

	
1

	

Privacy	After	the	Agile	Turn1	
	

Seda	Gürses2		and		Joris	van	Hoboken3	

In	this	chapter,	Seda	Gurses	and	Joris	van	Hoboken	explore	how	recent	paradigmatic	transformations	in	
the	production	of	everyday	digital	systems	are	changing	the	conditions	for	privacy	governance.	Both	 in	
popular	media	and	 in	scholarly	work,	great	attention	 is	paid	 to	 the	privacy	concerns	 that	surface	once	
digital	technologies	reach	consumers.	As	a	result,	the	strategies	proposed	to	mitigate	these	concerns,	be	
it	 through	 technical,	 social,	 regulatory	or	 economic	 interventions,	 are	 concentrated	at	 the	 interface	of	
technology	consumption.	The	authors	propose	to	look	beyond	technology	consumption,	inviting	readers	
to	explore	the	ways	in	which	consumer	software	is	produced	today.	By	better	understanding	recent	shifts	
in	software	production,	they	argue	that	it	is	possible	to	get	a	better	grasp	of	how	and	why	software	has	
come	 to	 be	 so	 data	 intensive	 and	 algorithmically	 driven,	 raising	 a	 plethora	 of	 privacy	 concerns.	
Specifically,	 they	 highlight	 three	 shifts:	 waterfall	 to	 agile	 development	 methodologies;	 shrink-wrap	
software	 to	 services;	and,	 from	software	 running	on	personal	 computers	 to	 functionality	being	carried	
out	 in	 cloud.	 They	 shorthand	 the	 culmination	 of	 these	 shifts	 the	 "agile	 turn".	With	 the	 agile	 turn,	 the	
complexity,	distribution	and	infrastructure	of	software	has	changed.	What	are	originally	intended	to	be	
techniques	 to	 improve	 the	production	of	 software	development,	 e.g.,	modularity,	 agility,	 come	 to	also	
reconfigure	 the	 way	 businesses	 in	 the	 sector	 are	 organized.	 In	 fact,	 the	 agile	 turn	 is	 so	 tectonic,	 it	
unravels	 the	 authors'	 original	 distinction:	 the	 production	 and	 consumption	 of	 software	 is	 collapsed.	
Services	 bind	 users	 into	 a	 long-term	 transaction	 with	 software	 companies,	 a	 relationship	 constantly	
monitored	and	improved	through	user	analytics.	Data	flows,	algorithms	and	user	profiling	have	become	
the	 bread	 and	 butter	 of	 software	 production,	 not	 only	 because	 of	 business	 models	 based	 on	
advertisements,	 but	 because	 of	 the	 centrality	 of	 these	 to	 a	 successful	 disruptive	 software	 product.	

1	Suggested	citation:	Seda	Gürses	and	Joris	Van	Hoboken,	Privacy	After	the	Agile	Turn	(September	19,	2017).	
Cambridge	Handbook	of	Consumer	Privacy,	eds.	Jules	Polonetsky,	Omer	Tene,	and	Evan	Selinger	(Cambridge	
University	Press,	2017).	Available	at:	https://osf.io/preprints/socarxiv/9gy73/	or	https://osf.io/ufdvb/
2	Dr.	Seda	Gürses	is	a	Flanders	Research	Foundation	(FWO)	Postdoctoral	fellow	at	the	Computer	Security	and	
Industrial	Cryptography	Group	(COSIC)	at	the	University	of	Leuven	and	is	an	affiliate	at	the	Center	for	Information	
Technology	and	Policy	(CITP)	at	Princeton	University.	The	research	for	this	paper	was	conducted	as	a	Postdoctoral	
Research	Fellow	at	the	Media,	Culture	and	Communications	Department	(MCC)	as	well	as	the	Information	Law	
Institute	(ILI)	at	NYU,	and	a	Research	Fellow	at	CITP,	Princeton	University.	
3	Dr.	Joris	van	Hoboken	is	a	Senior	Researcher	at	the	Institute	for	Information	Law	(IViR)	at	the	University	of	
Amsterdam,	an	Affiliate	at	the	Stanford	Center	for	Internet	&	Society	and	an	Affiliate	at	the	Interdisciplinary	
Research	Group	on	Law	Science	Technology	&	Society	(LSTS)	at	Vrije	Universiteit	Brussels	(VUB).	The	research	for	
this	paper	was	conducted	as	a	Postdoctoral	Research	Fellow	at	the	Information	Law	Institute	(ILI),	New	York	
University	and	Visiting	Scholar	at	the	NYU	Stern	Center	for	Business	&	Human	Rights,	New	York	University.	

	
2

Understanding	 these	 shifts	 has	 great	 implications	 for	 any	 intervention	 that	 aims	 to	 address,	 and	
mitigate,	consumer	privacy	concerns.	

1.	Introduction	

The	objective	of	this	chapter	is	to	explore	how	recent	paradigmatic	transformations	in	the	production	of	
digital	functionality	have	changed	the	conditions	for	privacy	governance.	We	are	motivated	by	the	lack	
of	scholarship	that	focuses	on	these	transformations	and	attends	to	how	they	matter	to	privacy	in	the	
future.4	 The	 introduction	 of	 information	 systems	 in	 different	 spheres	 of	 societal	 activity	 continues	 to	
spark	privacy	issues.	But	for	those	that	are	trying	to	understand	the	issues	and	come	up	with	solutions,	
what	is	our	mental	model	of	how	information	systems	and	digital	functionality	are	produced?	Is	privacy	
research	 and	 policy	 sufficiently	 informed	 by	 the	 predominant	 modes	 of	 production?	 This	 chapter	
originates	from	the	realization	that	this	may	not	sufficiently	be	the	case.	
	
Generally,	the	aim	of	this	chapter	is	twofold.	First,	we	wish	to	stimulate	privacy	researchers	and	policy	
makers	to	pay	more	attention	to	the	production	of	digital	functionality,	instead	of	merely	looking	at	the	
results	of	such	production	for	privacy.	Second,	our	goal	is	to	help	construct	a	starting	point	for	doing	so.	
To	get	 there,	 this	chapter	 looks	at	a	combination	of	 three	transformations	 in	 the	production	of	digital	
functionality,	which	we	jointly	denote	as	‘the	agile	turn’.	In	short,	these	are	the	shifts	from	waterfall	to	
agile	development,	from	shrink-wrap	software	to	services,	and	from	the	PC	to	the	cloud.	After	clarifying	
and	situating	the	agile	turn,	we	study	its	 implications	for	privacy	governance	through	the	lens	of	three	
high-level	perspectives:	modularity,	temporality	and	capture.	These	perspectives	allow	us	to	foreground	
the	directions	in	which	the	agile	turn	requires	privacy	research	and	policy	to	focus	more	of	its	attention.	
In	the	process,	we	also	underline	when	and	how	privacy	scholarship	and	policy	implicitly	rely	on	modes	
of	software	production	that	are	long	outdated.	
	
