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Abstract

Learners often struggle to overcome the tendency to value short-term pleasure higher
than long-term goal fulfilment. The recent trend to add game-like elements such as
points and badges to educational contexts in order to enhance learner’s motivation
has not been able to consistently address this issue. That is likely due to the fact that
such interventions often make the existing motivational dynamics more salient but
do not change them. Research has shown that focusing incentives on effort rather
than performance can have a positive impact on learner’s academic achievements.
The concept of optimal brain points developed by Xu, Wirzberger & Lieder (2019)
demonstrates that methods from the field of reinforcement learning allow to align
short-term rewards for learning choices with their expected long-term benefit. In this
thesis project, a principled and scalable approach to incentivizing efficient learning
choices is developed based on these insights and applied to a real-world educational
game. Specifically, the approach entails a formal model of the educational game and
can compute the choice expected to maximize the learner’s progress. Its evaluation
in a controlled online experiment with a simplified learning task produced promising
results, showing that the derived incentives can positively impact both learners’ choice
behaviour and their learning outcomes. Therefore, an evaluation of the approach in
the educational game is planned as a result of this thesis project.
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1 Introduction

Do you have a long list of bookmarks to interesting articles you want to read one day?
Or do you maybe keep getting reminders to continue your attempt to freshen up your
Spanish from before your last vacation? Or are you still subscribed to that YouTube
channel offering free guitar lessons without having touched your guitar in months?
You are not alone.

Nowadays, more people can access digital educational resources than ever before.
However, many people struggle to fully exploit the offered resources in the pursuit of
their personal learning goals [1]. One possible reasons for this is an aversion towards
failure, leading to a preference for easy tasks over tasks that might allow them to really
progress [1]. This can be viewed as a form of procrastination, as it stems from the
tendency to value short-term pleasure (succeeding at an easy task) over long-term
benefit (developing one’s skills or knowledge) [1, 2].

In the strive to help learners persist through such motivational difficulties, gamification
has often been the tool of choice [3]. Gamification means the incorporation of game
elements in a non-game context and is often applied in the form of points, badges
or a leaderboard [4]. Another approach is to convey lessons in form of educational
games [5].

The popularity of gamification is partly based on it being linked to positive effects on
motivation and retention [3]. On the other side, it has been shown that gamification
applied to educational contexts can also elicit negative effects. These can include
indifference, loss of performance and an increase in undesired behaviour [3] and are
often attributed to poor design [4]. Specifically, emphasizing momentary performance
through game elements can intensify rather than alleviate the problem of striving to
avoid failure [6]. Additionally, incentivizing schemes can often be gamed, meaning
that a learner can engage in behaviour that will serve to accumulate points or badges
without increasing the efficiency or success of their actual learning efforts [1, 6]. Over-
all, applications of educational games or gamification in educational contexts have
produced mixed results and in part lack a solid theoretical foundation [1].
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1 Introduction

A suitable foundation could be the concept of implicit theories of intelligence [7, 8].
Research based on this concept has shown that it is more beneficial to praise the
effort exerted by learners than their momentary performance [7]. Xu, Wirzberger &
Lieder (2019) built on that research and developed a computational approach that
aligns short-term rewards and expected long-term learning progress by calculating
the value of practice [1]. Thereby, it addresses both issues identified so far: what to
incentivize and how to do so.

The goal of this thesis project is to develop and test a principled, general approach
to incentivizing self-directed learning in digital learning environments in such a way
that students learn as much as possible as efficiently as possible. This goal is to be
reached by extending the method developed by Xu, Wirzberger & Lieder (2019) in a
way that it can be generally applied to different educational environments and scale
up to the complexities found in such real-world scenarios.

To that end, we discuss relevant findings concerning the application of gamification in
educational contexts and present the reinforcement learning methods forming the ba-
sis of the approach in Chapter 2. In Chapter 3, the general approach to incentivizing
self-directed learning in digital learning environments is presented and its application
to the the studied educational game explained. Chapter 4 details the design and the
results of a controlled online experiment evaluating the method developed in Chapter
3. A field evaluation of the method with the actual educational game was unfortu-
nately out of the scope of this thesis. Chapter 5 features other future directions of
research, before the thesis reaches its conclusion in Chapter 6.
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2 Background

This chapter gives an overview of the most relevant findings and concepts building the
base for this thesis. Firstly, we discuss the concept of gamification, its application to
educational contexts and the implications of different empirical findings for its design.
Secondly, an introduction to the field of reinforcement learning and the concepts and
methods relevant for the approach developed in Chapter 3 is given.

2.1 Gamification Applied to Educational Contexts

Gamification is the introduction of game elements to non-game contexts [9]. Namely,
those game elements are most often points, badges, levels and leaderboards [3,
10]. Points allow to provide quantified feedback and are often tied to levels. Badges
are typically rewarded for completing tasks outside the main scope. Leaderboards
communicate how individuals are doing in the gamified system and thereby can instill
a sense of competition [10].

Gamification interventions are thought to offer motivational affordances, leading to a
change in behaviour [9]. However, precise theories concerning the way gamification
impacts behaviour are still underdeveloped [1, 9, 10]. Nevertheless, the interest in
gamification has spiked in the last decade [9], as can be seen in Figure 2.1. A large
number of corporations have applied gamification methods hoping to enhance their
employees’ motivation [4]. Out of the same reasons, designers of educational envi-
ronments have been drawn to add gamification to their toolboxes [3]. Aside from being
put to practical use, gamification has also increasingly been the subject of academic
interest over the past years [9].

But before we delve into the research on gamification in education, the next section
discusses an important conceptual differentiation.
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2 Background

Figure 2.1: Increase in interest in gamification: The y-axis shows the number of
google searches for the term "Gamification" relative to the maximal ob-
served value (100%) over time denoted along the x-axis. Data source:
Google Trends (https://www.google.com/trends).

2.1.1 Gamification and Game-Based Learning

Closely related to gamification, and sometimes mixed-up with it, is game-based learn-
ing [11]. Game-based learning means the presentation of learning material within a
game [11]. To illustrate the difference, let us consider two examples: A math teacher
gives out stickers to students for handing in extracurricular exercise sheets and keeps
a poster in their classroom showing how many stickers each student has earned.
That is gamification. If the math teacher gives the homework to spend 30 minutes
playing a video game teaching math, that is game-based learning. The motivational
affordances offered by incentive structures such as points, badges and leaderboards
are often part of game-based learning, but do not necessarily need to be. This thesis
deals with the mechanisms and potential design possibilities of gamification. This is
done with the example of an educational game that employs both game-based learn-
ing and prominently features gamification mechanisms. In principle, the method that
is to be developed should also be applicable to pure gamification approaches which
do not involve an actual game. This claim will be revisited in Chapter 5.

Due to these reasons, we will primarily focus on empirical research concerning the
application of gamification in education as opposed to game-based learning, which of
course also includes research tackling both topics at once.
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2 Background

2.1.2 Empirical Research on Gamification in Education

On the one hand, applications of gamification in education have been reported to
improve students’ motivation for and performance in learning new material [3, 12].
On the other hand, gamification has also been linked to inconsistent and even neg-
ative effects on learners [3, 13]. Several studies report that the studied interventions
elicited a positive effect only on a subset of the participants [3]. More concerning,
gamification often does not only fail to produce the desired effects but does instead
lead to undesired behaviour [3].

One possible reason for that is a misalignment between the behaviour that is to be in-
centivised and the motivational affordances offered by the gamification scheme [4]. A
study highlighting the importance of carefully choosing which behaviour to incentivize
was conducted by Hakulinen, Auvinen, & Korhonen (2013) [14]. Computer science
students were awarded badges for handing in assignments early to encourage better
time management. There were also badges encouraging carefulness, which was op-
erationalized as handing in assignments with as few errors as possible, to reduce trial
and error approaches to passing assignments. It was found that students aiming to
earn time-management badges did so by sacrificing carefulness, which was of course
not the intended effect [14]. A more general example is wanting to enhance learning
but rewarding performance, which can lead learners to intensify their efforts to avoid
experiencing failure by sticking to tasks they have already mastered [1].

A second factor contributing to undesired behaviour is users gaming the system delib-
erately. Gaming the system, in this context, means learners trying to succeed strictly
in the terms of a gamified environments reward structure without engaging in the
learning task itself [6, 15]. Across studies, it becomes apparent that if the gamifica-
tion method can be gamed, it most probably will be gamed. In a study evaluating
gamifying an e-learning platform for university students, participants reported figuring
out that they could earn badges by uploading empty screenshots [16]. Another uni-
versity released a gamification initiative that - among other things - rewarded points
for clicking a link to reading material as a measure of the students’ reading efforts.
Students engaged in a competition concerning who could write the fasted script for
automatically clicking the link and thereby achieving astronomically high levels within
the first day of the gamification program [17].

It can be concluded that gamification interventions need to be well-planned and based
on a solid theoretical foundation in order to ensure positive impacts on the learners
[3]. The goal behaviour should be carefully chosen with the help of relevant research
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2 Background

on learning and motivation. Additionally, it should be made sure that the designed
intervention is not gameable. One important framework in motivational psychology is
the concept of implicit theories of intelligence [7]. This framework and its implications
for designing gamification interventions are discussed in the next sections.

2.1.3 Implicit Theories of Intelligence and their Impact on Motivation
and Performance

A large body of research shows that a person’s implicit theory of intelligence, also
called mindset, influences their learning motivation, persistence in face of challenges
and academic achievements [7, 8]. Explicitly, Carol S. Dweck distinguished the fixed
mindset and the growth mindset.
A person with a fixed mindset believes intelligence and abilities are innate and not
subject to change. Because of that belief, they are more likely to seek out challenges
which allow them to validate their abilities than those which provide them with oppor-
tunity to improve them [7]. Consequently, they are likely to attribute experiences of
failure to a lack of necessary intelligence [7]. Along the same lines, the necessity to
excert effort is more likely to be interpreted as an indicator of insufficient abilities [7].
A person with a growth mindset, on the other hand, believes that intelligence and abil-
ities can develop with practice and instructions from others. Therefore, they are likely
to perceive excerting effort as a mean to growing their abilities. Accordingly, they seek
challenges allowing them to build up their abilities and to seek support in facing them.
When faced with an experience of failure, they are more likely to attribute it to a lack
of effort or use of suboptimal strategies than to a lack of ability [7].
The effect the described mindsets may have on the people’s academic achievement
has been studied on numerous occasions [7]. For example, US-American middle
school students holding a growth mindset achieved higher overall grades and were
more likely to choose to enrol in a more challenging math course than those holding
a fixed mindset [18]. In an analysis of data from a complete cohort of Chilean 10th
graders, it was shown that the mindset held by a student can be used to predict their
academic achievement in a standardised test almost as well as their socio-economical
background [8]. Interestingly, students from lower-income families were more likely to
lean towards a fixed mindset while at the same time benefiting more from a growth
mindset than students from higher income families [8]. This is likely due to the fact
that a growth mindset can help a person to overcome challenges, of which there are
many for disadvantaged pupils [8].
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2 Background

Seeing how the mindset held by a person can influence their achievement and de-
velopment leads to the next important question: Can mindsets be taught? In studies
comparing the effect of the type of praise offered to students, it was found that the
mindsets held by the children can be influenced. Specifically, praising intelligence was
shown to induce a fixed mindset in comparison to praising effort and use of strategies
[7]. The next section discusses the results of an online intervention employing gami-
fication in the context of an educational game designed to induce a growth mindset.

2.1.4 Brain Points can Foster a Growth Mindset in Educational Games

O’Rourke, Haimovitz, Ballweber, Dweck and Popovic (2014) designed an intervention
to promote a growth mindset using a point-based reward system within an educational
game [5]. The game aimed to teach the concept of fractions to pupils in elementary
school [5]. The experimental intervention consisted of an animated narrative address-
ing that intelligence can be trained and brain points awarded for usage of strategies.
The name "brain points" was chosen to support the narrative that applying effort and
using strategy trains the brain [5]. The control condition featured a neutral narrative
and points rewarded based on performance. It was found that children interacting
with the experimental version of the game played for longer and used more of the
incentivized strategies than those children playing the control game [5]. In a follow-up
study [19], the differential effects of the intervention’s components were disentangled.
The results suggest that the animations used to transport the growth mindset narra-
tive did not increase how long players stuck with the game. This is attributed to the
overall effect that many players quit the game during those introductory animations,
possibly out of impatience [19]. The positive effect of brain points on player reten-
tion is corroborated [19]. Furthermore, brain points rewarding use of strategies were
contrasted with brain points presented at random points in time during game play.
Players receiving meaningful brain points persisted longer than those awarded ran-
dom points. This finding allows the conclusion that brain points impact player retention
positively by specific incentives for strategies associated with a growth mindset, rather
than through general encouragement [19]. It is important to note that the rewarded
strategies are specific to the studied game. A generalization of these findings would
therefore strongly depend on the possibility to translate the incentive structure to work
for different contexts [19]. Xu, Wirzberger & Lieder (2018) developed a more princi-
pled and general approach for encouraging persistent learning efforts, which will be
presented in the next section.
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2 Background

2.1.5 Optimal Brain Points Reflect the Long-Term Value of Mastering
New Skills

As discussed in Section 2.1.2, hand-designed incentive schemes risk being gamed.
For the brain points studies discussed above, that means that learners might use
strategies in order to trigger the brain point rewards without being invested in learning
about fractions or strategies. The concept of optimal brain points [1] addresses that
issue by leveraging a principled computational approach for designing incentives. The
core idea is to incentivize learners’ study choices and effort allocation in a way that
short-term rewards align with long-term benefits [1]. This is achieved by calculating
the expected value of investing effort into acquiring a new skill opposed to exploiting
a less effective skill which has already been mastered [1]. That value, in combination
with the expected progress toward skill acquisition, is used to provide learners with
optimal feedback regarding their study choices in a simple learning paradigm. In that
paradigm, participants could choose between steering a space ship to a goal position
using arrow keys or trying to find out which of the letter keys teleports the spaceship
directly to the goal. It was found that participants perceiving optimal brain points were
more persistent in attempting to master the more difficult but also more efficient skill
than those who only got information on the action cost and goal reward [1]. The
optimal brain points a player in the experimental condition receives depend on their
choices, not on the obtained outcome. In other words, optimal brain points reward
strategy rather than performance, thereby adhering to the principles of fostering a
growth mindset in the same fashion as the brain points intervention [1, 5, 19].

