership
in group A or B is the most distinct when the membership value is 0 or 1, and is the
most fuzzy when the membership value is 0.5. Therefore, the fuzziness of the group
identity of an agent x can be measured by the binary entropy of µA(x) (or equivalently
µB(x) = 1− µA(x)). The binary entropy of p, denoted by h(p), is defined as follows:

h(p) = −p log2 p− (1− p) log2(1− p). (5)

The fuzziness of a set can be measured using the mean of the binary entropy of the
elements in the universe [3, 19]. Then, the fuzziness of the group identity among x’s
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neighbors, denoted by ϕ(x), is defined by the following:

ϕ(x) =
1

#N(x) + 1

∑
z∈N(x)∪{x}

h(µA(z)), (6)

ranging from 0 as the most distinct to 1 as the most fuzzy.

3 Results

3.1 A uniform distribution

Here, the result of the simulation with a uniform distribution is used as an example.
The size of the space is assumed to be 50 × 50, density of agents d is assumed to be
0.7, and required similarity rate p is assumed to be 0.3. The initial distribution of the
agents’ membership value for A is assumed to be uniform, where α = 1 and β = 1.
The simulation is run for up to 200 time steps or until equilibrium is reached.

In total, the simulation actually ends in 147 steps. Figure 3 shows the initial and
final distribution of membership value µA(x). Each different color represents a different
membership value for group A. The animation of the simulation is provided as a
supplement file.

Fig. 3 Initial and final distribution of µ for the simulation with uniform distribution (α = 1, β =
1, d = 0.7, and p = 0.3)

In the initial state, the agents are randomly distributed. However, in the final state,
the agents are clustered by color because of their modest preference, which requires
at least 30% of neighbors to have a similar or stronger group identity compared to
themselves.

A closer look at the equilibrium state at the final point reveals that the colors
are scattered and locally concentrated rather than concentrated in one or two places.
However, they form large clusters of warm or cold tonal colors that indicate the same
identity direction. There are also cases where clusters that strongly identified with
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group A (membership value is around 1) and group B (membership value is around
0), respectively, were adjacent to each other.

Figure 4 shows the initial and final distributions of the fuzziness of the neighbor-
hood ϕ(x) of the simulation. In the equilibrium state at the final time point, several
hotspots of low fuzziness are observed, corresponding to proximity clusters with strong
identities.

Fig. 4 Initial and final distribution of fuzziness for the simulation with uniform distribution (α =
1, β = 1, d = 0.7, and p = 0.3)

To analyze how the states of the agents change at each step and reach equilibrium,
we classify the agents according to the entropy value of their membership values and
observe the change in percent unhappy, average similarity, and average fuzziness. Here,
we can assume that the lower the entropy value, the stronger the group identity.
The correspondence between membership and entropy values is as follows: h(0) =
h(1) = 0.000, h(0.1) = h(0.9) = 0.469, h(0.2) = h(0.8) = 0.722, h(0.3) = h(0.7) =
0.881, h(0.4) = h(0.6) = 0.970, and h(0.5) = 1.000.

First, we examine the change in percent unhappy (Figure 5). In the initial state,
the lower the entropy value, the lower the percentage of unhappy agents and the faster
it decreases afterwards. Even after agents with high entropy (i.e., neutral or not strong
identity) settle down early, agents with low entropy (strong identity) tend to wander
for longer in search of a place that meets their requirements.

Figure 6 shows the change in average similarity. The average similarity in the
initial state varies depending on the entropy value. The group with the highest entropy
with a membership value of 0.5 has the highest tolerance for heterogeneity and settles
quickly so that the average similarity remains almost unchanged throughout. The
other groups show increasing similarity toward equilibrium. However, the group with
the lowest entropy values with membership values of 0 and 1 has smaller values than
the other groups with intermediate entropy values. This suggests that agents with the
strongest identities tend to live in areas with not very high purity of group identity.
This finding is interesting in terms of its correspondence with the empirical evidence.
In this extreme case, there are areas where agents with membership values of 0 and
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Fig. 5 Change in percent unhappy for each entropy value of the simulation with uniform distribution
(α = 1, β = 1, d = 0.7, and p = 0.3)

1 live next to each other, as seen in Figure 3. This indicates that the micro-level
desire of people to have neighbors with the same or stronger identities as themselves
paradoxically results in neighbors with sharply different identities at the macro-level.

Fig. 6 Change in average similarity for each entropy value of the simulation with uniform distribution
(α = 1, β = 1, d = 0.7, and p = 0.3)

Finally, we check the change in fuzziness in Figure 7. When moving from the
initial state to the next step, the average fuzziness corresponding to each entropy
value changes substantially. This is mainly because of cases with no or few neighbors
in the randomly distributed initial state. After the next step, the average fuzziness
decreases for the low entropy values h = 0.000 and 0.469 but increases slowly for other
values. Interestingly, the fuzziness of the agent with the strongest group identity with
an entropy value of zero decreases significantly. This indicates that the movement
and reallocation based on the modest desires of individual agents increases the clarity
and distinctiveness of the group identity of the neighborhood of the agents with the
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strongest identity. This corresponds to a situation where strong identities are adjacent
to each other, as shown earlier.