Academic	 work	 on	 privacy	 has	 focused	 on	 several	 framings	 to	 grasp,	 reflect	 on	 and	 criticize	 the	
developments	in	technology	and	society.	One	theme	has	emerged	under	the	overarching	frame	of	data,	
paralleling	 the	 focus	 in	 data	 privacy	 regulation	 on	 personal	 data.	 Privacy	 concerns	 in	 this	 frame	 are	
expressed	 in	 terms	of	 the	 effects	 of	 data	 flows.	Accumulations	of	 personal	 data	 and	 the	 exchange	of	
data	in	markets	are	seen	to	have	the	potential	to	lead	to	information	and	power	asymmetries	between	
individuals	 and	 data	 hoarding	 organizations.	 Such	 asymmetries	 can	 have	 negative	 consequences	 for	
freedom	 to	 have	 a	 private	 life,	 informational	 self-determination,	 autonomy	 and	 on	 contextual	 social	
norms.	In	this	approach,	data	in	itself	has	great	agency	in	determining	the	conditions	of	surveillance	and	
knowledge	and	violations	of	privacy.		
	

4	One	notable	exception	is	the	work	on	privacy	decisions	of	IOS	developers	by	Shilton	and	Greene	2016.	

	
3

A	 second	 frame	has	 taken	 to	 analyzing	 algorithms	 (that	 crunch	 data)	 as	 its	main	 direction	 of	 inquiry.	
Algorithms	 are	 seen	 as	 (opaque)	 gatekeepers	 of	 access,	 life	 chances,	 decision	 making	 and	 social	
formation.	 Their	 implementations	 trouble	 some	 of	 the	 core	 concepts	 of	 liberal	 democracies	 like	
accountability,	fairness,	autonomy,	and	due	process	(Ziewitz	2016).	The	algorithmic	lens	brings	to	focus	
the	relational	and	messy	agency	of	artifacts	 in	socio-technical	systems,	exploring	ways	to	demonstrate	
and	 make	 accountable	 the	 potential	 of	 mathematical	 constructs	 to	 influence	 everyday	 activities	 in	
complex	ways.		
	
Finally,	much	scholarship	has	focused	on	the	social	turn,	user	agency	and	privacy.	With	the	rise	of	Web	
2.0,	a	more	dynamic	and	participatory	environment	was	created,	which	gave	rise	to	social	networks	and	
related	technologies.	In	a	deliberate	attempt	to	resist	techno-centric	narratives,	critical	work	in	this	area	
focuses	on	how	users	interpret	and	make	meaning	in	social	platforms	(Jamieson,	2016).	Researchers	in	
this	 frame	 surface	 the	 many	 ways	 in	 which	 users,	 far	 from	 being	 victims	 of	 surveillance	 or	 passive	
receivers	of	consumer	design,	actively	shape	everyday	technologies.	
	
All	this	scholarship	is	very	valuable,	but,	falls	short	of	asking	why	these	particular	constellations	of	data	
and	 algorithms	 and	 user	 experiences	 that	 we	 confront	 have	 come	 into	 being	 in	 the	 first	 place?	 	 In	
understanding	how	data	and	algorithms	are	deployed	in	digital	infrastructures,	and	how	these	come	to	
matter	 for	 users	 specifically	 and	 society	 generally,	 existing	 scholarship	 on	 data	 and	 algorithms	makes	
great	 strides	 in	 understanding	 how	 current	 day	 technologies	 are	 consumed.	 However,	 the	 ideological	
markers,	pools	of	desirable	knowledge,	and	practices	of	technology	production	that	bring	these	sets	of	
conditions	forth	and	not	others	tend	to	go	unquestioned.	With	the	exception	of	some	scholars	who	have	
focused	on	different	framings,	like	platforms	and	infrastructures	(Jamieson	2016;	Helmond,	2015),	most	
privacy	scholarship	assumes	that	data	flows	and	algorithms	are	inevitable	building	blocks	of	our	current	
socio-technical	systems.		
	
But	 if	 data	 flows	 and	 the	 algorithms	 we	 experience	 today	 are	 not	 just	 the	 product	 of	 a	 natural	
progression	of	technological	innovation,	why	are	they	so	prominent,	and	how	have	they	come	to	be	as	
such?	To	do	justice	to	such	questions	and	their	policy	implications,	we	argue	that	exploring	their	roots	in	
the	context	of	software	production	should	also	be	the	subject	of	critical	 inquiry	and	technology	policy.	
As	we	will	discuss	later,	our	claim	is	not	that	the	production	and	consumption	of	software	can	be	neatly	
separated	--	especially	not	after	the	agile	turn.	This	is	also	because	technologies	continue	to	evolve	after	
reaching	the	consumer	market.	Yet,	our	claim	is	that	the	ongoing	focus	on	their	consumption	only	is	not	
sufficient.	Rather,	we	believe	 that	 inquiries	 into	 their	production	 can	help	us	better	engage	with	new	
configurations	 of	 power	 (Zuboff	 2015)	 that	 have	 implications	 for	 fundamental	 rights	 and	 freedoms,	
including	privacy.	
	

	
4

We	 are	 aware	 that	 because	 of	 the	 broad	 aims	 and	 subject	matter	 of	 this	 chapter	 the	 reader	will	 be	
confronted	with	 a	 variety	 of	 omissions.	We	 cannot	 cover	 software	 production	 in	 all	 its	 historical	 and	
political	 economic	 glory,	 but	 only	 highlight	 major	 shifts	 in	 the	 industry	 relevant	 to	 our	 inquiry.	 In	
addition,	 and	 to	 give	 force	 to	 our	 argument,	 we	 sometimes	 rely	 on	 idealized	 depictions	 of	 industry	
practices	as	indicated	in	online	materials	and	in	the	articulations	of	interviewees	--	software	developers	
and	 product	managers	 --	we	 reached	 out	 to	 in	 the	 research	 leading	 to	 this	 article.	We	 do	 hope	 that	
questions	 such	 as	 the	 discrepancy	 between	 ideals	 and	 actual	 practice,	 with	 an	 eye	 on	 the	 discursive	
work	that	some	of	these	depictions	do,	will	also	be	the	subject	of	future	research.	
	