The goal of this thesis project is to extend the concept of optimal brain points to
develop a scaleable method for incentivizing study choices in more complex and re-
alistic environments than steering a spaceship icon across a grid. To that end, the
next chapter presents the methodological foundations for the computational approach
behind the optimal brain points [1], which also form the second pillar for this thesis
project.

2.2 Reinforcement Learning

The field of reinforcement learning (RL) concerns itself with the question how agents
can learn to maximize their future rewards trough trial and error learning [20]. One key
characteristic of RL problems is poor prior knowledge, meaning that the environment
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2 Background

is only accessible to the agent through interaction [20]. A further characteristic is that
the agent’s decisions are sequential and can have long-term consequences. That
can lead to the temporal credit assignment problem, or the challenge of learning
good decision sequences from delayed rewards [20].

Machine learning models using RL taking on these kinds of problems have a strong
normative grounding in psychological research on learning behaviour and have been
brought to use successfully [21]. For example, an artificial RL agent gained worldwide
public attention in 2015, when Google DeepMind’s AlphaGo defeated a human expert
player in the game of Go [22]. Nevertheless, the application of RL agents is by far not
restricted to game play. They form an important part of control strategies in robotics
[23]. Additionally, they have been employed to optimize both traffic signaling [24] and
chemical reactions [25], to name just a few examples.

RL tasks are commonly modeled as Markov Decision Processes, which will be pre-
sented in the next section.

2.2.1 Markov Decision Processes

A Markov Decision Process (MDP) is defined by a set of states S, a set of actions
A, a transition function P (s′|s, a), a reward function R(st, at, st+1) and the discount
factor γ [20].

At each time step t of the discrete agent-environment interaction, the state st ∈ S
conveys the information about the environment that is available to the agent [20]. It
forms the basis for the agent to choose an action at from the set of actionsA available
in the state. The states satisfy the Markov property, meaning that the probability of
moving to a state depends only on the previous state and the action taken in it (Eq.
2.1) [20].

P (st|st−1, st−2, ..., s1, a) = P (st|st−1, a) (2.1)

This allows to define the transition function P (s′|s, a). The reward function returns
the immediate reward signal the agent receives for transitioning from s to s′ [20]. The
described interaction is summarized in Figure 2.2.

In order to solve the MDP and the RL task , the optimal policy π∗ that maximizes total
future reward (Eq. 2.2) has to be found [26]. The long-term performance function
J(π) is defined as in Eq. 2.3. The discount factor γ regulates to what extent future
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2 Background

Figure 2.2: Agent-Environment Interaction, taken from [20]

rewards are discounted compared to immediate rewards.

π∗ = arg max
π

J(π) (2.2)

J(π) = Eπ

[ ∞∑
t=0

γtrt

]
(2.3)

In the case that P (s′|s, a) and R(st, at, st+1) are known, one possible algorithm to
find the optimal policy π∗ is the value iteration [26]. Its reasoning is described in the
following section.

2.2.2 Value Iteration

For each state s ∈ S, the utility of being in state s is defined as the cumulative future
reward that can be obtained by an agent starting in that state and following policy π
(Eq. 2.4) [26].

V π(s) = E

[ ∞∑
t=0

γtrt|π, s0 = s]

]
(2.4)

This transforms into the linear Bellmann Equation (Eq. 2.5), which recursively defines
the utility of a state as the sum of the immediate reward of the current state and the
expected utility of the next state, assuming that the agent follows policy π [26].

V π(st) =
∑
at

(at|π)

rst,at + γ
∑
st+1

P (st+1|st, at) ∗ V π(st+1)

 (2.5)
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The optimal policy needed to solve the MDP will produce the action maximizing the
future reward. Therefore, the optimal value function (Eq. 2.6) is obtained from Eq.
2.5 by assuming the agent follows the optimal policy π∗ [26].

V ∗(st) = max
at

rst,at + γ
∑
st+1

P (st+1|st, at) ∗ V ∗(st+1)

 (2.6)

As the name of the algorithm hints at, the optimal value function is found by iteratively
updating an initial guess V0(s) (Eq. 2.7) [26].

Vi+1(st)← max
at

rst,at + γ
∑
st+1

P (st+1|st, at) ∗ V ∗(st+1)

 (2.7)

In order to perform value iteration, one can define a convergence threshold δ. Once
the updates to the utilities become smaller than δ, the value function is considered
to have converged and therefore the optimal value function. Once the optimal value
function has been found, the optimal policy is extracted with one more pass over all
states s ∈ S. For each non-terminal state, the policy function returns the action which
maximizes future reward π(s) = arg maxa {rst,at + γVi(st+1)} for that state.

Value iteration is not possible in cases in which the model of the environment,
P (s′|s, a) and R(st, at, st+1), is not known to the agent. Then, the optimal policy has
to be found trough interaction rather than deliberation [20]. One common approach is
Q-learning and will be discussed next.

2.2.3 Q-Learning

In Q-learning, the quality of an action taken in a state is considered and captured in
the state-action value function Q(s, a). Instead of calculating a sum over all possible
actions weighed by their probabilities and all possible resulting next states (Eq. 2.4),
the state-action value function (Eq. 2.8) directly estimates the usefulness of taking
one specific action in that state.

Q(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) ∗maxa′Q(s′, a′) (2.8)

These Q-Values are updated during the agents interaction with the environment, as
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Algorithm 1 Value Iteration

1: Initialize S,A, R(s, a, s′), γ
2: δ = 10−7

3: procedure VALUE ITERATION(S,A, R(s, a, s′), γ, δ)
4: while maxdiff <= δ do
5: maxdiff = 0
6: for s ∈ S do
7: if s is a terminal state then
8: V(s) = 0
9: else

10: rt = R(st, at, st+1)

11: Vi+1(st)← maxat

{
rt + γ

∑
st+1

P (st+1|st, at) ∗ V ∗(st+1)
}

12:

13: maxdiff = max(maxdiff, Vi+1(s)− Vi(s))
14: for s ∈ S do
15: if s is a terminal state then
16: π(s) = None
17: else
18: π(s) = arg maxa {rst,at + Vi(st+1)}

specified in (Eq. 2.9).

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(2.9)

During interaction, the agent chooses an action according to some sampling strategy.
Often, the ε-greedy sampling strategy is used (Eq. 2.10). It handles the exploration-
exploitation dilemma that presents itself in reinforcement learning: In order to learn
to act in a way leading to high rewards, an agent has to both acquire knowledge
about its environment by exploring it and obtain rewards by exploiting the knowledge
it already gathered. In many scenarios, these strategies are mutually exclusive [27].
In the ε-greedy sampling strategy, exploration and exploitation are balanced by the
parameter ε ∈ [0, 1]. Each time an action has to be selected, it will be the one the
agent currently assumes to yield the highest future rewards with a probability p = 1−ε
and a randomly chosen action with probability p = ε. Over the course of the training,
ε is usually decayed, allowing the agent to explore more in the beginning and to hone
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in on its found strategy toward the end [26].

p(a|s) =

{
1− ε, if a = arg maxaQ(s, a)

ε ∗ 1
|A| , otherwise

(2.10)

Another parameter shaping the learning process is the learning rate α ∈ [0, 1]. It
determines the magnitude of the updates applied to the Q-Values and with that how
long past interactions with the environment can influence the Q-Values. If α is small,
the Q-Values are only updated slightly and past interactions have a lot of weight. If α
is closer to 1, new information is weighed more strongly.

Algorithm 2 Q-Learning

1: Initialize S,A, R(s, a, s′), α
2: procedure Q-LEARNING(S,A, R(s, a, s′), ε, α, γ)
3: for t in T do
4: ε = 1− t

T
5: s0 = startstate
6: while s is not a terminal state do
7: a = ε− greedy(s)
8: r = R(s, a, s′)
9: Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s′, a′)−Q(s, a))

The biggest constraint of Q-learning and other value-iteration based methods is that
they can only effectively deal with very low-dimensional state spaces.

2.2.4 Deep Q-Networks

In order to find the optimal policy in high-dimensional state spaces, one has to pa-
rameterize the policy function and directly estimate the optimal one, which is termed
policy iteration [21]. A very successful approach to derive the optimal policy for high-
dimensional state spaces is deep Q-learning, which uses neural networks as a func-
tion approximator [21].

Neural networks are well suited to extract relevant features from a high-dimensional
input. Combined with parameterized Q-FunctionsQ(s, a, θ), a Deep Q-Network (DQN)
is obtained [21]. The input is passed through several layers in order to obtain the out-
put: the estimated Q-values for each possible action in that state. In order to calculate
the loss between these Q-Values, emitted from the so-called policy network, and the
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target Q-Values, the next state s′ is passed trough a second network named the tar-
get network. The loss is used to perform gradient descent and backpropagation on
the weights of the policy network as described by Equation 2.11 [28].

θt+1 = θt + α
(
Y Q
t −Q(s, a, θt)

)
∆θtQ(s, a, θt) (2.11)

With the target Y Q
t being estimated with the parameters of the target network θ−:

Y DQN
t =

(
rt+1 + γmax

a
Q(s′, a, θ−t )

)
(2.12)

The weights of the target network remain fixed to ensure stability in the learning pro-
cess. They are only updated once every predefined number of iterations by copying
the weights of the policy network [21]. In addition to the fixed target Q-Values, an-
other improvement to the algorithm was introduced: experience replay [29]. Instead
of learning directly from the interactions with the environment as they occur, experi-
ences consisting of the initial state s, the action taken a, chosen for example following
an ε − greedy policy, the resulting state s′ and the observed reward r are stored in
a replay memory. From this memory, experiences are then uniformly sampled and
fed to the policy network described above. This alleviates a problem inherent to re-
inforcement learning with policy iteration: The experiences made during interaction
with the environment are highly temporally correlated, thereby violating the assump-
tion of identically and independently distributed data which are necessary to optimally
update the weights using gradient descent [30].

2.2.5 Reward Shaping

Pure trial-and-error learning can become unfeasible in large state or action spaces,
as it becomes more and more difficult for an agent to infer a strategy maximizing
the reward for a sequence of actions from sparse rewards granted for single actions
[31]. This is the temporal-credit-assignment problem [31]. One option to overcome
this problem is to provide the agent with additional information concerning the reward
landscape of their environment. This is called reward shaping [31, 32].

This guidance towards optimal behaviour is achieved by letting the agent interact with
an altered MDP M ′ = (S,A, P,R′) instead if the original MDP M = (S,A, P,R) it
has to solve [32]. The altered reward function R′ consists of the original reward func-
tion R(s, a, s′) as well as of the shaping function F (s, a, s′) (Eq. 2.13). The rewards

14



2 Background

obtained from the shaping function are often called pseudo-rewards [33, 2]. In order
to be truly helpful, the shaping function has to be crafted very carefully. Otherwise, the
agent might end up maximizing its reward in a manner neither foreseen nor desired
without solving the actual task at hand [31, 32].

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) (2.13)

Avoiding those pitfalls can be achieved by choosing a shaping function such that
any optimal policy π∗ for M ′ is also an optimal policy π∗ for M [32]. This condition,
which is called invariance property, can only be guaranteed to be fulfilled by using
a potential-based shaping function (Eq. 2.14), as has been proven in the shaping
theorem [32, 33]. The shaping function is then defined as the difference between the
discounted potential of the new state γφ(s′) and the potential of the old state φ(s)

[32].
F (s, a, s′) = γφ(s′)− φ(s) (2.14)

According to Ng, Harada and Russel (1999) [32], the optimal potential function equals
the optimal value function (Eq. 2.15). The optimal potential-based shaping function
(Eq. 2.16) consequently grants the agent a positive pseudo-reward if its action moved
it into a state with a higher utility than that of the previous state.

φ∗(s) = V ∗(s) (2.15)

F ∗(s, a, s′) = γV ∗(s′)− V ∗(s) (2.16)

Optimal pseudo-rewards therefore dissolve the conflict between long-term and short-
term reward maximization. The agent obtains the highest possible long-term reward
by only considering the highest reward for the next step [33, 2].

In many real-world applications, V (s) is neither known nor easy to compute. For those
cases, distance-based or subgoal-based have been proposed as potential functions
[32].

Reward shaping is a crucial concept in the pursuit of a principled approach to incen-
tivizing learning choices and the methodology that allowed to compute the optimal
brain points discussed in Section 2.1.5. In another study, Lieder, Chen, Krueger
and Griffiths (2019) [2] used the principles of reward shaping to develop an optimal
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gamification method for decision support. This was tested in several behavioural ex-
periments. It was shown that presenting people optimal pseudo-rewards which align
the immediate reward gained by an action with its long-term value can support them
in making more far-sighted decisions. Furthermore, the results suggest that optimal
gamification can assist people in overcoming procrastination and in prioritizing when
dealing with a multitude of tasks [2].

2.3 Summary

Gamification can be a useful tool to help learners overcome motivational obstacles,
but is has to be brought to use with care [3]. Specifically, we have seen that the
objective has to be well defined and the gamification prompts need to align with it
[14]. Useful input to how to choose what to incentivize can be drawn from the research
on mindsets [7]. It offers insight into why some gamification incentives focusing on
performance have differential effects on different users and allows to conclude that it
is a more promising approach to instead reward effort and use of strategies [5].

Additionally to adequately choosing which behaviour to incentivize, it is important
to carefully design how the incentives should be distributed in order to ensure they
cannot be gamed and thereby lead to undesired behaviour [17]. A useful resource to
do so has shown to be reward shaping [2], as it allows to align short-term rewards for
behaviour with its expected long-term benefits.

The research question tackled in this thesis is whether these principles allow to de-
velop a scalable method for deriving incentives for real-world educational environ-
ments. To that end, the next Chapter details the development of a general approach
to calculate incentives based off the methodology used to derive optimal brain points
[1]. Furthermore, the educational game serving as a use case is introduced and the
application of the approach to it specified.
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3 Development of a Principled Approach
to Incentivizing Self-Directed Learning
in Digital Learning Environments

3.1 Modeling the Choice of Educational Activities as a
Markov Decision Process

For the purpose of developing a scaleable principled method for incentivizing learn-
ers to choose their learning activities in an efficient way, that choice is modeled as
a Markov Decision Process (MDP), which has been introduced in Section 2.2.1. In
the following section, the necessary information from the educational environment the
method is to be applied to is specified.