Fig. 7 Change in average fuzziness for each entropy value of the simulation with uniform distribution
(α = 1, β = 1, d = 0.7, and p = 0.3)

3.2 Results of different settings

Next, we examine how the change in the three measures of the simulation vary with
different initial conditions for the parameters of the distribution α and β, density d,
and required similarity rate p. The distribution types are uniform (α = 1, β = 1),
unimodal (α = 2, β = 2), and bimodal (α = 0.5, β = 0.5). The density is d = 0.3, 0.5,
and 0.7. The required similarity is p = 0.3, 0.5, and 0.7. The size of the space is 50×50.
The simulation is run for up to 200 time steps or until equilibrium is reached.

Figure 8 shows the change in the three measures for a uniform distribution with
different densities d and required similarity rates p. For the same density, as the
required similarity rate increases, a group of agents with lower entropy values is less
likely to settle. Thus, the simulation as a whole is less likely to reach equilibrium.
Furthermore, for the same required similarity rate, as the density increases, it becomes
more difficult to find better available space. Thus, equilibrium is reached more slowly
or even harder to reach.

Figures 9 and 10 show the results for the unimodal and bimodal distributions,
respectively. In general, the bimodal distribution reaches equilibrium faster than the
unimodal and uniform distributions, even when the density and required similarity
are the same. Meanwhile, the unimodal distribution is less likely to reach equilibrium
than the bimodal and uniform distributions. This is because the unimodal distribution
has few neighbors whose identities are the same or stronger than one’s own. This
makes it harder to find a suitable location. Meanwhile, in a bimodal distribution,
there are many such neighbors, making it easier to find them. The Schelling’s original
model assumes a crisp set, which can be regarded as a perfect bimodal membership
distribution, hence it reaches equilibrium faster than the fuzzy extension models.
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Fig. 8 Change in the three measures for the uniform distribution (α = 1 and β = 1) with different
densities d and required similarity rates p

4 Discussion

We introduce and examine the fuzzy Schelling model. Here, we discuss the implications
of the simulation results. First, although the fuzzy Schelling model is more complex and
less likely to reach equilibrium than the original crisp Schelling model, it reproduces the
most important property of segregation at the macro level formed by the accumulation
of agents’ modest desires and actions.

The advantage of this extended model is that it shows that the behavior and
neighborhood of agents leading to equilibrium differ depending on the fuzziness of
their membership. In particular, agents with strong identities, represented by low
entropy values, have more difficulty finding a suitable location, and therefore, wander
for longer. They are forced to avoid high-entropy neighborhoods in which they have
already settled. Consequently, even when they reach equilibrium, they settle in places
with relatively low similarity and neighborhood fuzziness. Typically, this is a situation
in which members of different groups with strong identities are adjacent to each other.
This result predicts the case where strong identities are paradoxically adjacent and
high tensions arise with highly diverse identity distributions. Overall, it reveals one
potential mechanism for the emergence of ethnic conflict.

Furthermore, the tendency to reach equilibrium differs depending on the initial
distribution of the membership values. In a unimodal distribution with many inter-
mediate identities, the small number of agents with strong identities is a disturbing
factor, and the system reaches equilibrium more slowly. However, in a bimodal dis-
tribution with many identities at both extremes, each agent is more likely to find a
neighborhood that meets their requirements, resulting in a relatively fast equilibrium.
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Fig. 9 Change in the three measures for the unimodal distribution (α = 2 and β = 2) with different
densities d and required similarity rates p

The ultimate situation is the original Schelling model with crisp sets. That is, the low
fuzziness of the system makes it stable, whereas high fuzziness destabilizes it.

Finally, we discuss the further developments and potential applications of this
model. This study introduces the basic idea of a fuzzy extension of the Schelling model
under basic assumptions. Future works can extend this model to address a wider
variety of social phenomena by adding further elements and assumptions. For example,
the model assumes that the initial membership value does not change throughout the
steps; future works can change this value depending on the neighborhood’s situations.

Furthermore, the model can be applied not only to the actual issues of residential
segregation but also to the issue of separation and coherence of opinions in an abstract
opinion space, such as political polarization.

In recent years, political polarization has been observed in many democratic soci-
eties, and various social science studies have explored its mechanisms [11]. Some argue
that the recent rapid development of the Internet and social networking services,
and their algorithms has created a filter bubble that facilitates political polarization
[15, 20]. Meanwhile, the fuzzy extension of the Schelling model can be used to exam-
ine a more general mechanism by which group identity or opinion is reinforced by a
general tendency toward network homophily.