While	 we	 are	 interested	 in	 studying	 the	 wider	 societal	 implications	 of	 the	 agile	 turn,	 this	 chapter	 is	
concerned	 with	 its	 implications	 for	 privacy	 governance.	 We	 understand	 privacy	 governance	 as	 the	
combination	 of	 technical,	 organizational	 and	 regulatory	 approaches	 for	 the	 governance	 of	 privacy.	
Privacy	engineering	is	an	emerging	field	of	research	that	focuses	on	designing,	implementing,	adapting,	
and	evaluating	theories,	methods,	techniques,	and	tools	to	systematically	capture	and	address	privacy	
issues	 in	 the	 development	 of	 sociotechnical	 systems	 (Gürses	 and	 Del	 Alamo	 2016).	 Regulatory	
approaches	to	privacy	include	data	privacy	frameworks	such	as	the	FIPPS,	self-regulatory	guidance	and	
sectoral	laws	or	general	data	privacy	laws	such	as	those	that	exist	in	the	EU	and	many	other	countries.	
On	 the	 interface	 of	 regulatory	 and	 organizational	 approaches	 to	 privacy	 governance	 one	 finds	 what	
Bamberger	and	Mulligan	have	denoted	as	‘privacy	on	the	ground’	(Bamberger	and	Mulligan	2015).	We	
further	refer	to	and	rely	in	particular	on	two	normative	theories	of	privacy	in	our	analysis;	Nissenbaum’s	
theory	of	contextual	integrity	(Nissenbaum	2009)	and	Agre’s	theory	of	capture	(Agre	1994).	
	
For	the	sake	of	our	analysis,	we	make	a	distinction	between	three	parties	involved	in	the	configuration	
of	software,	services	and	its	privacy	implications	in	the	world.	These	are:	(1)	developers	and	operators,	
i.e.	the	parties	that	develop	software,	architect	services	and	operate	the	cloud	infrastructure.	Typically,	
service	operators	themselves	use	other	services	for	development	and	may	integrate	services	into	their	
offering	 to	 their	 customers;	 (2)	 Curators,	 i.e.	 the	 end-user-facing	 entities	 that	 integrate	 software	
structured	as	services	into	their	own	operations	(this	includes	so-called	enterprise	customers).	Curators	
pick	 and	 choose	which	 services	 to	use	with	 implications	 for	 their	 end-users.	 These	 curators	 can	be	 IT	
departments,	 local	web	development	 teams	or	 individual	developers;	 (3)	End-users,	 i.e.	 the	 individual	
users,	consumers,	employees,	workers,	students,	patients,	audiences,	whose	privacy	 is	affected	by	the	
structuring	of	software	as	services	after	 the	agile	 turn.	We	are	aware	that	calling	 these	parties	 ‘users’	
may	hide	that	they	are	the	product	or	provide	essential	labor	for	the	service	to	operate	(see	e.g.	Scholz,	
2012,	Fuchs,	2013).	We	use	the	term	end-users	to	emphasize	that	they	tend	to	have	little	agency	in	the	
design	of	the	services	discussed	in	the	chapter.	We	are	also	aware	that	from	a	privacy	perspective	the	
different	 underlying	 ‘roles’	 will	 have	 normative	 implications	 for	 the	 appropriate	 flow	 of	 personal	
information,	considering	contextual	integrity	(Nissenbaum	2009).	
	

	
5

Because	 of	 the	 broad	 aims	 of	 this	 chapter,	 we	 have	 relied	 on	 a	 combination	 of	methodologies.	 This	
includes	over	20	in-person	and	telephone	interviews	with	relevant	industry	experts,	including	software	
developers,	 devops,	 product	 managers	 and	 developers,	 data	 engineers,	 a/b	 testers,	 AI	 experts,	 and	
privacy	officers.	During	these	conversations,	we	inquired	how	the	production	of	software	and	services	is	
organized,	 as	 well	 as	 how	 relevant	 transformations	 have	 come	 to	 affect	 the	 conditions	 for	 privacy	
governance.	 In	 addition	 to	 the	 interviews,	we	 have	 relied	 on	 industry	white	 papers,	 legal,	 policy	 and	
technical	documents,	as	well	 as	 relevant	 scientific	 literature,	 in	particular	 from	the	 fields	of	 computer	
science	and	engineering,	industrial	management,	software	studies,	regulation	and	law.	We	build	on	Yoo	
and	Blanchette’s	volume	on	 the	 regulation	of	 the	cloud	and	 the	 infrastructural	moment	of	computing	
(Yoo	and	Blanchette	2015)	as	well	as	Kaldrack	and	Leeker’s	edited	volume	on	the	dissolution	of	software	
into	services	(Kaldrack	and	Leeker	2015).	
	
In	the	coming	sections,	we	first	describe	the	three	shifts	that	constitute	what	we	call	the	agile	turn.	For	
each	of	the	shifts,	we	touch	on	their	historical	roots	and	sketch	some	of	 its	current	motions.	Next,	we	
introduce	the	three	perspectives	through	which	we	explore	the	implications	of	the	agile	turn	to	privacy	
governance,	namely	modularity,	temporality	and	capture.	These	perspectives	also	allow	us	to	question	
some	of	the	underlying	assumptions	of	privacy	research	and	policy	when	it	comes	to	the	production	of	
software	and	digital	functionality	more	generally.		

2.	The	Agile	Turn	

Over	 the	 last	 decade	 and	 a	 half,	 the	 production	 of	 (non-critical)	 software	 has	 been	 fundamentally	
transformed	 as	 the	 result	 of	 three	 parallel	 developments.	 First,	 increasingly	 software	 producers	 have	
moved	from	the	use	of	heavyweight	and	planned	development	models	for	information	systems	such	as	
the	 so-called	waterfall	model,	 to	 lightweight	 and	 lean	methods5.	 These	 latter	models	 are	 categorized	
under	the	umbrella	term	‘agile’	software	development	and	involve	an	emphasis	on	user-centricity,	short	
development	cycles,	continuous	testing	and	greater	simplicity	of	design	(Douglass	2015).	
	
Second,	pervasive	connectivity	and	advances	in	flexible	client-server	models	have	made	possible	a	shift	
from	 “shrink	 wrapped	 software”	 products	 to	 software	 as	 services	 as	 the	 model	 for	 architecting	 and	
offering	 digital	 functionality.	 In	 this	 so-called	 service-oriented	 architecture	 (SOA)	model,	 software	 no	
longer	 runs	only	on	 the	client	 side,	but	 is	 redesigned	 to	 run	on	a	 thin	 client	 that	 connects	 to	a	server	
which	carries	out	most	of	the	necessary	computation.	In	addition,	the	core	functional	components	of	a	

5	A	2015	survey	conducted	by	HP	as	part	of	their	report	titled	“State	of	Performance	Engineering”	with	601	IT	
developers	in	400	US	companies	indicated	that	two	thirds	of	these	companies	are	either	using	“purely	agile	
methods”	or	“leaning	towards	agile”.	“Is	agile	the	new	norm?”	http://techbeacon.com/survey-agile-new-norm	

	
6

service	(e.g.	authentication,	payment)	can	now	be	modularized	into	self-contained	units	and	integrated	
on	demand	through	automated	programming	interfaces	(APIs),	optimizing	business	agility.	
	