First of all, the skills that are to be trained in the educational environment have to
be defined. Those can be a set of distinct skills (e.g. math, English and chemistry
knowledge) or aspects of a single skill (e.g. English vocabulary, grammar and writing
skills), depending on the context of application. Both concepts will be summarized
with the term skill from here on. The number of skills to be trained is denoted as NS .
Additionally, a way to measure the learner’s competence c for each skill has to be
provided. Thereby, for each skill a linearly ordered set of competence values C can
be defined. Higher competence values are considered superior to lower competence
values. In the context of gamification, increasing competence values is the objective
of the intervention. The number of possible competence values c the ith skill can as-
sume is denoted as Nci . The set of competence values for the ith skill is defined in
Eq. 3.1.

Ci = {c1, c2, ..., cNci
} (3.1)

Another crucial parameter which has to be provided is the learning goal g. It defines
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3 Development of a principled approach to incentivizing self-directed learning

a goal competence value cg ∈ C for each skill which has to be reached by the learner
in order to consider the learning goal completed (Eq. 3.2).

g = (cg1 , cg2 , ... , cgNS
) (3.2)

As already introduced in Section 2.2.1, a state s of the MDP needs to consist of all
information relevant to satisfy the Markov assumption. In this model, we can distin-
guish learner-specific information θ and system-specific information β (Eq. 3.3). θ
comprises all parameters needed to compute the current competence values c ∈ C of
each skill (Eq. 3.4). Additionally, if the environment’s model of skill improvement relies
on additional factors β, these are also included in the state. Those are all factors that
allow to differentiate between states in which the competence levels are equal but the
transition probabilities are not.

s = (θ, β) (3.3)

c = (c1, c2, ... , cNS
) = f(θ) (3.4)

Consequently, we can define whether the learning goal is satisfied by a state by calcu-
lating the current competence values c and comparing them against the set learning
goal as defined in Eq. 3.5.

d(c, g) = ci ≥ cgi ∀i ∈ {1..Ns} (3.5)

The learning environment further has to comprise more than one educational activity
the learner can choose between. The choice of activity is modelled as the actions
making up the action space of the MDP (Eq. 3.6). The number of activities a learner
can choose between and with that the number of actions is denoted as Na.

A = {a1, a2, ..., aNa} (3.6)

The transition function of the MDP P (s′|s, a) depends on the way the educational
environment models skill improvement. Specifically, a way to define how the different
educational activities are expected to impact the skills depending on the current state
is needed.
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Two estimations are needed in order to construct the MDP’s reward functionR(s′, a, s):
First, an estimation of the effort required to carry out each learning activity ra. Further-
more, an estimation of the usefulness of reaching the learning goal g rg is needed.
Consequently, the reward function is defined in Eq. 3.7. Note that c can be calculated
from s as specified in Eq. 3.4.

R(s′, a, s) =

{
rg − ra, if d(c′, g) ∧ ¬d(c, g)

−ra, otherwise
(3.7)

In order to solve the MDP, the optimal policy π∗ which maximizes future reward (Eq.
3.8) has to be found. In the context of the application to a learning environment, that
equates to reaching the learning goal without excerting more effort than necessary to
do so.

π∗ = arg max
π

Eπ

[ ∞∑
t=0

γtrt

]
(3.8)

As has been discussed in Chapter 2, learners often choose suboptimally when it
comes to investing their time and effort in a way that allows them to efficiently reach
their long-term goals. Hence, the choice of activities is to be incentivized by present-
ing brain points B(s, a) to the learner (Eq. 3.9). For the purpose of evaluating the
effectiveness of the developed approach with simulated agents, we therefore mod-
eled learners as myopic agents. Myopic means short-sighted and describes decision
strategies that weigh the short-term outcomes much higher that the long-term conse-
quences. In order to model that behaviour, the simulated agent looks one step into
the future and chooses the action with the highest expected immediate reward.

In Section 2.2.5, we discussed that reward shaping allows to dissolve the conflict
between long-term and short-term reward maximization [32]. The key to deriving
brain points therefore is to define a shaping function F (s′, a, s) which offers additional
information concerning the MDP’s reward landscape. As explained in Section 2.2.5,
the simulated agents then interact with the altered MDP with the reward function
R′(s, a, s) = R(s, a, s′) + F (s, a, s′).

Because the brain points are meant to incentivize the choice and therefore are pre-
sented to the learner before carrying out an action, they can only depend on s and a
and not on s′, as the latter is not known at the time the brain points are calculated.
Therefore, they are calculated as the expected value across all possible s′ in Eq. 3.9.
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Depending on the complexity of the specific application of this model, a solution or
approximated solution of the MDP is used to define the shaping function. A learner
trying to myopically maximize the brain points they receive will then simultaneously
approximate the optimal policy. That means that they improve their skills efficiently,
without wasting effort on educational activities which are unlikely to to lead to an
increase in skill in the given state.

B(s, a) =
∑
s′

P (s′|s, a)(R(s′, a, s) + F (s′, a, s)) (3.9)

The specific educational environment that will be modeled and used to evaluate the
effect of presenting optimal brain points to learners is presented in the next section.

3.2 The Use Case: An Educational Game for Learning
English

This section first introduces the organisation that published the educational game and
the reasoning behind their most important design decisions. This is followed by an
introduction to the game itself, after which we take a look at how users interact with
it.

3.2.1 Solve Education

As laid out in Chapter 2, a large range of educational games have been and are being
developed. However, these resources are often designed to meet the needs of stu-
dents who are able to pay for the respective products [34]. Founded in 2015, Solve
Education is a non-profit organisation aiming to provide access to quality education
technology to marginalised young people around the globe [34].
To that end, they have identified two main challenges often overlooked in the discus-
sion concerning educational games. The first relates to the learner’s motivation. Most
providers of educational software assume their users are generally motivated to learn,
whether intrinsically or by their surroundings. For learners excluded from the educa-
tion system, this can be a very shaky assumption. The second challenge is posed
by the digital infrastructure available to those students. Solve Education addresses
these challenges by creating a highly engaging learning game that can be run on a
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low-end smartphone with intermittent internet connectivity [34, 35].
The game is called "Dawn of Civilisation" [36] and provides lessons for acquiring or
improving English literacy. The goal is to support the users to develop into indepen-
dent learners who have gained confidence in their own abilities [34]. Furthermore,
competence in the English language may open up access to other free educational
resources. It has been shown that improving English language skills benefits both the
individual and their society at large [37].

3.2.2 Dawn of Civilisation

In the game Dawn of Civilisation (see Figure 3.1a), the user assumes the role of a
city’s mayor (see Figure 3.1b). The goal is to build and develop the city. In order to
gain the resources for adding buildings and decorations to their city, the user com-
pletes different minigames (see Figures 3.1c and 3.1d). Within those minigames,
a wide range of English lessons are provided. Specifically, the sixteen different
minigames provide lessons to train the user’s vocabulary, their grammar, their lis-
tening and speaking skills as well as their reading and writing skills.

For completing a minigame, the user gets rewards proportional to their performance
in the minigame. In detail, a user is awarded reward cards (see Figure 3.1e). One
reward card is given for the attempt, and one additional one per 20% of correct an-
swers. Accordingly, the maximal number of reward cards a user can be awarded for
a completing a minigame is 5, which would be the case if they solved at least 80%
of that minigame. Each reward card contains different in-game currencies such as
cash, stars or hearts with the reward’s magnitude varying randomly. Those can then
be invested in buying buildings or decorations.

3.2.3 How Do Users Interact with Dawn of Civilisation?

In this section, some key aspects of the way users interact with Dawn of Civilisation
will be presented. We performed the following analysis based on user data gathered
by Solve Education between March 2020 and January 2021. In that time period,
over 80,000 minigames were played by over 5,000 users. For purposes of analysis,
only regular users were considered. To that end, users who played on less than 5
occasions were excluded. That leaves roughly 16,500 games played by 370 users.

The first aspect to consider is whether the users exploit the whole range of exercises
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(a) Dawn of Civilisations (b) City Building

(c) Choosing Minigames (d) Example Minigame

(e) Reward Cards

Figure 3.1: Impressions of Dawn of Civilisations: Figure 3.1a shows the logo of Dawn
of Civilisations. In Figure 3.1b, the home screen in which users can de-
sign their city is depicted. Is has to be noted that the author only played
the game to familiarize herself with it and the shown city is therefore grue-
somely underdeveloped. The selection of minigames is depicted in Figure
3.1c and an example of a minigame is given in Figure 3.1d. Finally, the re-
ward cards given after the completion of a minigame are shown in Figure
3.1e.
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and content offered to them by Dawn of Civilisation. As introduced in the previous
section, Dawn of Civilisations contains 16 distinct minigames, each training some
facets of the English language. It is visible in Figure 3.2a that many users only interact
with a subset - for some larger, for some smaller - of the games they could engage in.
Figure 3.2c shows the mini games ranked in their popularity.

The follow-up question to this finding is whether the six skills are trained equally even
though many users only engage in a small subset of the offered minigames. As de-
picted in Figure 3.2b, users tend to interact more with games that train their listening
and vocabulary skills and less with those addressing their writing skills.

Figure 3.2d shows the mean number of reward cards earned in each mini game. The
mean number of reward cards earned in each mini game is moderately correlated
with the number of times the game is played (Spearman’s r = 0.37). This could be
interpreted as a result of the user’s preference for easier games as well as the result
of improved performance in frequently played games, or as a combination of both
effects.

Figures 3.2d and 3.2e show that the minigames also differ in the mean time needed
to complete them once and in their mean completion rates.

While these characterisations of the way users interact with Dawn of Civilisation are
exploratory by nature, some patterns are interesting to discuss within the context of
the research findings presented in Chapter 2. Namely, some minigames are vastly
more popular than others and that popularity is correlated with the average number of
reward cards obtained from the game. This might be an effect of the way rewards are
distributed. The number of reward cards a player receives is based on their perfor-
mance and the actual magnitude of reward is determined randomly. O’Rourke et al.
(2016) found that brain points increase persistence compared to random points [19].
Xu, Wirzberger & Lieder (2018) showed that incentivising the value of practice rather
than momentary performance can encourage learners to make more efficient study
choices. Additionally, it was reported that especially disadvantaged learners, who are
the target population of Dawn of Civilisations, can benefit from interventions promot-
ing a growth mindset and the associated behaviour [8]. Therefore, it can reasonably
be hypothesized that the users of Dawn of Civilisation might benefit from the planned
intervention detailed in the next chapter.

23



3 Development of a principled approach to incentivizing self-directed learning

(a) Which games are played? (b) Which skills are trained?

(c) How many different games are
played?

(d) How much reward is achieved per
game?

(e) How much time is spent per game? (f) How often are games completed?

Figure 3.2: How users interact with Dawn of Civilization
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3.3 Applying the Educational Choice Model to Dawn of
Civilisations

The next step towards the development of an approach to incentivize learning choices
in Dawn of Civilisations (DoC) is to specify how the model of choosing educational
activities defined in Section 3.1 can be applied to the game. To that end, both a
detailed description of the game mechanics and the user data provided by Solve Ed-
ucation were utilized. The first question to be answered was whether all users could
be reasonably summarized with one set of parameters, or if it would be necessary
to construct several models for distinct prototypes of users. Based on results from
a k-means clustering approach [38] in which no meaningful clusters emerged (see
Appendices B and C), the decision was made to model a single user. In the following,
the details of Dawn of Civilisation and how they can be translated into the MDP will
be elaborated.

3.3.1 Skills and Competence Values

Dawn of Civilisations is an educational environment for learning English. Specifically,
six aspects of learning English are trained: Vocabulary, Grammar, Writing, Speaking,
Listening and Reading. Therefore, NS = 6.

A learner’s competence in each of these skills is measured in 16 levels, NCi = 16.
These levels are constructed as sub-levels of the 6 language levels ranging from A.1
to C.2 defined by the Common European Framework of Reference for Languages
(CEFR) [39].

These levels are assessed continuously throughout the learner’s interaction with the
game. That is possible because the learning material presented to the learner by
the minigames is also used to evaluate the learners current competence. Concretely,
each skill and level are associated with a set of questions. These questions are
presented to the learner in the minigames they play. Once 80% of those questions
have been completed by a learner, their corresponding skill is considered to have
reached the corresponding level.

When is a question considered complete?
The completion of a question is governed by a spaced repetition review schedule.
Spaced repetition is a common tactic, especially in second language acquisition [40,
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Figure 3.3: QR-Process: The boxes represent the QR-levels questions can assume
in Dawn of Civilisations and their corresponding delay periods. The green
arrows represent the change in levels following a correct response while
the red arrows show the changes following an incorrect response.

41]. It is based on the forgetting curve first postulated by Ebbinghaus [42], which de-
scribes the probability of successful recall of learned information as a function of time
passed since the last recall. With each additional recall, the memory trace is assumed
to become stronger. Hence, the forgetting curve becomes flatter, meaning that the
probability of successful recall decays less steeply with passing time. Consequently,
the optimal interval between recalls id assumed to increase exponentially.

Spaced repetition is applied in Dawn of Civilisations in form of an adaption of the
Leitner-system, which was originally designed for learning with flashcards [40, 43].
While flashcards are put in distinct boxes, the question in DoC are assigned a Question-
Recycler level (QR-level). A question enters the system the first time it is encountered
by the learner. If it is answered correctly, it gets assigned a QR-level of 2. If it is not
answered correctly, it gets assigned a QR-level of 1. Once in the system, the QR-level
of a question will increase by 1 every time it is answered correctly and decrease by
1 every time the learner gets it wrong. The delay interval that needs to pass before
the question is presented to the learner again increases exponentially depending on
the question’s QR-level. It ranges from one day for questions at level 1 to 16 days for
questions at level 5. Returning to the question opening this paragraph, a question is
considered complete - and its content mastered by the learner - when it reaches a
QR-level of 5. Once a question reaches the completion level, its QR-level will not de-
crease again, even if it is answered incorrectly. As an exception to this rule, questions
belonging to the first two sub-levels (called "Pre-A") are considered completed once
they reach a QR-level of 3.

The described process is summarized in Figure 3.3.

It is important to note that the review schedule as it has been described here is an
idealised version. During actual game play, the review intervals additionally depend
on how often a user plays minigames, how many they play in a row on days they
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decide to play and which games they choose to play when they play. Intervals may
become longer if a user only plays occasionally. They might become shorter when
they play only a small subset of minigames and those rather excessively. In such
a case, a minigame can out of questions with expired delays and has to present
questions which are not scheduled for review yet.

In summary, Dawn of Civilisations is an education environment training 6 different
skill aspects of learning English which are measured at 16 levels of competence. The
levels of competence are determined by the number of relevant questions which have
been mastered by the learning according to the rules of the QR-System.