Supplementary information. The animation of the simulation in Section 3.1 is
provided as Supplement1.mp4.

Acknowledgments. This study was supported by JSPS KAKENHI Grant Number
23K01808.
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Fig. 10 Change in the three measures for the bimodal distribution (α = 0.5 and β = 0.5) with
different densities d and required similarity rates p

Data availability. This study does not use any empirical data. The python code
for the simulation is available at the author’s GitHub repository after acceptance.

References

[1] Bruch, E.E. and R.D. Mare. 2006. Neighborhood choice and neighborhood change.
American Journal of Sociology 112 (3): 667–709. https://doi.org/10.1086/507856 .

[2] Clark, W.A.V. and M. Fossett. 2008. Understanding the social context of
the schelling segregation model. Proceedings of the National Academy of Sci-
ences 105 (11): 4109–4114. https://doi.org/10.1073/pnas.0708155105 .

[3] De Luca, A. and S. Termini. 1972. A definition of a nonprobabilistic entropy in
the setting of fuzzy sets theory. Information and Control 20 (4): 301–312. https://
doi.org/10.1016/S0019-9958(72)90199-4 .

[4] Fossett, M. 2006. Ethnic preferences, social distance dynamics, and residential seg-
regation: Theoretical explorations using simulation analysis. The Journal of Math-
ematical Sociology 30 (3-4): 185–273. https://doi.org/10.1080/00222500500544052
.

[5] Fossett, M. 2011. Generative models of segregation: Investigating model-generated
patterns of residential segregation by ethnicity and socioeconomic status. The
Journal of Mathematical Sociology 35 (1-3): 114–145. https://doi.org/10.1080/
0022250X.2010.532367 .

12



[6] Gourevitch, P. 1998. We Wish to Inform You That Tomorrow We Will Be Killed
with Our Families: Stories from Rwanda. New York: Farrar, Straus and Giroux.

[7] Grantham, E.O. and P.J. Giabbanelli 2020. Creating perceptual uncertainty in
agent-based models with social interactions. In 2020 Spring Simulation Conference
(SpringSim), pp. 1–12.

[8] Hazan, A. and J. Randon-Furling. 2013, Oct. A schelling model with switching
agents: decreasing segregation via random allocation and social mobility. The Euro-
pean Physical Journal B 86 (10): 421. https://doi.org/10.1140/epjb/e2013-31142-1
.

[9] Ignatieff, M. 1994. Blood and Belonging: Journeys Into The New Nationalism.
New York: Farrar, Straus and Giroux.

[10] Ishida, A. 2016. Imagined conditions of the ”Japanese”: Social category analysis
of internet survey data. Japanese Sociological Review 67 (2): 182–200. https://doi.
org/10.4057/jsr.67.182 .

[11] Jost, J.T., D.S. Baldassarri, and J.N. Druckman. 2022. Cognitive–motivational
mechanisms of political polarization in social-communicative contexts. Nature
Reviews Psychology 1 (10): 560–576. https://doi.org/10.1038/s44159-022-00093-5 .

[12] Liu, Z., X. Li, A. Khojandi, and S. Lazarova-Molnar 2019. On the extension of
schelling’s segregation model. In 2019 Winter Simulation Conference (WSC), pp.
285–296.

[13] McGarty, C. 1999. Categorization in Social Psychology. London: SAGE.

[14] McGarty, C., J.C. Turner, M.A. Hogg, B. David, and M.S. Wetherell. 1992.
Group polarization as conformity to the prototypical group member. British Jour-
nal of Social Psychology 31 (1): 1–19. https://doi.org/https://doi.org/10.1111/j.
2044-8309.1992.tb00952.x .

[15] Pariser, E. 2011. The Filter Bubble: What The Internet Is Hiding From You. New
York: Penguin Books.

[16] Schelling, T.C. 1971. Dynamic models of segregation. The Journal of Mathe-
matical Sociology 1 (2): 143–186. https://doi.org/10.1080/0022250X.1971.9989794
.

[17] Schelling, T.C. 1978. Micromotives and Macrobehavior. New York: W. W. Norton
& Company.

[18] Silver, D., U. Byrne, and P. Adler. 2021, 01. Venues and segregation: A revised
schelling model. PLOS ONE 16 (1): 1–35. https://doi.org/10.1371/journal.pone.
0242611 .

13



[19] Smithson, M. and J. Verkuilen. 2006. Fuzzy Set Theory: Applications in the Social
Sciences. Thousand Oaks: Sage Publications.

[20] Sunstein, C.R. 2017. Republic: Divided Democracy in the Age of Social Media.
Princeton, NJ, USA: Princeton University Press.

[21] Urselmans, L. and S. Phelps. 2018, 03. A schelling model with adaptive tolerance.
PLOS ONE 13 (3): 1–24. https://doi.org/10.1371/journal.pone.0193950 .
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