Third,	 the	 service	model	 came	 along	with	 scaling	 and	 performance	 challenges	 that	 have	 boosted	 the	
development	 of	 large	 data	 centers	 offering	 flexible	 computing	 resources,	 also	 known	 as	 cloud	
computing	(Blanchette	2015,	Weinman	2015).	As	computing	resources	in	the	hands	of	consumers	have	
become	 mobile,	 smaller	 and,	 hence,	 constrained	 in	 capacity,	 cloud	 services	 have	 gotten	 further	
cemented	 as	 the	 dominant	 way	 to	 produce	 and	 provide	 digital	 functionality	 and	 host	 the	 related	
processing	and	data	storage	capabilities.	
	
As	 a	 result,	 “hardware,	 once	 objectivized	 as	 a	 physical	 computer,	 is	 becoming	 distributed	 across	
different	data	centers	and	dissolving	completely	into	infrastructures.	And	software	[...]	is	dissolving	in	a	
cascade	of	services	that	organize	access	to	data	and	its	process-ing”	(Kaldrack	and	Leeker	2015).	Driven	
by	 an	 interest	 in	 programmer	 and	 code	 productivity,	 increased	 volatility	 in	 responding	 to	 customer	
requirements	 as	 well	 as	 cost-efficiency,	 the	 agile	 turn	 has	 offered	 the	 possibility	 of	 programming,	
business	and	computing	on	demand	(Neubert	2015).	

2.1	From	waterfall	to	agile	development	

Around	 1968	 software	 engineering	 came	 to	 be	 recognized	 as	 an	 engineering	 discipline	 of	 its	 own	
(Mahoney	 2004	 in	Neubert	 2015).	 This	 recognition	 came	 shortly	 before	 IBM	 decided	 to	 unbundle	 its	
hardware	and	software,	paving	the	way	to	 the	commodification	of	software	products	 (Neubert	2015).	
While	a	variety	of	management	and	engineering	literature	proposed	wildly	different	models	on	how	to	
produce	 software,	 until	 the	 1990s,	 structured	 processes,	 such	 as	 the	 waterfall	 or	 spiral	 model,	
dominated	 the	 industry.	 These	 models	 rely	 on	 rigorously	 regimented	 practices,	 extensive	
documentation,	 and	 detailed	 planning	 and	 management	 (Estler	 et	 al.	 2014).	 In	 waterfall	 models,	
software	projects	have	a	clear	beginning	during	which	the	requirements	and	design	are	settled,	and	a	
final	stage	during	which	a	version	of	a	software	is	tested	and	released	to	its	users.	
	
Starting	 with	 the	 1980s,	 and	 continuing	 with	 the	 1990s,	 programmers	 started	 proposing	 more	
lightweight	 models	 that	 promoted	 greater	 autonomy	 to	 developer	 teams.	 One	 of	 these	 proposals	
culminated	in	what	was	titled	the	"Manifesto	for	Agile	Software	Development"	in	2001.	The	supporters	
of	this	manifesto	value:	
	

Individuals	and	interactions	over	processes	and	tools	
																															Working	software	over	comprehensive	documentation	

						Customer	collaboration	over	contract	negotiation	
					 								Responding	to	change	over	following	a	plan	(Agile	Manifesto,	2001).	

	
7

	
Like	many	of	 its	 contemporaries,	 the	manifesto	underlines	 a	 "no	design	up	 front"	 attitude	and	brings	
together	 a	 series	 of	 lightweight	 software	 engineering	 methodologies.	 Some	 of	 these	 methodologies	
focus	 on	 techniques	 (e.g.	 pair-programming),	 while	 others	 focus	 on	 managerial	 processes	 (e.g.,	
stakeholder	involvement,	stand-up	meetings),	with	an	overall	emphasis	on	continuous	testing	(starting	
with	test	codes	and	extending	to	integration	testing),	communication	and	visibility	of	progress	(Parson	
2011).	Most	 importantly,	 the	 introduction	 of	 agile	methods	 helps	 produce	 software	 in	much	 shorter	
iterations	(weeks	vs	years,	or	multiple	times	a	day),	 in	greater	simplicity	 (always	do	the	simplest	thing	
that	could	possibly	work	and	don't	design	more	than	what	you	need	right	now),	and	continuous	code	
reviews	(Fox	and	Patterson	2013).	 	 	

2.2	From	Shrink-Wrap	Software	to	Service-Oriented	Architectures	

Legend	goes	that	in	2001,	Jeff	Bezos	sent	Amazon	developers	a	memo	demanding	that	“henceforth,	all	
teams	will	 expose	 their	 data	 and	 functionality	 through	 service	 interfaces	 and	will	 communicate	 with	
other	 through	 these	 interfaces”	 (Yegge	 2011).	 Bezos	 had	 a	 vision	 for	 the	 architecture	 of	 Amazon’s	
offering	 as	 composed	 of	 services,	 internally	 and	 externally,	 a	 vision	 that	 has	 contributed	 to	 the	
company’s	leadership	in	services	and	the	cloud.6	
	
The	 primary	 technical	 benefits	 of	 the	 shift	 to	 service	 oriented	 architectures	 are	 the	 extensibility,	
integrability,	 and	 interoperability	 of	 software	 components	 in	 a	 distributed	environment	 (Exposito	 and	
Diop	 2014).	 In	 concert	 with	 web	 service	 standards,	 service	 oriented	 architectures	 make	 it	 easier	 for	
modularized	service	components	to	connect	and	cooperate	within	an	enterprise	or	across	the	industry.	
The	 goal	 is	 to	 allow	 service	 operators	 to	 rapidly	 extend	 existing	 services,	 integrate	 additional	 service	
components	 (or	 create	 service-composites),	 and	 allow	 service	 components	 to	 be	 accessed	 through	
different	channels,	e.g.,	fixed	and	mobile	devices	(Newcomer	and	Lomow	2005).	This	way	of	architecting	
the	offering	as	a	set	of	microservices,7	allows	companies	to	adhere	to	the	mantra	of	“doing	one	thing	
really	really	well”	and	relying	on	others	for	everything	else	(Google	2014,	Carlson	2014).	It	contributes	to	
the	ability	of	businesses	 to	 rapidly	 respond	 to	market	and	environmental	 changes—in	other	words,	 it	
offers	business	agility.	
	
The	move	to	services	has	varying	impact	on	different	software	products	and	their	users.	Companies	and	
organizations	offering	(information)	goods	and	services	through	digital	channels	(shortly,	curators)	can	
now	integrate	themselves	into	the	service	environment,	often	through	the	mere	addition	of	a	few	basic	

6	The	memo	ended	with	a	clear	indication	of	the	gravity	of	non-compliance:	“anyone	who	doesn’t	do	this	will	be	
fired.”	
7	More	recently,	the	industry	has	started	to	use	the	term	microservices	for	the	components	in	SOA,	signaling	a	
trend	to	further	decompose	services	into	modular	parts.	For	a	discussion	see	e.g.	Lewis	and	Fowler	2014.	