3.3.2 Learning Goal

Dawn of Civilisations itself does not define specific learning goals for its users. Based
on the CEFR levels for assessing someone’s language proficiency, balanced learn-
ing goals were defined for the brain points approach [39]. A balanced learning goal
means that the same goal competence value is chosen for all six skills. As compe-
tence values can assume 16 distinct values the way they are measured by DoC, 16
learning goals are defined. For a learner starting out without any prior skills would
therefore have g = (1, 1, 1, 1, 1, 1) as their learning goal. A learner whose current
skill competence values are c = (2, 3, 1, 1, 2, 2) would have g = (2, 2, 2, 2, 2, 2) as
their learning goal. Throughout the application of this model, a sequence of goals
was considered. That means that once a goal is reached, the learning continued with
the next-highest goal until the highest possible goal g = (16, 16, 16, 16, 16, 16) was
reached.

In principle, any combination of skill competence levels could be set as a learning
goal. For example, some learners might have reasons to want to advance their speak-
ing skills more than their writing skills. However for this first development and evalua-
tion of the feedback method, balanced goals were deemed to be the most generally
beneficial learning goals across all learners.

3.3.3 Action Space

Each action in the action space represents the choice to engage in one of the minigames
Dawn of Civilisation offers to its users. The action space A of Dawn of Civilisation
therefore comprises 16 actions. Different skill combinations are taught in the different
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Figure 3.4: Skills trained by different mini games: Add Description

minigames, which are visualized in Figure 3.4. Each minigame pertains to one of 9
modules. Minigames which belong to the same module present the same questions.

3.3.4 State Space

In Section 3.1 it was stated that a state st can be defined based on the parameters
θ needed to compute the competence values of each skill at time t. In the case of
Dawn of Civilisations, the competence values are a function of the QR-levels of the
relevant questions, as has been explained in Section 3.3.1. With Qci,j being the set
of questions relevant to the ith skill at competence level j and Hci,j being the set of
completed questions thereof, ci is defined in Eq 3.10.

ci = max j ∈ {1, 2, ..., 16} subject to |Hci,j | >= 0.8 ∗ |Qci,j | (3.10)

Furthermore, the amount of time left until a question’s scheduled review and the num-
ber of games played on the current day nd are relevant to differentiate states as they
influence the transition function detailed in Section 3.3.5.

Consequently, with regard to the definition of the states in Equation 3.3, θ could be
all the questions’ QR-levels while β could be all the questions remaining delays and
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the number of games played on the current day. However, in order to reduce the
complexity of the state space, an abstraction is applied to this representation [44].
Instead of including each question’s QR-level and remaining delay in the state rep-
resentation, the number of questions with a specific QR-level and delay are counted
at each competence level and for each module. For the first two levels, for which the
maximal QR-level equals 3, and thereby the maximal interval period equals 4 days,
there are 11 such categories per module per level, resulting in 2 ∗ 9 ∗ 11 parameters.
For the remaining 14 levels, with a maximal QR-level of 5 and intervals ranging from
0 to 16 days, there are 37 possible states a question can be in, resulting in additional
14 ∗ 9 ∗ 37 parameters. Including nd, the resulting states have a length of 4861.

The resulting number of parameters defining a state in the MDP are calculated in
Equation 3.11.

|s| = 2 ∗ 9 ∗ 11 + 14 ∗ 9 ∗ 37 + 1 = 4861 (3.11)

3.3.5 Model of Skill Improvement

As laid out in Section 3.1, the way in which an educational environment defines skill
improvement governs the transition probability P (s′|s, a) of the MDP. That is the prob-
ability of ending up in state s′ if action a is taken in the current state s. Dawn of Civil-
isation’s model of skill improvement builds on the QR-system described in Section
3.3.1.

When a user chooses a minigame to play, the questions to be presented by that
minigame are selected from the pool of potential questions by their priorities. Highest
priority is given to questions that have not been asked yet. Second highest priority is
given to questions which are not yet completed and scheduled for review, in ascending
order of their QR-level. Third highest priority is given to questions which are not yet
completed within the delay period, ordered by their closeness to the end of it. Lastly,
completed questions are asked, ordered as well by their delay status. The number
of questions presented by each game nq varies between minigames. Also, the same
minigame will not necessarily present the same number of questions each time it
is played. Therefore, discrete probability distributions P (nq|a) were derived from the
user data to estimate how probable a minigame is to present nq questions (see Figure
3.6). As the probabilities were estimated across different levels, which was done
because data was not available for each level, P (nq) only depends on a.
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In addition to determining how many and which questions are impacted by action a
in state s, an estimate of how likely those questions are to be answered correctly
is needed in order to calculate P (s′|s, a). To that end, the probability P (correct|a)

has been calculated from the user data (see Figure 3.5). Ideally, the probability of a
correct answer would have been conditioned on several factors apart from the chosen
minigame, such as level of competence and QR-level of the question. That would
allow us to get a more precise estimate of P (correct|a) and consequently a more
precise estimate of P (s′|s, a). However, the data did not provide enough examples
to do so, and conditioning only on the minigame was the feasible option. Answering
each question correctly is assumed to be an independent event. Consequently, the
probability of observing an answer pattern z to all nq questions is defined in Eq. 3.12,
with x being the number of correct questions in z. K(x, nq) expresses the number
of combinations of answers to nq questions leading to the same number of correct
answers x.

P (z|x, a, nq) = P (correct|a)x ∗ (1− P (correct|a))nq−x ∗K(x, nq) (3.12)

K(x, nq) =


nq !

x!∗(nq−x)! , if x < nq

1, if x = nq
(3.13)

The final aspect of the transition between states is independent from the action a, as
it captures how the delay until the scheduled review of the questions is decreased
by the passage of time. Two estimations were made from the user data in order to
address this issue. Firstly, how likely a user is to play a certain number of in a single
day, P (Nd). Secondly, how likely it is to observe a delay b between days on which
a user plays any minigame, P (b). Based on that information, the probability that the
minigame played is the last of the day, Pnd

(Nd = nd), can be estimated given the
number of games already played at the current day nd, which is included in state s.
Specifically Pnd

is the discrete probability fit to the data on how many minigames are
played by day excluding values < nd. That captures the probability of observing a
certain number of games played knowing how many already have been played.

Putting it together, the probability of a change in delays w can be calculated from s

as defined in Eq. 3.14.
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Figure 3.5: Success Probabilities per minigame

P (w|s) =

{
1, with p = 1− Pnd

(Nd = nd)

P (b), with p = Pnd
(Nd = nd)

(3.14)

P (s′|s, a) = P (nq|a) ∗ P (z|x, a, nq) ∗ P (w|s) (3.15)

3.3.6 Reward Function

In order to construct an appropriate reward function (see Eq. 3.7) for DoC, an estimate
of the effort required to complete the minigames is needed. As an available measure
of effort, the times needed for completion were extracted from the data provided by
Solve Education. An overview is provided in Figure 3.8.

For each action a, a log-normal distribution is fit to the data, from which rewards can
be sampled.

P (ra) = p(
1

raσa
√

2π
exp

(
−(ln ra − µa)2

2σ2a

)
) (3.16)

The reward ra is transformed to represent the action cost by multiplying it with −1.
When an action leads to a state that satisfies the current learning goal g, a positive
reward is granted. As it would be out of scope of this project to find a way to realisti-
cally express the usefulness of reaching a certain skill level in English numerically, an
arbitrarily high positive reward rg = 2000 was set for all g.
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Figure 3.6: Number of questions presented per minigame

(a) Minigames played per day (b) Delays between game days

Figure 3.7: Parameters for including time in transition function
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Figure 3.8: Time spent on each mini game: Add Description

33



3 Development of a principled approach to incentivizing self-directed learning

Consequently, with ra as defined in Eq. 3.16 and c calculated from s as specified in
Eq. 3.10, the reward function of the MDP constructed to represent DoC is shown in
Eq. 3.17.

R(s′, a, s) =

{
2000− ra, if d(c′, g) ∧ ¬d(c, g)

−ra, otherwise
(3.17)

This concludes applying the model for choosing educational activities to Dawn of
Civilisations. All specific parameter values that have only been shown visually in the
figures throughout this section can be found in the repository linked to in Appendix A,
along with the implementation of the described formulas. In the next section, the path
from the model to the brain points method is described in detail.

3.4 Deriving a Method for Calculating Brain Points for Dawn
of Civilisations

The reason for modeling the choice of minigame in DoC as a MDP was to be able to
define a pseudo-reward function as Eq. 3.9 such that a myopic learner maximizing
short-term reward maximizes their long-term learning progress as well. In terms of
Dawn of Civilisations, that means assigning brain points in a way that a learner purely
motivated by gaining rewards for their city development still chooses minigames in a
way that optimally benefits their English progress as well. Because brain points are
meant to incentivize choices and are therefore displayed before the action is carried
out, they need to be a function of the state s and the action a and cannot depend on
the next state s′.

3.4.1 Defining and Solving a Simplified Model for Benchmarking

The state action space of the MDP modeling choosing between minigames in Dawn
of Civilisations is too large to determine the optimal policy π∗ analytically. Therefore,
as a first step, a small and simplified subset of the game was modeled to serve as
a benchmark throughout the development of the approach. Specifically, the number
of minigames to choose from was limited, as were the number of questions. Further-
more, only the first two levels were included and the assumption was made that users
play one minigame a day everyday. An overview of the changes made in order to
obtain the simplified model is given in Table 3.1.
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Parameter
Model

Original Simplified

Number of Questions 8480 23
Number of Competence Levels Nc 16 2
Number of minigames |A| 16 3
P (Nd = 1) <1 1
P (b = 1) <1 1
|s| 4861 126
|S| unknown 94657
P (nq = x|a) <1 1

Table 3.1: Changes in parameters for simplified model

The simplifications allowed the MDP to be solved using value iteration, an algorithm
for determining the optimal state-value function V ∗(s), which has been described in
Section 2.2.2. The discount factor γ was set to 0.9 to account for the possibility that a
learner might loose interest and stop interacting with the minigames before reaching
their learning goal. The convergence threshold δ was set to 1e− 7. Having obtained
V ∗(s), it was possible to calculate optimal brain points OBP (s, a) as definded in Eq.
2.16.

Figure 3.9 shows the reward achieved on average by a myopic agent receiving optimal
brain points in comparison with an agent choosing random actions and a myopic
agent without pseudo-rewards.

With that, a benchmark had been established which was used to guide the attempts
to develop a method to approximate brain points for the original model and thereby
for the original game. Those attempts are described in the next section.

3.4.2 Trying to Approximate a Useful State-Action Value Function

As a starting point, a handcrafted policy (HCP) was developed based on the author’s
insights into the game’s mechanics. Its average return in the simplified model is
shown in Figure 3.9 and its procedure is described in Algorithm 3. It can be seen
that it performs close to optimal in the simplified MDP, leading to the following idea:
Approximate the state-action-value function of the handcrafted policyQHCP (s, a) and
calculate brain points as described in Eq. 3.18.
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Figure 3.9: Comparison of Simulated Agents in simplified DoC-MDP: Depicted are the
rewards obtained by simulated agents averaged across 1000 episodes.
The error bars represent standard deviation. OBP denotes a myopic agent
provided with optimal pseudo-rewards (Eq. 2.16). The myopic agent se-
lects actions greedily while looking one step ahead without any pseudo-
rewards. The random agent selects actions randomly and the HCP-agent
follows the handcrafted policy defined in Alg 3. ABP labels a myopic agent
provided with approximate pseudo-rewards (Eq. 3.20).
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Feature Description βx

F1(s, a) Number of questions with expired delay available for a 8

F2(s, a) 1 if F1(s,a) median number of questions presented by a , 0 otherwise 7 ∗ 102

F3(s, a) 1 if any skill trained by a has not reached current learning goal, 0 otherwise 3 ∗ 10−12

F4(s, a) 1 if any skill trained by a is (one of the) least developed skills, 0 otherwise −1 ∗ 10−12

F5(s, a) Number of questions necessary to complete for skills trained by a to reach next skill level −9 ∗ 101

F6(s, a) Number of completed questions for current skill level for skills trained by a 3 ∗ 102

F7(s, a) Mean QR-level of questions for current skill level for skills trained by a 9

Table 3.2: Overview of handcrafted features used to approximate Q(s, a). The
rounded coefficients resulted from linearly regressing the discounted sum
of future rewards

BP (s, a) = QHCP (s, a)−max
a

QHCP (s, a) (3.18)

To that end, we defined features to capture essential characteristics of the state and
action pairs, inspired by the information that the handcrafted policy uses. An overview
of the used features is given in Table 3.2. As the next step, a large number of samples
were obtained from the interaction of an agent following the hand-crafted policy and
the MDP. To diversify the samples, starting states were randomly selected by letting a
randomly choosing agent interact with environment for a randomly chosen number of
time steps prior to commencing sample collection with the hand crafted policy. Those
samples consisted of the feature vector extracted from the states and actions and
the discounted sum of future rewards obtained after taking the action in that state.
Subsequently, a linear regression using an ordinary least squares estimator was fit
to the obtained data set, using the feature vectors as the predictive variables and the
discounted sum of future rewards as the regressand [45]. The resulting coefficients
were used to approximate Q(s, a). That means that the features were extracted from
the state s and the action a and then multiplied with the coefficients to get a prediction
of the future sum of rewards, representing the value of taking action a in state s. From
there, brain points were calculated as defined in Eq. 3.18.

For the simplified model, approximatingQHCP (s, a) linearly with handcrafted features
led to satisfactory results, meaning that a myopic agent receiving the brain points
derived trough linear approximation performed as well as one receiving the optimal
brain points. The coefficients for the simplified MDP can be found in rightmost column
in Table 3.2. The intercept was −490.

Unfortunately, this approach did not scale to the original MDP, meaning that brain
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Feature Description
F8(s, a) Maximal Skill level - average skill level for skills trained by a

F9(s, a) Number of questions available at current level for a

F10(s, a) Number of questions with expired delay and QR-level = 0 for a

F11(s, a) Number of questions with expired delay and QR-level = 1 for a

F12(s, a) Number of questions with expired delay and QR-level = 2 for a

F13(s, a) Number of questions with expired delay and QR-level = 3 for a

F14(s, a) Number of questions with expired delay and QR-level = 4 for a

F15(s, a) Number of questions with expired delay and QR-level = 5 for a

Table 3.3: Overview of additional handcrafted features used to approximate Q(s, a)

points calculated via the same approach for the complete DoC MDP led a myopic
agent to not reach the learning goal. Therefore, the feature list was expanded as
shown in Table 3.3 and it was tried to capture characteristics better by including in-
teractions between selected features. Specifically, the products of each of the feature
values and F3(s, a) as well as F9(s, a) were included, leading to a feature vector of
length 43. These interactions were chosen because if either all skills trained by a have
already reached the learning goal levels or a offers no questions ready to review, it
is clear that taking action a will not increase the competence values. For such (s, a)

pairs, those products become zero, expressing that insight numerically.