	
8

lines	of	code,8	outsourcing	basic	functionality	like	authentication,	advertisement	placement,	or	security	
to	a	 third-party	provider.	Consequently,	what	 to	 the	end-user	 looks	 like	a	website	offered	by	a	 single	
provider	is	often	in	reality	a	mix	of	a	seamless	Frankenstein	and	a	Matryoshka	doll	concealing	dozens	of	
services.	
	
For	software	that	used	to	be	offered	through	a	shrink-wrap	model,	the	implications	for	the	users	are	just	
as	significant.	First,	pay	as	you	go	access	to	service	models	replaces	software	ownership	and	licensing,	
creating	 a	 more	 attractive	 business	 model	 for	 producers.	 In	 shrink-wrap	 software,	 the	 binary	 of	 the	
application	used	to	run	under	the	control	of	the	user,	typically	on	the	user’s	device.	New	versions	would	
be	released	intermittently.	Software	vendors	would	have	to	make	sure	that	their	software	matches	the	
requirements	of	all	permutations	of	user	hardware.	Updates	and	maintenance	would	be	cumbersome.	
Users	would	typically	have	to	manage	them	on	their	own.		
	
In	 contrast,	 with	 services	 end-user	 data	 is	 to	 be	 secured	 by	 the	 service	 provider	 and	 the	 code	 that	
provides	 the	 functionality	 resides	 mainly	 on	 the	 server	 side.	 This	 allows	 for	 iterative	 feature	
development,	 and	more	 control	 over	 the	 costs	 of	maintenance,	monitoring,	 support,	 and	 third-party	
service	 licensing.9	 Instead	 of	 waiting	 for	 the	 release	 of	 new	 versions,	 the	 users	 can	 benefit	 from	
continuous	updates.	This	is	a	big	advantage	in	an	industry	where	as	much	as	60%	of	software	costs	are	
for	maintenance,	and	of	those	costs	60%	are	for	adding	new	functionality	to	legacy	software	(Armando	
and	Patterson	2013).	Services	that	support	collaborative	work	(such	as	document	sharing	or	processing)	
can	 now	 also	 better	 attend	 to	 the	 needs	 of	 end-users,	 even	 across	 organizational	 borders.	 The	
collaborative	and	social	implications	of	the	agile	turn,	under	the	heading	Web	2.0	(O’Reilly	2005),	have	
been	the	subject	of	significant	privacy	research	and	policy	debates,	while	other	structural	characteristics	
have	received	significantly	less	attention.10	
	
What	 used	 to	 be	 structured	 and	 marketed	 as	 shrink-wrap	 software,	 like	 Microsoft	 Word,	 has	
transformed	 into	a	service	 like	Office	365	or	Google	Docs.	A	music	player	 like	RealPlayer	now	finds	 its	
counterpart	 in	music	 streaming	 services	 like	 Spotify	 that	 not	 only	 play	 your	 favorite	music,	 but	 offer	
recommendations,	 social	network	 features,	 and	 intelligent	playlists.	 	 Thus,	different	 types	of	 software	
users	are	pulled	 into	service	offerings	replacing	the	software	that	used	to	run	on	their	own	hardware.	

8	Add	SDK	integration	possibility.	See	e.g.	Button	for	an	example	of	a	service	to	facilitate	such	integration:	
https://www.usebutton.com/developers.	
9	See	e.g.	John	Vincent’s	argument	against	running	a	private	version	of	a	SaaS	on	customer	premises	
http://blog.lusis.org/blog/2016/05/15/so-you-wanna-go-onprem-do-ya/	
10	O’Reilly’s	Web	2.0	explanation	discussed	many	of	the	software	production	transformations,	including	lightweight	
development,	the	shift	to	services.	With	respect	to	privacy,	he	anticipates	a	“Free	Data	movement	within	the	next	
decade”	because	of	the	centrality	of	user	data	collection	and	power	struggles	over	its	control	in	the	industry	
(O’Reilly	2005).	

	
9

Surely,	this	was	not	a	painless	transition	for	those	in	the	software	industry	that	had	“a	dearly	held	belief	
that	installable	applications	can	and	should	be	treated	as	packaged	product,	to	be	sold	to	consumers	at	
retail	like	a	bottle	of	shampoo	or	a	box	of	dried	pasta”	(Stutz	2003).	And,	providing	some	reassurance	to	
its	 adherents,	 shrink-wrap	 software	will	 continue	 to	 exist,	 for	 instance	 in	 operating	 systems	or	 in	 the	
“clients”	of	 the	client-server	model	 such	as	browsers	or	apps,	as	well	 as	 in	 safety	and	security	 critical	
settings.	 Yet,	while	 these	may	 still	 look	and	 feel	 like	 software	products,	 they	are	 increasingly	 likely	 to	
operate	under	the	control	of	producers	and	bundled	with	update,	security,	or	performance	services.	

2.3	From	PCs	to	the	Cloud	

Finally,	the	agile	turn	is	made	possible	by	and	continues	to	shape,	what	is	called	cloud	computing.	At	the	
basic	 level,	 Infrastructure	 as	 a	 Service	 (IaaS)	 cloud	 computing	 involves	 the	 economic	 and	 physical	
restructuring	of	computing	resources	(processing,	databases	and	storage)	into	flexible,	scalable	utilities,	
available	 on	 demand	 (Blanchette	 2015,	 Weinman	 2015).	 Cloud	 computing	 also	 stands	 for	 a	 similar	
restructuring	at	the	level	of	software	production	and	software	usage,	encompassing	the	rise	of	Platform	
as	 a	 Service	 (PaaS)	 and	 Software	 as	 a	 Service	 (SaaS)	 offerings.	 Cloud	 computing	offerings	 continue	 to	
develop	 and	 diversify	 rapidly	 in	 the	 various	 layers	 of	 development,	 storage	 and	 processing.	 Recent	
developments	 include	 Data	 as	 a	 Service	 (DaaS),	 including	 the	 possibility	 for	 services	 to	 integrate	
specialized	data	products	 (Pringle	et	al.	2014),	machine	 learning	and	AI	 services	 (Hook	2016),	and	 the	
rise	of	container	models	for	service	deployment	(Cloud	Native	2016).	
	
Historically,	 the	emergence	of	 cloud	 computing	 reflects	 a	 return	 to	 the	mainframe,	 after	 the	 rise	 and	
decline	of	 the	PC,	which	became	dominant	 in	the	1980s	and	90s.	 In	earlier	days,	computing	hardware	
was	 very	 costly	 and	 the	mainframe	model	 in	 combination	with	 time-sharing	 provided	 the	most	 cost-
efficient	access	to	computing	for	predominantly	 large,	organizational	users.	The	 invention	of	the	PC	 in	
the	 1970s	 and	 its	 subsequent	 mass	 adoption	 in	 the	 following	 decades	 turned	 the	 tides.	 People	 had	
access	 to	 and	 control	 over	 their	 own,	 personal	 computing	 resources	 to	 run	 software	 (or	 develop	 it)	
themselves.	 This,	 in	 combination	 with	 the	 rise	 of	 internet	 connectivity	 provided	 the	 basis	 of	 what	
Zittrain	has	called	“the	generative	 internet”	 (Zittrain	2008).	Mobility	and	the	rise	of	 the	service	model	
have	significantly	changed	the	user	device	landscape.	Today,	users	have	less	and	less	actual	control	over	
their	devices	as	their	data	and	software	increasingly	moves	to	servers	in	the	cloud.	
	
Cloud	computing	entails	significantly	more	than	the	mere	relative	shift	of	hardware	capacity	from	users	
to	server	farms.	It	involves	the	development	of	a	variety	of	layers	to	manage	these	computing	resources	
to	 the	 benefit	 of	 different	 users.	 Considering	 our	 focus	 on	 the	production	 of	 digital	 functionality,	 it’s	
worth	 noting	 that	many	 significant	 developments	 related	 to	 these	 technical	management	 layers	 first	
became	common	practice	 inside	dominant	Web-native	service	companies,	such	as	Amazon	or	Google.	
Around	 2004	 and	 shortly	 after	 its	 adoption	 of	 the	 service	 oriented	 architecture	 paradigm,	 Amazon	

	
10

realized	that	its	internal	solutions	for	the	production	and	management	of	virtual	machines	could	be	the	
basis	 of	 an	 external	 offering	 as	 well	 (Black	 2009).	 To	 phrase	 it	 differently,	 Amazon’s	 cloud	 offerings	
emerged	 from	 internally	 oriented	 engineering	 innovations	 related	 to	 the	 efficient	 production	 of	 their	
services	in	a	new	production	paradigm.	Amazon’s	cloud	services	are	leading	in	the	industry	(Knorr	2016).	
	
More	 recently,	 a	 similar	 move	 can	 be	 observed	 in	 the	 proliferation	 of	 the	 container	 model	 for	 the	
production	and	management	of	service	components	in	a	cloud	environment	(Metz	2014).	This	container	
model	 involves	a	further	advancement	in	the	use	of	the	cloud	for	production	of	digital	functionality.	 It	
involves	an	abstraction	away	from	the	virtual	machine	and	a	focus	on	making	the	service	component	the	
dominant	 building	 block,	 both	 for	 development	 as	 well	 as	 for	 operations.	 In	 the	words	 of	 the	 Cloud	
Native	 Computing	 Foundation	 (CNCF),	 that	 is	 spearheading	 the	 container	 model:	 “Cloud	 native	
applications	 are	 container-packaged,	 dynamically	 scheduled	 and	 microservices-oriented"	 (Fay	 2015).	
The	 foundation	 includes	 the	 likes	of	Cisco,	Google,	Huawei,	 IBM,	Red	Hat,	 Intel,	Docker	and	 the	Linux	
Foundation.	 Google’s	 contribution	 involves	 the	 donation	 of	 open	 sourced	 container	 manager	
‘Kubernetes’,11	an	open	sourced	solution	derived	from	its	internal	solution	called	Borg	(Metz	2015).	
	
The	agile	turn	has	accelerated	software	production	while	transforming	business	operations.	Clearly,	this	
has	 great	 implications	 for	 different	 aspects	 of	 privacy	 governance.	Many	of	 the	elements	of	 the	 agile	
turn	 have	 been	 addressed	 by	 privacy	 researchers	 and	 policymakers	 in	 some	 way,	 but	 an	 integrated	
perspective	on	the	implications	of	the	agile	turn	for	privacy	governance	has	so	far	been	missing.	In	the	
next	sections,	we	develop	three	perspectives	that	allow	us	to	look	at	the	privacy	implications	of	the	agile	
turn	and	to	start	reflecting	upon	the	ability	of	existing	privacy	governance	frameworks	to	address	some	
of	the	related	challenges.	

3.	Modularity	

The	agile	turn	comes	with	an	increase	in	modularity	in	the	software	as	a	service	environment.	The	term	
modularity	is	used	to	describe	the	degree	to	which	a	given	(complex)	system	can	be	broken	apart	into	
subunits	(modules),	which	can	be	coupled	in	various	ways	(Baldwin	2015).	As	a	design	or	architectural	
principle	modularity	 refers	 to	 the	 “building	of	a	 complex	product	or	process	 from	smaller	 subsystems	
that	 can	be	designed	 independently	 yet	 function	 together	 as	 a	whole”	 (Baldwin	 and	Clark	 1997).	 The	
concept	 of	modularity	 and	 its	 application	 have	 been	 the	 subject	 of	 research	 in	 different	 engineering	
disciplines	and	 industrial	management	(Dörbecker	and	Böhmann	2013).	 It	 is	generally	used	to	manage	
complexity	of	systems	and	to	allow	for	 independent	implementation	and	reuse	of	system	components	
(Clark	et	al.	2005)	and	is	an	important	design	and	policy	principle	for	the	Internet	(Van	Schewick	2010;	
Yoo	 2016).	 Modular	 design	 involves	 the	 mantra	 that	 the	 independence	 of	 system	 components	 is	

11	Kubernetes	is	derived	from	κυβερνήτης	and	is	Greek	for	"helmsman"	or	"pilot".	

	
11

optimized	 after	 which	 they	 are	 ‘loosely	 coupled’	 (Van	 Schewick	 2010).	 Its	 origins	 lay	 in	 the	 study	 of	
complex	systems	more	generally	(Simon	1962).		
	
The	implications	of	modularity	in	software	and	service	offerings	for	privacy	are	varied	and	have	not	been	
systematically	studied	until	now.12	We	observe	an	incentive	for	the	pooling	of	data	in	the	industry	along	
the	 lines	of	 specialized	 services	offering	basic	 functionality,	 creating	what	 could	be	 called	a	 variety	of	
functional	 data	 brokers.	 Second,	 the	 unbundling	 of	 service	 components	 leads	 to	 a	 situation	 in	which	
users,	 when	 using	 one	 service,	 are	 pulled	 into	 a	 whole	 set	 of	 service	 relationships.	 Each	 of	 those	
relationships	has	its	own	(dynamic)	privacy	implications	for	end-users.	This	dynamic	also	lends	urgency	
to	 the	 question	 of	 how	 privacy	 is	 addressed	 in	 the	 various	 business	 to	 business	 (B2B)	 arrangements	
between	service	components,	internally	and	externally,	and	as	a	matter	of	engineering	as	well	as	policy.	
Finally,	the	resulting	network	of	relationships	between	different	services	and	users	raises	the	question	
of	who	is	the	proper	addressee	for	privacy	norms	 in	such	an	environment.	Which	 industry	players	can	
and	should	take	what	responsibility	for	addressing	privacy	after	the	agile	turn?	