Additionally, distributional shift was identified as a potential issue hindering a suffi-
ciently precise approximation of Q(s, a) for parts of the state-action space not visited
by the hand-crafted policy albeit the efforts to vary the starting state [46]. Therefore,
samples collected from random and myopic action selection were included in the data
set as well.

The regression of this new data set showed that the extended features could predict
some of the variability of the sums of discounted future rewards, with a coefficient of
determination R2 = 0.37. The adjusted R2 was used to avoid inflation due to the
large number of features. An evaluation of the resulting brain points showed that this
was definitely not a sufficiently precise approximation, as a myopic agent acting upon
those brain points did not reach any learning goals.

In order to more appropriately address the complexity of the state-action space and
potential non-linearities in Q(s, a), a deep Q-learning (DQN) approach as described
in Section 2.2.4 was employed next [21]. Based on encouraging findings regarding
the combination of handcrafted features with deep learning in different domains [47,
48], both the raw state representation and the handcrafted features were used as
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input to the DQN. Additionally, transitions (s, a, r, s′) gathered by HCP, as well as
randomly and myopically, were used to populate the DQN’s replay memory with the
goal to facilitate learning by guiding exploration. This approach was subsequently
abandoned due to two reasons. First, learning was not initially successful and the time
frame for this thesis did not allow for more extensive parameter tweaking. Second and
more importantly, one of Dawn of Civilisations’ key characteristics is its ability to run on
low-end smartphones. Even if increasing the network’s size would have possibly led
to a successful approximation of QHCP (s, a) or even Q∗(s, a), the resulting method
would not have a practical use.

Hence, the focus was shifted away from approximating a useful state-action value
function to calculate brain point from and towards directly approximating the brain
points themselves.

Algorithm 3 Hand Crafted Policy

1: procedure HCP(s,A)
2: c = (c1, c2, ... , cNS

) = f(s)
3: sort c
4: for skill in c do
5: for a ∈ A do
6: if a trains c and a has priority 1 or 2 questions then return a
7: for skill in c do
8: for a ∈ A do
9: if a trains c then return a

3.4.3 Directly Approximating Brain Points

The key element for approximating brain points directly is a potential function φ(s)

[32]. The chosen potential function (Eq. 3.19) expresses the progress made towards
the learning goal g. This is achieved by including the ratio of the summed QR-levels
for all questions relevant to reaching the goal competence level for a skill and the
summed maximal QR-levels for the same set of questions. The level value gi − 1 is
added to account for between-level progress in addition to the within-level progress
captured by the ratio. The resulting values are summed across all skills in order to get
an overall progress estimate for the state. The higher that sum, the closer the state is
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to a state fulfilling g.

φ(s) =

Ns∑
i=1

[
(gi − 1) +

∑
q∈Qgi−1

l(q)∑
q∈Qgi−1

m(q)

]
with

Qki = Set of questions training skill i at level k

l(q) = QR-level of q

m(q) = maximal QR-level of q

(3.19)

Having defined φ(s), approximated brain points ABP (s, a) can be derived as shown
in Eq. 3.20.

ABP (s, a) =
∑
s′

P (s′|s, a)R(s, a, s′) +

(
max
s′

φ(s′)− φ(s)

)
(3.20)

Noticeably, we made a significant change to the established way of defining the shap-
ing function F (s, a, s′) = γφ(s′) − (s) by taking the maximal value of φ(s′) instead
of its expected value across all possible next states [1, 32]. Due to this modifica-
tion, the maximal possible benefit of taking action a in state s is taken into account
while possible disadvantageous outcomes are not. This decision was made out of
consideration for the context the model and the approximated brain points are to be
applied to. Specifically, we deemed it important to not penalize choices in favor of
hard minigames which might result in a decrease in QR-levels and therefore a less
beneficial state. An ideal model could capture learning from failures by adapting
P (correct|a) to P (correct|a, ω) and for example include the number of previous en-
counters with the learning material in ω. Since the data the model was built upon did
not allow for such fine-grained estimations, the concept is integrated into the approx-
imated brain points instead. This was not a trivial decision, because the discussed
modifications entails that the approximated brain points do not adhere to the shaping
theorem and therefore a policy maximizing them is not guaranteed to also maximize
long-term rewards obtained from the original MDP [32]. To reiterate, while a more
sophisticated model would allow us to approximate brain points in agreement with
the shaping theorem, under the given circumstances it was deemed a satisfactory
solution to instead rely on using the maximal possible progress in the approximation
in order to come to a solution. An encouraging piece of evidence for this decision
is the comparable performance of the handcrafted policy and a myopic agent acting
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Figure 3.10: Comparison of Simulated Agents in original DoC-MDP: Depicted are the
rewards obtained by simulated agents averaged across 1000 episodes.
The error bars represent standard deviation. The random agent selects
actions randomly and the HCP-agent follows the handcrafted policy de-
fined in Alg 3. ABP labels a myopic agent provided with approximate
pseudo-rewards (Eq. 3.20).

upon the approximated brain points in both the simplified and the original MDP shown
in Figures 3.9 and 3.10. In the end, the evaluation with real learners has to show
whether the brain points are beneficial to the learners even if they are not optimal.
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4 Evaluation of the Brain Points Method
in a Controlled Online Experiment

In this chapter, the evaluation of the approximated brain points derived in the previous
chapter is described. That evaluation entailed the construction of an experimental
learning environment with the help of two pilot experiments, described in Section 4.1.
Following that, the design of the experiment with the environment and the analysis of
the obtained data are presented in Section 4.2.

4.1 The Experimental Learning Environment

In order to evaluate the effect of presenting brain points to learners choosing between
different learning tasks in an experiment with limited duration, an experimental learn-
ing environment had to be designed. The goal of this process was to strike a balance
between applying the necessary simplifications and keeping some fundamental char-
acteristics of Dawn of Civilisations well represented.

First of all, a learning environment needs learning material. A paired associative
recognition task was chosen due to its widespread application in researching mech-
anisms of learning [49, 50, 51]. That means that participants are tasked to memorize
associations between stimuli. As the task was designed as a recognition and not a
cued-recall paradigm, participants had to recognize whether two stimuli presented to
them were associated or not. In order to better represent learning a new language
and to avoid confounding effects of participants language skills, non-words were cho-
sen as the stimuli [52].

Besides the learning material itself, another aspect to be considered is how to con-
struct different tasks from it. It is important that learners are not indifferent towards
the choice between tasks, because that would hinder the evaluation the effectiveness
of the incentives in helping them overcome short-sighted decision strategies. In Dawn
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of Civilisations, users may prefer some minigames over others due to a large array of
reason, be it their graphics, their game mechanics or their content. All these factors
are difficult to replicate in a short and simple experiment. One crucial factor likely con-
tributing to the appeal of a minigame is its difficulty. As elaborated in Section 2.1.5,
people’s tendency to feel aversion towards failure often leads them to seek out easy
tasks [1, 2]. Therefore, the decision was made to vary the difficulty of the learning
tasks between minigames in the experimental learning environment. Easier said than
done, as the literature on paired-associate learning of non-words typically asks and
answers other types of research questions than if increasing the number of letters in
a non-word facilitates or impedes memorizing it.

Consequently, potential learning stimuli were tested beforehand to find sets of stimuli
of varying difficulty. It is important to note that the purpose of these experiments was
to identify a suitable set of stimuli and specifically not to test hypothesis regarding
what factors make paired associate learning more or less difficult. On top of finding
a way to manipulate difficulty between learning tasks, the pretests can also provide
an estimate of P (correct|a), which is crucial to calculating and approximating brain
points for the experiment.

In the following, the two experiments run in order to test potential learning stimuli are
described in detail.

4.1.1 Testing Learning Stimuli: Experiment 1

As a first step, three potential factors influencing difficulty were tested against a base-
line. One idea was that increasing the number of non-word pairs to be memorized
might hinder performance. The second idea was that people might find shapes more
difficult to memorize than non-words. The third idea was to increase the difficulty by
decreasing the distinguishability of valid and invalid pairs.

Methods

Design Each of the three experimental conditions (see overview in Table 4.1) inves-
tigated one possible difficulty manipulation in a within-subject design. The stimuli list
used as the baseline consisted of 6 pairs of 4-letter non-words. The baseline list was
the same across all three conditions. The first experimental manipulation, labeled
"Set Size" concerned the size of the list to be learned and therefore encompassed 10
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pairs of 4-letter non-words. The second condition, "Visual", featured 6 pairs consist-
ing each of an abstract shape and a 4-letter non-word. The third condition differed
from the baseline in the way the 6 pairs were constructed. Instead of pairing one non-
word of each associated pair with a new non-word to form the non-associated pairs,
the non-associated pairs were re-combinations of the same 6 non-words used in the
associated pairs. This condition was labeled "Distractors". Across all conditions, half
of the stimuli were assigned to be associated and the other half to be non-associated
pairings.

The dependent variable was the percentage of correct classification achieved by par-
ticipants.

Participants 57 (70.7% female; mean age = 23.9 years, SD = 6.32 years) partici-
pants were recruited via the online recruitment platform Prolific [53]. All participants
provided written informed consent and received a base compensation of 0.75 £ for
the 8 minute experiment. Additionally, they were awarded a bonus payment based
on their performance, with the average bonus set to be 0.25 £. All participants were
older than 18 years and fluent in English.

One participant was excluded according to the predefined exclusion criteria. This
means that they failed both of the included attention checks. Each attention check
consists of the message "It is important that you stay attentive throughout the experi-
ment. Please press p to continue" and were considered to have failed if the participant
corresponded with one of the keys used to communicate their response to the regular
trials, indicating trying to skip trough the trials without paying attention to what was
written on the screen.

This and the following experiment were covered by the ethics approval from the IEC
of the University of Tübingen under IRB protocol number 667/2018BO2.

Materials and Procedure The experiment was programmed using jsPsych [54],
a framework for running behavioural online experiments. The implementation was
based off a "starter pack" provided by [55]. The non-words used as stimuli were
randomly sampled from the ARC Nonword Database [52]. The shapes used as stimuli
in the "Visual" condition were adapted from Clayton et al. (2018) [49]. Table 4.1 details
the exact stimuli pairs used in each condition.

Participants were randomly assigned to an experimental condition. The experiment
was divided into two blocks - the baseline block and the experimental block, which
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Baseline Set Size Visual Distractors
Valid dwor - zuik clee - vafe - clee clee - vafe

prus - ceaf smar - cilp - vafe smar - cilp
gheg - kump ulch - grov - smar ulch - grov

cauv - urbe
fusk - tarb

Invalid dwor - chom clee - demb - cilp clee - grov
prus - pefe smar - soys - ulch smar - vafe
gheg - skra ulch . tovs - grov ulch - cilp

cauv - gyte
fusk - kilv

Table 4.1: Stimuli First Pretest

were counterbalanced and had a break in between. Each block consisted of 5 repeti-
tions of the corresponding stimuli list. Within each repetition, the order of stimuli pairs
was randomized.

The stimuli pairs were presented to the participants on the screen and they reacted to
them with a key press indicating whether they thought it was a valid or invalid pairing.
After the reaction, corresponding feedback was shown.

Results

The within-subject design used resulted in paired samples for each conditions. There-
fore, the Wilcoxon signed-rank test [56] was used to test for differences of the per-
centage of correct classifications between each of experimental conditions and the
baseline. In order to address the multiple comparison problem, α was adjusted fol-
lowing the Bonferroni correction: α = 0.05

3 = 0.017. [57]. The results are reported in
Table 4.2 and Figure 4.1. None of the experimental manipulations of difficulty elicited
a significant difference in the percentage of correct classifications. Consequently, a
second experiment was designed so as to find a working manipulation of difficulty for
constructing the experimental learning environment.
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Contrast Z-value p-value Cohen’s d
Baseline - Visual 70.0 0.314 -0.12
Baseline - Set Size 82.0 0.879 0.00
Baseline - Distractor 83.0 0.913 0.08

Table 4.2: Results First Pretest
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(a) Visual Condition

(b) Set Size Condition

(c) Distractor Condition

Figure 4.1: Results of first Stimulus Pretest: The left columns shows the percentages
of correct classification across all trials. The right columns shows the
percentages depending on how often participants had already seen the
stimuli pair.
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4.1.2 Testing Learning Stimuli: Experiment 2

Seeing the results of the first experiment, the size of the baseline list was decreased
in the hope of making it easier to master. Out of the same considerations, one set
with more pairs than the maximum of ten in the previous experiment was tested.
As a second idea, more complex stimuli consisting of paired non-words which in turn
were combined with other paired non-words into the valid and invalid pairs were used.
Thirdly, it was tested whether making the non-words themselves more similar to each
other might impact difficulty.

Methods

Design As in the first experiment, each of the three experimental conditions (see
overview in table 4.3) investigated one possible difficulty manipulation in a within-
subject design. The stimuli list used as the baseline was reduced to 4 pairs of 4-letter
non-words. The size of the list to be learned in the "Set Size" condition was increased
to 16 pairs of 4-letter non-words. For the "Doubles" condition, each of the 8 stimuli
pairs itself consisted of pairs of non-words. In order to construct the invalid pairs, the
second non-words of the double stimuli were swapped. The third condition, termed
"Similarity", comprised 2 sets of 4 stimuli pairs. Each of those sets was created by
starting off with a pair of non-words from which an additional one was created by
changing one consonant in each of its components. Recombining the resulting non-
words yielded the two corresponding invalid pairs.

The dependent variable was again the percentage of correct classifications achieved
by participants.

Participants 60 participants (67.8% female; mean age = 25.5 years, SD = 6.96

years) were recruited via the online recruitment platform Prolific [53]. All participants
provided written informed consent and received a base compensation of 0.50 £for
the 6 minute experiment. Additionally, they were awarded a bonus payment based
on their performance, with the average bonus set to be 0.25 £. All participants were
older than 18 years and fluent in English. With the use of Prolific’s prescreening tool,
it was ensured that no participants from the first version of the experiment took part
again. Two participants were excluded according to the predefined exclusion criteria,
which were the same as for the first experiment.
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Baseline Set Size Doubles Similarity
Valid fipt - bonk zonz - nylk preg hilv - zubs qued vomp - ancs

shec - rukt fubb - cwob coaz rert - deec nibe vonp - anzs
veav - knyz fubb cwop - fost zict feph - gwug
murt - yoes nyln klaz - soag yesc fegh - grug
fost - zict
wope - filf
nooc - twes
nels - spyc

Invalid fipt - dynk zonz - zict preg qued - zubs hilv vonp - ancs
shev - alvs fubb - filf coaz nibe - deec rert vomp - anzs

veav - twes fubb zict - fost cwob feph - grug
murt - spyc nyln yesc - soag klaz fegh - gwug
fost - nylk
wope - cwop
nooc - knyz
nels - yoes

Table 4.3: Stimuli Second Pretest

Materials and Procedure The experiment was again programmed based on [55]
using jsPsych [54] and the non-words randomly sampled from the ARC Nonword
Database [52]. For the "Similarity" condition, 4 non-words were sampled from the
database and manually altered to create stimuli differing only in a single consonant.
Table 4.3 details the exact stimuli pairs used in each condition.

The basic procedure was the same as for the first experiment. Two changes were
made to address previous oversights. Firstly, the order in which the non-words form-
ing a pair were presented was randomized to ensure that the participant had to learn
the association and not just the second stimulus to produce correct responses. Sec-
ondly, a response time limit of 3.5 seconds was imposed and the feedback shown for
2 seconds. These changes were meant to prevent participants from noting down the
stimuli pairs in order to achieve a higher bonus payment or to skip the feedback for
the sake of finishing the experiment more quickly.

Results

The results were obtained in the same manner as described for the first experiment
and are reported in Table 4.4 and Figure 4.2. The list of more similar non-word pairs
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Contrast Z-value p Cohen’s d
Baseline - Set Size 48.5 0.171 0.07
Baseline - Doubles 61.0 0.107 0.13
Baseline - Similarity 17.0 0.003 0.31

Table 4.4: Results Second Pretest

was shown to be significantly more difficult to learn than the baseline list, with a
moderate effect size (Z = 17, p = 0.003, d = 0.31).
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(a) Set Size Condition

(b) Doubles Condition

(c) Similarity Condition

Figure 4.2: Results of second Stimulus Pretest: The left columns shows the percent-
ages of correct classification across all trials. The right columns shows
the percentages depending on how often participants had already seen
the stimuli pair.
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4.1.3 The Finalized Learning Environment

Based on the findings derived from the pre-tests, the learning environment’s design
was finalized in the following way. Three skills are to be trained, Ns = 3. Those are
the "Base" skill, the "Medium Similarity" skill and the "Similarity" skill. It was deemed
appropriate to include an intermediate set of stimuli due to the medium effect size of
the difference between the baseline and the similarity stimuli. That set was created
by randomly sampling non-words from the database [52] and changing two letters
(instead of one as for the similarity stimuli) in order to obtain pairings containing stimuli
with medium similarity to one another. Each skill translates to the ability to memorize
associations between stimuli from the corresponding lists. The baseline and similarity
stimuli lists are equal to those detailed in Table 4.3. The newly created medium
similarity stimuli are shown in Table 4.5.

A learner’s competence in each of these skills is measured in 2 levels, NCi = 2

∀ i. The QR-system employed in Dawn of Civilisations was slightly adapted to better
fit the framework of the experiment. Most notably, the spaced repetition was com-
pletely omitted due to the fact that the experiment only spans a very limited amount
of time. Consequently, the state s consists only of the number of questions at each
QR-level for each skill. The maximal QR-level was reduced to 4. After the first en-
counter of a question - or stimulus pair - the QR-level only increased to 1 regardless
whether a correct answer was given because that answer was considered to be ran-
dom. The rule that a skill level is considered as completed if at least 80% of the
pertaining questions reached their maximal QR-level was kept as is. That translates
to all 4 questions for the baseline skill and 7 question for both the medium similarity
and the similarity skill. The learning goal was set to the completion of the first and

Medium Similarity
Valid zonz - nylk

zamz - nirk
murt - cwob
mokt - cvab

Invalid zonz - nirk
zamz - nylk
murt - cvab
mokt - cwob

Table 4.5: Medium Similarity Stimuli
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only level for all three skills, g = (1, 1, 1). The environment comprises three actions,
|A| = 3. Each action trains exactly one skill. P (correct|a) was taken directly from
the results of the pre-test for the baseline and the similarity stimuli. For the medium
similarity stimuli, the average of the former two was taken as an estimate. Conse-
quently, P (correct|a = baseline) = 0.585 , P (correct|a = similarity) = 0.465 and
P (correct|a = medium similarity) = 0.525. Each action always presents exactly 4
questions, therefore the action costs were uniformly set to −1 while reaching the
learning goal elicited a positive reward. The optimal state-value function V ∗(s) for
the sketched-out experimental learning environment MDP was calculated by use of
the value iteration algorithm (see Section 2.2.2 and Algorithm 1). From there, opti-
mal brain points were calculated according to Eq. 2.16. Approximated brain points
ABP (s, a) were derived according to Eq. 3.20. Subsequently, both kinds of brain
points were scaled to integers between 0 and 5. This range came to be out of con-
siderations made for Dawn of Civilisations, where brain points would be awarded in
form of 0 - 5 additional reward cards.

As a first evaluation step, the performance of simulated myopic agents receiving either
optimal, approximated or rounded approximated pseudo-rewards were contrasted be-
tween one another and with those of a random and myopic agents The simulation
results are depicted in Figure 4.3. They allow us to conclude that for the simulated
myopic agents, the approximated brain points are as beneficial as the optimal brain
points and that scaling and rounding them to fit the constrains of displaying them to
human learners does not elicit negative effects. Therefore, the second evaluation
step commenced and the approach tested with human learners, as described in the
following section.
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Figure 4.3: Comparison of Simulated Agents in Experimental MDP: Reward obtained
by different simulated agents averaged over 1000 episodes. The error
bars represent standard deviation. OBP means a myopic agent receiv-
ing optimal brain points or pseudo-rewards. Random means an agent
that chooses its actions randomly, while the myopic agent selects actions
greedily while looking one step ahead without any pseudo-rewards. ABP
labels the approximated pseudo-rewards (Eq. 3.20) and Rounded ABP
are those same pseudo-rewards scaled and rounded to integers between
0 and 5.
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4.2 The Evaluation Experiment

4.2.1 Hypotheses

Based on the findings in the literature summarized in Chapter 2 and the results ob-
tained with simulated agents reported in Sections 3.4 and 4.1.3, the following hy-
potheses are postulated: First, it is hypothesized that brain points can improve user’s
learning choice behaviour during self-directed interaction with a digital learning envi-
ronment by reducing the tendency to exploit strong skills for gathering more rewards.
That means that we hypothesize that participants viewing brain points choose more
challenging games more often and games they can no longer progress in less of-
ten. Second, it is hypothesized that brain points can improve user’s learning outcome
during self-directed interaction with a digital learning environment. That means that
we hypothesize that participants viewing brain points complete more word pairs and
overall achieve higher QR-levels throughout the experiment. Third, it is hypothesized
that the effects of approximated brain points do not differ from the effects of optimal
brain points.

The following sections detail the experiment conducted in order to test this hypothe-
ses.

4.2.2 Methods

Design The experiment was a between-subjects design with five conditions. In all
conditions, participants saw a score based on the number of questions they had an-
swered correctly and knew that their bonus payment depended on that score. In the
control condition, participants chose between learning activities without any further
incentives shown to them. In the second condition (OBP), participants were shown
rounded optimal brain points when choosing between learning activities. In the third
condition (ABP), participants were shown rounded approximate brain points when
choosing between learning activities. In order to be able to detangle possible effects
of the different incentive schemes on learners’ choice behaviour and their learning
outcomes, two forced-choice conditions were included. In these, participants did not
get to choose which learning task they wanted to engage in. Instead, they were forced
to play the game assigned the highest number of optimal brain points (OBP-FC) or
approximate brain points (ABP-FC). This design allowed to find effects on learning
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outcomes even if there were no effects on choice behaviour. That is especially impor-
tant as the mechanisms of gamification are difficult to incorporate in the minimalist
experiment and the shown brain points were arguably less incentivizing than sophisti-
cated gamification elements displayed in an overall more engaging context. Including
the brain points in the bonus payments, on the other hand, would have been too
strong of an incentive to meaningfully interpret the results.

In order to test the hypotheses, learning choice behaviour and learning outcome had
to be measured. Three dependent variables were chosen to measure aspects of
choice behaviour. First, the percentage of choices made in favour of the game that
yielded the highest score on average up to the time the choice is made was measured.
This variable captured the concept of exploiting strong skills in order to increase re-
wards. Second, the percentage of choices made in favour of a game with the highest
number of optimal brain points was measured to quantify the quality of participants’
choices. Third, the percentage of choices made in favour of the easiest game was
used to assess how much participants preferred the easy task over the harder tasks.

Learning outcome was operationalized in two different ways. The first was the num-
ber of completed word pairs at the end of the experiment as per the rules of Dawn of
Civilisation, meaning having reached the maximal QR-level of 4. Because the mea-
sure dichotomizes learning progress to some extend, additionally the sum of all the
pairs’ QR-levels at the end of the experiment was measured as a more continuous
indicator of made progress.

Having specified the dependent variables allows to also concretize the hypotheses
formulated in Section 4.2.1: Participants receiving either optimal or approximate brain
points were expected to choose the baseline game and their highest-scoring game
(which can, but do not have to be the same) with a lower percentage and an optimal
game with a higher percentage than participants in the control condition. Further,
participants receiving either optimal or approximate brain points or being forced to
choose according to the optimal or approximate policy were expected to complete a
higher number of word pairs and achieve a higher sum of QR-levels by the end of the
experiment than participants in the control condition. Lastly, the type of points was
not expected to elicit differences in any of the dependent variables.

Participants The required sample size was determined based on the effect sizes
reported by Xu, Wirzberger & Lieder (2019) [1] and with the help of G*Power [58].
Assuming a effect size of η2 = 0.218, a Type-I error probability of 0.05 and striving for
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a statistical power of 95% for 5 groups, a required sample size of 272 was calculated.
Allowing for buffer, 60 participants were recruited per condition and with that 300
participants overall.

Consequently, 300 participants (57.5% female; mean age = 24.9 years, SD = 6.16

years) were recruited via the online recruitment platform Prolific [53]. All participants
provided written informed consent and received a base compensation of 1.70 £ for
the 16 minute experiment. Additionally, they were awarded a bonus payment based
on their performance, with the average bonus set to be 0.40 £. All participants were
older than 18 years and fluent in English.

36 participants were excluded according to the predefined exclusion criteria. This
means that they failed two or more of the included attention checks, which were iden-
tical to those used in the previously reported stimuli tests (see Section 4.1.1). New
participants were recruited to fill their places.

Participants were randomly assigned to conditions. In the end, 67 participants com-
pleted the control condition, 57 participants each completed the optimal brain points,
approximated brain points and optimal brain points with forced-choice conditions and
62 participants completed the approximate brain points with forced-choice condition.

This experiment was covered by the ethics approval from the IEC of the University of
Tübingen under IRB protocol number 667/2018BO2. Funding for participants’ com-
pensations was granted by the Rationality Enhancement Group at the Max-Planck-
Institute for Intelligent Systems in Tübingen.

Materials and Procedure The experiment was programmed with jsPsych [54, 55].

After giving their consent to participate in the experiment, participants were provided
with instructions.

The main part of the experiment consisted of 40 mini-blocks. Each mini-block in turn
consisted of one choice trial, four learning trials and one screen message informing
participants of their score. If a participant reached the learning goal, the experiment
ended early and they did not have to complete the full 40 mini-blocks.

In each choice trial (see Figures 4.4a, 4.4b and 4.4c), participants clicked on the but-
ton corresponding to the game they wanted to play. In the forced-choice conditions,
only one button was enabled. The assignment of the base, medium similarity and
similarity games to Game A, B and C was randomized to rule out the possibility of an
effect of the order. The learning trials consisted of two parts. First participants are
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(a) Choice trial in control condition (b) Choice trial in free choice conditions

(c) Choice trial in forced-choice conditions (d) Example learning trial

(e) Feedback after correct response (f) Feedback after incorrect response

Figure 4.4: Materials of the evaluation experiment:
Figures 4.4a, 4.4b and 4.4c show exemplary choice trials illustrating the
difference between the conditions. Figure 4.4d shows how a learning tri-
als looked like. Figures 4.4e and 4.4f show the presentation of feedback
following a correct or incorrect response, respectively.
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presented with the word pair and a reaction prompt (Figure 4.4d). There was a time
limit of 3.5 seconds for responses. Then, the appropriate feedback to the response
was shown for 2 seconds (Figures 4.4e and 4.4f). The stimuli to be presented were
selected according to the QR-level based priorities described in Section 3.3.5, which
translates into showing the stimuli with the lowest QR-levels for the simplified envi-
ronment. The order in which the selected stimuli were shown within one game was
randomized. After the 4 learning trials, participants were informed of the score they
achieved, which equates to the number of correct answers given.

This concludes the description of the experimental methods. In the next section, the
process of data analysis and its reasoning and the results are presented.

4.2.3 Results

The analyses reported in this section have been pre-registered with aspredicted.org
(see Appendix D). All presented figures were created with Matplotlib [59]. The anal-
yses were performed with the help of pandas [60], scipy [61], statsmodels [62] and
pingouin [63].

Descriptive Analyses

First of all, a look was taken on how well participants generally coped with the learning
task. As shown in Figure 4.5, over half (55%) of the participants managed to mas-
ter at least one skill. Specifically, 39.2% of participants completed one skill. 75.4% of
that group mastered the baseline skill, 8.5% completed the medium similarity skill and
16.1% completed the similarity skill. 11.2% of participants completed two skills. Of
those, 23.5% mastered the baseline and the medium similarity skill, 64.7% the base-
line and similarity skill and 11.8% the medium similarity and similarity skill. Overall,
4.4% of participants managed to complete all three skills.

These findings indicate that the learning task was neither too easy nor too hard, which
forms a good basis for further evaluation.