3.1	Service	Use	and	Production	in	a	Modular	World	

Before	discussing	some	of	the	main	implications	of	modularity	for	privacy,	 it	 is	useful	to	further	clarify	
the	implications	of	modularity	from	the	perspectives	of	the	service	curators,	as	well	as	the	developers	of	
software	as	service	(while	focusing	on	the	privacy	 implications	for	end-users).	Organizations	of	various	
kinds	 are	 pulled	 into	 using	 ‘software	 as	 a	 service’	 delivered	 by	 third	 parties	 when	 structuring	 their	
offerings	to	their	own	end-users,	thereby	taking	the	role	of	‘service	curators’.	Second,	the	developers	of	
software	 as	 a	 service	may	 develop	 specific	 new	 functionality,	 while	 integrating	 existing	 software	 and	
services	of	third	parties.	
	
The	 integration	 of	 services	 by	 curators	 is	 well	 illustrated	 by	 the	 concept	 of	 the	 mashup,	 which	 was	
pioneered	by	services	such	as	HousingMaps.	HousingMaps	was	an	early	Google	Maps	mashup,	created	
even	before	there	was	a	Google	Maps	API.13	It	combined	Craigslist	apartment	and	housing	listings	on	a	
Google	Map,	 giving	 end-users	 a	 new	 interface	 for	 searching	 apartments	 that	 addressed	 a	 clear	 user	
need.	 The	 range	 of	 basic	 service	 components	 that	 is	 available	 for	 integration	 into	 the	 offering	 of	
companies	and	organizations14	has	matured	 significantly	over	 the	 last	decade.	Many	of	 these	 services	
have	direct	privacy	 implications	for	end-users.	Typical	service	components	for	publishers,	retailers	and	

12	Pearson	discusses	the	relevance	of	certain	characteristics	of	modularity	for	privacy	governance	in	her	discussion	
of	privacy	and	cloud	computing	but	doesn’t	explicitly	refer	to	the	concept	(Pearson	2008).	Anthonysamy	and	
Rashid	state	the	emergence	of	novel	challenges	for	privacy	governance	because	of	massive	collection,	processing	
and	dissemination	of	information	in	hyper-connected	settings	(Anthonysamy	and	Rashid	2015).	
13	See	http://www.housingmaps.com/.	
14	Here,	we	consider	all	companies	and	organizations	that	are	offering	(information)	goods	and	services,	
connecting	to	end-users	through	digital	channels.	

	
12

other	 organizations	 include:15	 user	 analytics,16	 UX-capture17,	 advertisement,18	 authentication,19	
captcha,20	performance	and	(cyber)security,	21	maps	and	location,22	search,23	sales	and	customer	relation	
management,24	data	as	a	service,25	payment,26	event	organizing	and	ticketing,27	stockage,28	shipping,29,	
reviews,30	sharing	and	social	functionality,31	commenting32	and	embedded	media.33		
	
The	strength	and	attraction	of	these	third-party	services	is	strongly	linked	to	the	fact	that	these	services	
are	 structured	 so	 they	 can	 be	 offered	 across	 curators	 and	 domains,	 at	 so-called	 internet	 scale.	 For	
instance,	authentication	services	can	use	intelligence	gathered	across	websites	to	the	benefit	of	smaller	
players	unable	to	gather	such	information	effectively	(iOvation	2016).	Even	a	curator	with	a	small	end-
user	 count,	 can	 benefit	 from	 the	 knowledge	 gathered	 by	 a	 service	 operator	 that	 serves	many	many	

15	This	is	a	non-exhaustive	list	meant	to	illustrate	the	argument.	The	question	of	what	the	current	array	of	service	
components	in	different	online	service	sectors	looks	like	is	the	kind	of	future	research	that	we	think	needs	to	
happen	and	is	likely	to	provide	further	insights	into	how	privacy	governance	may	be	organized.	
16	Statcounter	(https://statcounter.com/)	or	market	leader	Google	Analytics	
(https://analytics.google.com/analytics/web/provision).		
17	Fullstory	(https://www.fullstory.com)	for	user	session	replays	and	UX	recorder	(http://www.uxrecorder.com)	for	
recording	the	users’	face	and	audio	during	interaction.	
18	Revenue	Hits	(http://www.revenuehits.com/)	or	market	leader	Google	AdSense	(http://www.revenuehits.com/).	
19	See	e.g.	SwiftID	by	CapitalOne	(2-factor	authentication)	
https://developer.capitalone.com/products/swiftid/homepage/	OpenID	(http://openid.net/)	or	Facebook	Login	
(https://developers.facebook.com/docs/facebook-login).	
20	See	e.g.	sweetCaptcha	(http://sweetcaptcha.com/)	and	market	leader	Google	reCaptcha	
(https://www.google.com/recaptcha/intro/index.html).	
21	See	e.g.	CloudFlare	(https://www.cloudflare.com/),	Symantec’s	Web	security,	including	Web	filtering	
(https://www.symantec.com/en/uk/web-security-cloud/)	or	the	free	and	open	https	as	a	service,	Let’s	Encrypt	
(https://letsencrypt.org/).			
22	OpenStreetMap	(https://www.openstreetmap.org/)	or	market	leader	Google	
(https://developers.google.com/maps/).		
23	See	e.g.	Google	Custom	Search	(https://cse.google.com/cse/).		
24	See	one	of	the	earliest	movers	to	the	cloud,	Salesforce	(http://www.salesforce.com/).		
25	See	e.g.	Oracle	Data	Cloud	(https://www.oracle.com/applications/customer-experience/data-cloud/index.html)	
or	Acxiom’s	LiveRamp	connect	(http://www.acxiom.com/liveramp-connect/).		
26	See	e.g.	PayPal’s	Braintree	v.zero	SDK	(https://developer.paypal.com/).		
27	See	Eventbrite	(https://developer.eventbrite.com/)	or	Ticketmaster	(http://developer.ticketmaster.com/).		
28	See	e.g.	Fulfillment	by	Amazon	(https://services.amazon.com/fulfillment-by-amazon/benefits.htm).	
29	See	e.g.	Deliver	with	Amazon	(for	delivery	suppliers)	(https://logistics.amazon.com/	and	UPS	Shipping	AP	(for	
delivery	demand)	(https://www.ups.com/content/us/en/bussol/browse/online_tools_shipping.html).	
30	See	e.g.	Feefo	(https://www.feefo.com/web/en/us/).	
31	See	e.g.	AddThis	(http://www.addthis.com/)	and	Facebook	Sharing	
(https://developers.facebook.com/docs/plugins).	
32	See	e.g.	Facebook	Comments	(https://developers.facebook.com/docs/plugins/comments/)	or	Disqus	
(https://disqus.com/).	
33	See	e.g.	Google’s	YouTube	(https://www.youtube.com/yt/dev/api-resources.html)	and	Soundcloud	
(https://developers.soundcloud.com/docs/api/sdks).			