Secondly, a manipulation check was performed by testing for differences in the ob-
tained scores per games with a Kruskal-Wallis H-test [64]. Based on the results
(H = 181.1, p < 0.001) indicating a significant difference between the three games,
pairwise comparisons were made using the Mann-Whitney U-test [56], for which the
false discovery rate was controlled with the Bejamini-Hochberg procedure [65]. The
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Figure 4.5: Overview of Skill Mastery: The left tile shows the percentage of partici-
pants who completed none, one, two or all three skills. The middle tile
shows which percentage of the 39.2% participants who mastered one skill
completed each of the skills. The rightmost tile shows which percentage
of the 11.2% participants who mastered two skills completed each of the
possible two-skills combinations.

Contrast U p η2

Baseline - Medium Similarity 65714.0 <0.001 0.15
Baseline - Similarity 72159.5 0.001 0.26
Medium Similarity - Similarity 55441.5 <0.001 0.04

Table 4.6: Results of Score Comparisons

results are summarized in Table 4.6 and Figure 4.6a. It can be seen that the diffi-
culty of the three learning games differed as intended by the experimental design as
participants gave more correct answers to the baseline stimuli than to those meant to
be more difficult to learn. The medium similarity stimuli, which had not been tested
before, elicited significantly more correct answers than the similarity stimuli while elic-
iting significantly less correct answers the baseline stimuli. Therefore, the introduction
of a medium difficulty stimuli set can be viewed to have been successful, even though
the effect sizes reported in Table 4.6 lead to the conclusion that the medium similarity
stimuli are much closer in difficulty to the similarity stimuli than they are to the baseline
stimuli. The data depicted in Figure 4.6b shows that overall the participants chose to
interact with the three different games at comparable rates. Thereby, the evidence
of a successful difficulty manipulation is supported because it allows to conclude that
the observed difference in difficulty is not just an effect of increased practice of the
baseline game.
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(a) Manipulation Check (b) Distribution of Choices across Games

Figure 4.6: Manipulation Check - Scores and Choices: Figure 4.6a shows the scores
obtained by participants by games. The score can range from 0 for no
correct answer to 4 for 4 correct answers, as each game presents 4 stim-
uli to react to. On the right hand side, in Figure 4.6b, the percentages
of choices made by participants for each of the three games is shown.
The percentage is in reference to the 40 choices made by each partici-
pant throughout the experiment. In both subplots, the boxes represent the
interquartile range. The black lines inside the boxes indicate the median.
The whiskers extend to the minimal and maximal observed values. ***
indicates a significant difference with p < .001.
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Variable W p
Choice by Highest Score 0.93 0.001
Choice for Optimal Action 0.46 0.001
Choice for Base Game 0.87 0.001

Table 4.7: Test for normality of choice variables

After this familiarization with the experimental data, the hypotheses tests were per-
formed as described in the following sections.

Choice Behaviour

As described in Section 4.2.2, three aspects of the learner’s choice behaviour have
been measured. The first is the percentage of choices made in favour of the game
that up to that point led to the highest average score. The second is the percentage
of choices made in favour of any game assigned the maximal number of optimal brain
points. And the third is the percentage of choices made in favour of the easiest game,
presenting the baseline stimuli. Due to the fact that choosing any game training a
skill which has not yet been completed is an optimal action, choices made after the
first skill acquisition were analysed in addition to testing for effects across all choices
made throughout the experiment. Because the choices made are the variable of in-
terest, data from participants in the two forced-choice conditions are not included in
these analyses. The Shapiro-Wilk test was used to test for normality on account of its
statistical power [66]. Table 4.7 summarizes the results for the three choice variables.
It can be concluded that the data is not well-modelled by normal distributions. There-
fore, non-parametric tests were deemed the appropriate tool to test the hypothesis
formulated in Section 4.2.1.

Choice by Highest Score Participants in the control condition showed the highest
percentage of choices in favour of their highest-scoring game (median = 40%, IQR =
20%), followed by participants presented with optimal brain points (median = 37.5%,
IQR = 12.5%) and participants presented with approximate brain points (median =
32.5%, IQR = 15%), see Figure 4.7a.

The Kruskal-Wallis H-test [64] showed that at least one of the samples stochastically
dominates another (H = 8.76, p = 0.012, η2 = 0.038). Hence, pairwise comparisons

62



4 Evaluation of the Brain Points Method in a Controlled Online Experiment

Contrast U p (corrected) η2

Control - OBP 2216.5 0.167 0.015
Control - ABP 2527.5 0.010 0.068
OBP - ABP 1900.0 0.167 0.021

Table 4.8: Pairwise Comparison of Choice by Highest Score

Contrast U p (corrected) η2

Control - OBP 39 0.030 0.709
Control - ABP 18 0.035 0.725
OBP - ABP 44 0.691 0.704

Table 4.9: Pairwise Comparison of Choice by Highest Score after first Skill Acquisition

were performed with the Mann-Whitney U-test [56], the results of which are sum-
marized in Table 4.8. The false discovery rate was controlled with the Benjamini-
Hochberg procedure [65].

It was shown that participants presented with approximated brain points chose the
game they performed best in so far at significantly lower rates than participants in the
control condition, with a medium effect size.

When considering only the choices made after the first skill acquisition (Figure 4.7b),
the following pattern presents itself: Participants in the control condition chose the
game they performed best in so far at the highest rate (median = 75%, IQR = 27%).
Participants in the OBP-condition (median = 9.5%, IQR = 14.4%) and in the ABP-
condition (median = 4.7%, IQR = 22.2%) chose their highest-scoring game at lower
rates.

A significant difference between at least two groups was found with the Kruskal-Wallis
H-test (H = 7.62, p = 0.022, η2 = 0.031). The subsequently performed pairwise com-
parisons reported in Table 4.9 showed that the choice rates in the control condition
significantly differ from those in both the optimal brain points and the approximate
brain points condition, with large effect sizes.

Choice for Optimal Action The percentage with which an optimal action was cho-
sen (see Figure 4.7c) was generally high with varying spread: The participants in the
control condition (median = 90%, IQR = 23.1%) showed a higher variance in their
choices than those presented with either optimal (median = 100%, IQR = 5%) or ap-
proximate (median = 100%, IQR = 2.5%) brain points. The Kruskal-Wallis H-test [64]
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(a) Choice by Highest Score (b) Choice for Highest Score after Skill Acquisition

(c) Choice for Optimal Action (d) Choice for Optimal Choice after Skill Acquisition

(e) Choice for Base Game (f) Choice for Base Game after Skill Acquisition

Figure 4.7: Effect of Type of Points on Choice Behaviour:
Depicted are different aspects of choice behaviour by condition: Control, Optimal Brain Points (OBP)
and Approximate Brain Points (ABP). The left column shows the effect of the type of points on all
choices made by participants. The right columns shows the effect on choices made after participants
had completed at least one skill. The uppermost row shows the percentage of choices in favour of the
game that up to that choice led to the highest average score. The middle row shows the percentage
of choices made in favour of a game assigned the highest number of optimal brain points. The lower
row shows the percentage of choices made in favour of the base game and with that the easiest
game.
In all subplots, the boxes represent the interquartile range. The black lines inside the boxes indicate
the median. The whiskers extend to the minimal and maximal observed values. *** indicates a
significant difference with p < .001, ** indicates a significant difference with p < .01 and * indicates
a significant difference with p < .05.
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Contrast U p (corrected) eta
Control - OBP 1344.0 0.003 0.069
Control - ABP 1167.0 <0.001 0.117
OBP - ABP 1409.5 0.017 0.013

Table 4.10: Pairwise Comparison of Choice for Optimal Action

Contrast U p (corrected) η2

Control - OBP 2.0 0.041 0.737
Control - ABP 0.0 0.041 0.738
OBP - ABP 44.5 0.655 0.705

Table 4.11: Pairwise Comparison of Choice for Optimal Action after first Skill Acquisi-
tion

showed that at least one difference between the groups (H = 19.67, p = < 0.001, η2

= 0.099). Pairwise Mann-Whitney U-test with Benjamini-Hochberg correction (results
reported in Table 4.10) showed that the medium differences between the control and
both brain points conditions are statistically significant.

As completing one skill removes the corresponding game for the set of optimal ac-
tions, it is especially interesting to consider the choices made after the first skill ac-
quisition for this variable, which are depicted in Figure 4.7d. After completing their
first skill, participants who were shown optimal brain points choose an optimal action
with the highest rate (median = 95%, IQR = 9.5%), followed by participants who saw
approximate brain points (median = 91.8%, IQR = 8.7%). Participants in the control
condition exhibit the largest decrease in choices in favour of an optimal action after
acquiring a skill (median = 35%, IQR = 23.8%).

An effect of the condition was found using the Kruskal-Wallis H-test (H = 6.70, p =
0.035, η2 = 0.027). The subsequent pairwise comparisons reported in Table 4.11
show that the participants in the control condition chose an optimal action at signifi-
cantly lower rates than participants presented with either kind of brain points.

Choice for the easiest Game Lastly, the percentage of choices in favour of the
easiest game was examined (see Figure 4.7e). Participants in the control condition
(median = 35%, IQR = 18.1%), the OBP-condition (median = 30%, IQR = 15%) and the
ABP-condition (median = 30%, IQR = 15%) chose the easiest game at comparable
rates. No difference between conditions was found (H = 4.904, p = 0.086. η2 = 0.016).
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Variable W p
Learned Word Pairs 0.938 <0.001
Sum of QR-Levels 0.966 <0.001

Table 4.12: Test for normality of learning outcome variables

A similar pattern can be observed for choices made after the completion of one skill
(Figure 4.7f), with the percentages of choices in favour of the easiest game being in
a similar range for participants in the control condition (median = 28.2%, IQR = 25%),
and both the optimal (median = 25%, IQR = 6.4%) and the approximate (median =
25.1%, IQR = 4.9%) brain points condition. Again, no difference between conditions
was found (H = 0.431, p = 0.009).

Learning Outcomes

As already explained in Section 4.2.2, the learning outcome has been operationalized
by two different measures. Firstly the number of word pairs classified as learned
by the QR-System mimicking Dawn of Civilisations’. Secondly, the sum of the QR-
Levels, serving as a more continuous measure of learning progress. The Shapiro-
Wilk test was employed to test whether these variables are well-modelled by a normal
distribution [66]. Seeing the results in Table 4.12, it was apparent that this was not
the case. Hence, non-parametric test were used in subsequence.

In order to adequately deal with the not fully factorial experimental design, Kruskal-
Wallis H-tests were used to test for differences between the three free choice condi-
tions. Two-way ANOVAs were planned to be used to evaluate the main effects and
possible interactions of the factors type of points (optimal vs approximate) and type
of choice (free vs forced) for both dependent variables. Based on a literature review
[67, 68], the decision was made to not use MANOVAs because in spite of dealing
with two dependent variables, the research questions asked are univariate in nature.
However, the data violate the necessary assumption of normality. For this case, the
preregistered analysis intended to rely on the Friedman test [56] as a non-parametric
alternative. That was an unfortunate mistake as the Friedman test procedure is only
suitable for the analysis of matched samples. As a first alternative, performing the
two-way ANOVA on rank-transformed data was considered, but it has been argued
that this procedure suffers from inflated Type-1 error rates [69]. Instead, the analyses
of interactions between the factors is forgone for the sake of statistical robustness and
the factors will be looked at separately with Mann- Whitney U-tests.
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(a) Learned Word Pairs in the free choice
conditions

(b) Sum of QR-Levels in the free choice
conditions

(c) Learned Word Pairs by type of choice (d) Sum of QR-Levels by type of choice

(e) Learned Word Pairs by type of points (f) Sum of QR-Levels by type of points

Figure 4.8: Learning Outcomes: Depicted are the two operationalisations of learning outcomes, learned word
pairs in the left column and sum of QR-levels in the right columns. The maximal possible value for
learned word pairs is 20. The maximal possible sum of QR-levels is 80. The uppermost row shows
the outcomes by the three types of points in the conditions allowing participants to choose freely
which learning activity to engage in. The lower two rows show the effects of type of choice and type
of points on the outcome measures, respectively. These plots do not contain data from the control
condition, as an aggregation of data by the factor if type of choice is not possible.
In all subplots, the boxes represent the interquartile range. The black lines inside the boxes indi-
cate the median. The whiskers extend to the minimal and maximal observed values. ** indicates a
significant difference with p < .01 and * indicates a significant difference with p < .05.
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Contrast U p (corrected) eta
Control - OBP 1321.0 0.006 0.075
Control - ABP 1687.5 0.211 0.012
OBP - ABP 1883.0 0.211 0.019

Table 4.13: Pairwise Comparison of the Number of Learned Word Pairs

Number of Learned Word Pairs Participants receiving optimal brain points com-
pleted a higher number of questions (median = 9, IQR = 5) than those receiving
either approximate (median = 7, IQR = 4) or no (median = 7, IQR = 5) brain points,
as can be observed in Figure4.8a. An effect of the type of points was found using
the Kruskal-Wallis H-test (H = 8.96, p = 0.011, η2 = 0.039). Pairwise Mann-Whitney
U-tests (see results in Table 4.13) showed that effect to be driven by a significant dif-
ference between the number of word pairs completed by participants in optimal brain
points condition and by those in the control condition.

Participants choosing freely between games completed less word pairs (median = 8,
IQR = 5.75) than those forced to interact with the game with the highest incentive
assigned to it (median = 9, IQR = 5). This is a small but significant of the type of
choice on the number of learned word pairs (U = 5340.5, p = 0.005, η2 = 0.034).

The type of incentive scheme (approximate: median = 9, IQR = 6.5, optimal: median
= 8, IQR = 5.75) did not have an effect of the number of learned word pairs (U =
5954.0, p = 0.106, η2 = 0.011).

Sum of QR-Levels As can be seen in Figure 4.8b the sum of QR-levels were high-
est in the OPB-condition (median = 57, IQR = 9), followed by the ABP-condition (me-
dian = 56, IQR = 10) and then the control condition (median = 54, IQR = 9.25). A
significant difference between at least two groups was found with the Kruskal-Wallis
H-test (H = 8.456, p = 0.015, η2 = 0.036). The subsequently performed pairwise
comparisons reported in Table 4.14 showed that participants in both brain points con-
ditions achieved significantly higher QR-sums than those in the control condition with
medium effect sizes.

Participants which were forced to play either the game with the highest number of
optimal or approximate brain points achieved higher sums of overall QR-levels at the
end of the experiment (median = 61, IQR = 13) than participants who saw those points
but were free to choose which game to interact with (median = 57, IQR = 10). This is
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Contrast U p (corrected) eta
Control - OBP 1393.5 0.020 0.058
Control - ABP 1503.0 0.046 0.037
OBP - ABP 1729.5 0.553 0.003

Table 4.14: Pairwise Comparison of the Sum of QR-Levels

depicted in Figure 4.8d. This small effect of type of choice on sum of QR-levels was
found to be significant (U = 5403.5, p = 0.007, η2 = 0.031).

Figure 4.8f shows that there was no effect of whether approximate (median = 58, IQR
= 10) or optimal (median = 59, IQR = 13) brain points were used as incentives or as
choice directive on the sum of QR-levels found (U = 6359.0, p = 0.409, η2 = 0.003).

4.2.4 Discussion

The purpose of this experiment was to evaluate the effects of presenting brain points
to learners choosing between different educational activities. Specifically, the effects
on learners’ choice behaviour and their learning outcomes were examined. It was hy-
pothesized that brain points could reduce the rate at which learners choose the game
they performed best in so far. The results show that to be the case. Especially, learn-
ers were shown to switch from choosing their highest-scoring game to another after
having completed the corresponding skill. That means that brain points encouraged
the learners to challenge themselves rather than to exploit a mastered skill either
for increasing their score or for obtaining a feeling of achievement, a tendency often
found in previous studies on gamifying learning [1]. Furthermore, even though the ex-
periment did not include specific narratives promoting a growth mindset, this pattern
of seeking out challenges can be interpreted as a behaviour reflecting a growth rather
than a fixed mindset [7].

In line with these findings, brain points were further shown to impact the quality of
learners’ action selection positively. Contrary to the predicted effects, no difference
in the rate at which learners chose the easiest game was found. Nevertheless, as
the effect of brain points on the choice of the highest-scoring game can be viewed as
a more personalized estimate of the learners’ tendency to exploit the task easiest to
them, the following conclusion can be made: The display of brain points has positive
effects on the way learners choose educational activities, independent of the type
of brain points. This is very encouraging, since participants could have reasonably
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opted to exploit their strongest skill in order to obtain more monetary reward but the
simple display of the incentives impacted their behaviour positively. Therefore, brain
points are expected to unfold an even stronger behavioural impact when applied in a
non-artificial learning environment and tied to a relevant in-game currency.

Regarding the learning outcome measures, it was found that optimal brain points in-
crease the number of word pairs learned by freely choosing participants compared to
showing no incentives. For the more continuous outcome measure, the sum of QR-
levels, both types of brain points led to a significant improvement compared to the
control condition. Considering the effect of the two incentive schemes across the re-
spective free and forced-choice conditions, no difference in effectiveness was found.
In hindsight, the experiment was maybe too short to effectively use the number of
learned word pairs as an outcome measure. It can be interpreted to be an evalua-
tion of an theoretically ongoing learning progress after 40 choices. A more powerful
alternative could have been to phrase the experimental MDP as a finite horizon MDP
[70] and calculate the brain points in a way that explicitly includes the knowledge that
only a limited amount of time is available to the learner. At the same time, the sum
of QR-levels offer a more continuous measure of progress but also a less stable one.
What is meant by that is that, according to the learning model behind the QR-system,
uncompleted materials are at a higher risk for being forgotten again [41, 42]. In sum-
mary, measuring learning outcomes for artificial tasks in a 16 minute experiment is not
completely straightforward. Nevertheless, the results allow to conclude brain points -
both optimal and approximate - improve rather than hinder learning progress. There-
fore, they can be responsibly further evaluated in a real-world context such as Dawn
of Civilisations without having to fear participants experiencing harm in the sense of
diminished learning outcomes.

A small effect of the type of choice on the learning outcome was found, with partic-
ipants choosing freely achieving slightly lower outcomes than those not allowed to
choose. In Dawn of Civilisations, implementing forced choices is not an option, as
that would entail the risk of users getting frustrated and reducing their learning time.
Therefore, the small magnitude of the effect is encouraging in the sense that display-
ing brain points can have almost as beneficial effects as imposing the choice deemed
optimal on the learner. On top of that, as has been already argued, brain points
are expected to have stronger motivational effects in Dawn of Civilisations since they
translate to the in-game currencies. Thereby, the difference could be further miti-
gated.

All in all, it can be concluded that brain points can improve learners’ choice behaviour
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and their learning outcomes. Moreover, approximate brain points were shown to have
as beneficial effects on learner’s choice behaviour and learning outcomes as optimal
brain points and can therefore be further evaluated within the context of Dawn of
Civilisations.

Further implications and avenues for future research are discussed in the next chap-
ter.
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In line with the findings on the application of optimal gamification to learning con-
texts [1] discussed in Chapter 2, we have found the approach to incentivizing learning
choices to produce promising results on learners’ choice behaviour and learning out-
comes in an artificial learning task. The more interesting question, however, is which
effects can be observed when actual learners engaging with real-world educational
material are incentivized with the approximated brain points. To that end, the next step
is to evaluate the approach in cooperation with Solve Education. Users in the exper-
imental condition will see the approximated brain points when selecting minigames
as illustrated in Figure 5.1. After completing a minigame, learners receive the corre-
sponding number of reward cards in addition to those derived from the current reward
system explained in Section 3.2. The cooperation with Solve Education offers the
immensely valuable opportunity to evaluate the approach directly with its target audi-
ence. Thereby, the planned evaluation study will have considerable ecological validity
and allow a more meaningful evaluation of the approach developed in this thesis.

Nevertheless, some important limitations have already become apparent during the
first evaluation step presented here. First of all, let us revisit the way the brain points
are derived in Section 3.4. Going against the principles of the shaping theorem [32],
the basis for approximating brain points is the maximal possible progress instead of
the expected progress to be made by selecting an action. That means that it cannot
be guaranteed that a learner maximizing the brain points they receive will at the same
time maximize their potential learning progress. The empirical evaluation of the ap-
proach does not hint at a misalignment of rewards and objective, but deriving brain
points in a way that adheres to the shaping theorem has to be considered a superior
solution. One possibility to that end would be to refine the learning model. Currently,
we estimate the probability of a learner getting a question right purely based on which
minigame they are playing. Remaining in the data-driven approach, it would be useful
to condition that probability on several and more meaningful factors. A more sophis-
ticated approach could be to treat the probability derived from the data as a prior
and update it online with the observed responses of the individual interacting with the
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Figure 5.1: Presenting Brain Points in Dawn of Civilisation: Brain points are com-
municated by the purple annotations by the minigames. Screenshot is a
courtesy by Solve Education

minigames according to the Bayes’ rule [71]. Further improvements could be made
by supporting the data-driven approach with a sophisticated cognitive learning model,
such as the multiple trace memory model [72].
Another promising field of research that could inform improvements to the approach
is optimal spaced repetition [40, 73]. It has produced and successfully evaluated ap-
proaches that treat spaced repetition as an optimal control problem with the goal to
maximize recall probability while considering the cost of reviewing [40]. It could re-
place the simple heuristics used to determine how much time should pass between
recalls of the learning materials.
Lastly, the approach as is has been presented here has an important implicit assump-
tion, which is that the learner will carry out one of the offered educational activities. In
the strict sense, the brain points can be considered a decision aid but not necessar-
ily a motivational device to start learning in the first place. This could be addressed
by adding an action to the model’s action space that represents not choosing any
minigame and entails no action cost. Adding the action of choosing not to engage
with any minigame would entail further changes to the model, specifically how the
passage of time can still be reasonably incorporated. One would probably have to
define the action along the lines of choosing not to play any minigame on that partic-
ular day in order to update delay periods as described in Section 3.3.5.

Generally, the effectiveness of the incentives derived from the proposed approach
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will always depend on the quality of the learning model fed into it. Apart from its
effectiveness, two additional expectations towards the developed incentive approach
were formulated. The first claim to be fulfilled was scalability. As discussed in Section
3.4.2, scalability posed a serious challenge during the development, leading to a failed
attempt to approximate the state-action value function for the model of Dawn of Civil-
isation. In the end, directly approximating brain points proved to be a functional way
of dealing with high complexity of real-world learning environments. However, that
approach of course depends on a suitable potential function, which leads to the sec-
ond claim to be addressed, which was generality. In principle, we set out to develop
a method to compute incentives for any gamified educational environment allowing
learners to learn in a self-directed manner and choose between educational activi-
ties. During the formulation of the general model of choosing education activities in
Section 3.1, the list of requirements grew. Specifically, the educational environment
must provide a way to quantify competence values and progress, a detailed model
of skill improvement, a way to estimate the effort each action requires and a way to
express learning goals as competence values. As argued above, the quality of the
incentives derived by this approach depends heavily on the quality of the learning
model it is to be applied to. The improvements proposed above mostly apply to lan-
guage learning and therefore do not support the generalizability of the approach to
other learning tasks. That leaves a lot of variable factors potentially impacting the
efficacy of the approach. Therefore, claiming that the approach developed and evalu-
ated throughout this thesis generalizes would be a bit of a stretch. Rather it should be
seen as a first step towards that goal. To draw a comparison, the developed approach
can be viewed as a recipe which requires a range of spices and cooking appliances
not typically found in every kitchen. Evaluating the approach with different learning
environments could allow to enhance it by providing principles for formulating the
environment’s learning model and mechanisms in a suitable way to other potential
applicators.

Returning to the research question posed in Section 2.3, whether the combination
of core findings in motivational psychology and methods from reinforcement learning
allows to develop a scalable method for deriving incentives for real-world educational
environments the following conclusion can be made: Yes, but there is still a long way
to go.
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We have learned that gamification is a trending tool in education, but not always
brought to use with the necessary carefulness and theoretical foundation [1, 3, 4, 6,
17]. A key issue that has been identified is the misalignment of the gamified incen-
tives and the target behaviour. Building on research demonstrating the successful
combination of psychological research on the benefits of fostering a growth mindset
and modeling approaches taken from reinforcement learning for incentivizing learners
optimally [1], we aimed to develop a principled and scalable approach for designing
gamification for digital learning environments.

The developed approach is based on a formal model of choosing between different
educational activities. Its application allows to predict which choice will lead to the
maximal learning progress. Its effectiveness was first demonstrated with simulated
learners.

A first real evaluation of the developed approach within a controlled online experiment
has resulted in promising findings regarding the approach’s efficacy: Learners incen-
tivized with the points derived from the approach showed a higher tendency to chal-
lenge themselves rather than exploiting what they already had learned and thereby
learned more during the experiment. It will be very interesting to see the results of
the planned evaluation with Dawn of Civilisations.

However, it has also become apparent that both generalizability and scalability pose
serious challenges that make further improvements to the approach necessary.

A more general learning from this project is that unlocking the full potential of gamifica-
tion in educational is an interdisciplinary challenge. The most scalable computational
method is useless if it optimizes an ill-chosen objective, while handcrafted incen-
tives build on psychologically sound reasoning can elicit unforeseen effects if they are
gameable. Therefore, we can conclude that the answer to the question "How to in-
centivize efficient learning choices in digital learning environments?" is by drawing on
a diverse set of academic resources and by continuing research in a interdisciplinary
fashion.
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Appendix

A

The code used to derive the results presented in this thesis can be accessed here:
https://github.com/pauly-rc/How-to-incentivize-efficient-learning-choices-
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Appendix

D

CONFIDENTIAL - FOR PEER-REVIEW ONLY
Brain Points: Evaluation Experiment (#78820)

Created: 11/03/2021 06:51 AM (PT)

This is an anonymized copy (without author names) of the pre-registration. It was created by the author(s) to use during peer-review.
A non-anonymized version (containing author names) should be made available by the authors when the work it supports  is made public.

1) Have any data been collected for this study already?

No, no data have been collected for this study yet.

2) What's the main question being asked or hypothesis being tested in this study?

Can incentives based on a computational model improve user's learning behaviour during self-directed interaction with a digital learning environment?

Can incentives based on a computational model can improve user's learning outcome during self-directed interaction with a digital learning environment?

Do approximated incentives have the same effect as optimal incentives?

3) Describe the key dependent variable(s) specifying how they will be measured.

Number of Words learned 

Word levels of all Questions 

Percentage of choices in which the hardest / easiest task was chosen

Percentage of Choices made in favor of the game with the highest score

Percentage of choices made for the game with the highest / second highest /lowest number of optimal brain pints (for all conditions)

Percentage of choices made for the game with the highest / second highest /lowest number of shown brain pints (for conditions 1 and 3)

4) How many and which conditions will participants be assigned to?

There are 5 conditions. 

Control Condition: Participants are not shown any choice incentives.

Optimal Brain Points Condition: Participants are shown optimal choice incentives.

Optimal Forced Choice Condition: Participants do not choose, but interact with the task computed to be optimal.

Approximated Brain Points Condition: Participants are shown approximated choice incentives.

Approximated Forced Choice Condition: Participants do not choose, but interact with the task approximated to be optimal.

5) Specify exactly which analyses you will conduct to examine the main question/hypothesis.

Test for an effect of condition on Learning Progress and Choice behaviour: 

As a first step, it will be assessed whether the collected data is well-modeled by a normal distribution by using visual expectation and the Shapiro-Wilk Test.

Depending on the results, either the One-way ANOVAs or the Kruskall-Wallis H test will be used to test for statistically significant differences between the 3

levels of the factor incentive points (None, approximated, optimal) with regard to the dependent variables. Depending on the results, post-hoc tests

(Benjamini-Hochberg Procedure with either Mann-Whitney or paired t-tests) will be performed. 

Two-way ANOVAs or Friedman Test with the factors incentive points (approximated, pütimal) and choice (free, forced) will  be used to evaluate  the main

effect of choice and possible interactions between points and choice on the dependent variables. Depending on the results, post-hoc tests

(Benjamini-Hochberg Procedure with either Mann-Whitney or paired t-tests) will be performed. 

As the effect of the experimental conditions can be expected to be more impactful once a participant masters one of the skills (= meets the criteria of

having learnt 80% of the word pairs pertaining to the skill) , the above described analyses will be conducted both for all choice trials and for choice trials

meeting that condition.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for excluding observations.

Participants who failed at least two of the four attention checks will be excluded.  Participants who failed to respond within the time limit in more than ¼ of

the 160 trials will be excluded.

7) How many observations will be collected or what will determine sample size? No need to justify decision, but be precise about exactly how the

number will be determined.

We plan to recruit 300 participants (distributed evenly across conditions) through prolific.co. Due to random assignment, exclusions, and incomplete

responses, the exact number of participants per condition can vary.

8) Anything else you would like to pre-register? (e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)

Available at https://aspredicted.org/F8C_G25 
Version of AsPredicted Questions: 2.00
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