	
13

others.	 The	 emergence	 of	 third	 party	 advertising	 and	 tracking	 over	 the	 last	 two	 decades	 is	 just	 one	
example	 of	 modularization	 and	 its	 implications	 for	 publishers.34	 For	 small	 and	 medium-sized	
organizations,	 it	 is	 unlikely	 to	 be	 economical	 to	 consider	 in-house	 development	 of	 any	 of	 the	
functionality	mentioned	above.	When	in-house	development	is	pursued	successfully,	it	will	often	make	
sense	 to	 split	 off	 the	 result	 as	 a	 separate	 service	offering.	As	 a	 result,	 curators	 regularly	 default	 end-
users	into	other	services	and	the	choices	these	third	parties	make	with	respect	to	privacy	governance.	In	
some	 cases,	 third	 party	 services	may	 integrate	 services	 of	 their	 own,	 further	 decreasing	 control	 and	
oversight	 over	 the	 experience	 of	 privacy	 of	 end-users.	 The	 service	 environment’s	 response	 to	 such	
complexity	inherent	to	its	logic	is	to	do	what	it	knows	best:	introduce	a	service.	Ghostery,	for	example,	
helps	 curators	 (and	end-users)	 regain	 some	oversight.	 Its	Marketing	Cloud	Management	 service	helps	
curators	manage	third-party	trackers	on	their	websites.35	
	
For	the	developers	and	operators	of	software	structured	as	a	service,	something	similar	is	going	on	as	in	
the	 case	 of	 the	mere	 curators.	Many	of	 the	 basic	 service	 functionality	 components	mentioned	 above	
may	well	be	desirable	to	integrate	into	a	developed	software	as	a	service	offering.	For	instance,	a	music	
streaming	software	service	like	Spotify	may	integrate	sharing	features	and	authentication	solutions	from	
third	parties	such	as	Facebook,	Google	or	Twitter.	It	will	likely	build	its	own	recommendation	engine,	but	
may	use	third	party	service	for	the	actual	streaming	of	music	to	mobile	users	or	the	analysis	of	potential	
fraudulent	use.	Moreover,	those	producing	software	as	a	service	will	use	a	range	of	developer	tools	with	
direct	 implications	 for	 user	 privacy,	 e.g.	 because	 of	 their	 access	 to	 usage	 data.	More	 often	 than	 not,	
those	tools	themselves	will	be	offered	as	a	service36	or	be	integrated	into	a	Platform	as	a	Service	(PaaS)	
offering.37	 These	 services	 may	 sometimes	 be	 doubled38	 and	 replaced	 on	 demand	 depending	 on	
developers’	needs.	As	we	will	discuss	in	Section	4	and	5	of	this	chapter,	developer	tools	often	continue	
to	be	in	use	after	the	service	has	been	deployed	to	end-users.	

3.2	Pooling	of	Data	

A	 central	 ramification	of	modularity	 for	 privacy	 is	 the	 incentive	 towards	 the	pooling	of	 end-user	data	
across	services	and	domains	by	specialized	service	providers.	Such	pooling	of	data,	in	various	modalities,	
can	 allow	 for	 the	 most	 cost-efficient	 provisioning	 of	 core	 functionality,	 but	 results	 in	 significant	
concentration	 of	 data	 in	 the	 hands	 of	 specialized	 service	 providers	 affecting	 large	 numbers	 of	 end-

34	On	the	displacement	of	publishers,	see	e.g.	Turow.	
35	See	Evidon,	Marketing	Cloud	Management,	https://www.evidon.com/solutions/mcm/.The	Ghostery	brand,	
which	was	owned	by	Evidon,	was	sold	to	Cliqz	GmbH	in	early	2017.	
36	Trello	https://trello.com	
37	Platform	as	a	service	may	maintain	Software	Development	Kits	(SDKs)	or	mediate	the	complete	service	cloud	
production	cycle	as	in	the	case	of	Cloud	Foundry	https://www.cloudfoundry.org	
38	A	software	company	may	integrate	multiple	analytics	services	like	Google	Mobile	Analytics	
https://www.google.com/analytics/mobile/	and	Mixpanel	https://mixpanel.com	

	
14

users.39	For	instance,	a	recent	empirical	study	found	that	Google	is	tracking	end-users	on	92	out	of	the	
100	most	popular	websites,	 as	well	 as	on	923	of	 the	 top	1,000	websites	 (Altaweel	et	 al.	 2015).	More	
specifically,	the	researchers	found	that	Google	Analytics	were	tracking	visitors	on	52;	DoubleClick	on	73;	
and	YouTube	on	19	sites	of	the	top	100	sites	(Altaweel	et	al.	2015).	
	
The	business-to-business	arrangements	between	curators	and	service	operators	with	respect	to	the	use,	
storage,	 ownership	 and	 analysis	 of	 data	 and	 the	 treatment	 of	 end-users’	 privacy	 interests	 more	
generally	are	crucial	to	understand	privacy	governance	after	the	agile	turn.	Research	and	data	on	such	
relationships,	 however,	 is	 currently	 minimal.40	 Clearly,	 increasing	 market	 concentration	 and	 seeming	
winner	 take	 all	 dynamics	 are	 at	 play	 in	 some	 of	 these	 service	markets.41	 Such	market	 power	 further	
decreases	 the	 leverage	 that	 curators	 have	 to	 demand	privacy-friendly	 standards	 for	 the	 treatment	 of	
end-users,	assuming	that	they	may	have	some	incentives	to	do	so.		
	
What	choices	do	curators	have	that	want	to	cater	to	the	privacy	of	end-users?	Services	like	Google	data	
analytics,	Facebook	authentication	and	advertising	networks	are	likely	to	present	curators	with	take	it	or	
leave	it	options.	Clearly,	such	take	it	or	leave	it	options	across	different	types	of	curators	and	end-users	
are	 unlikely	 taking	 account	 of	 the	 contextual	 nature	 of	 privacy	 norms.	 In	 certain	 domains,	 it	 is	 still	
unlikely	that	data	is	being	pooled	at	the	individualized	level,	partly,	as	such	pooling	of	data	may	amount	
to	a	data	privacy	violation.	Generally,	however,	what	starts	to	emerge	is	a	 landscape	of	what	could	be	
called	functional	data	brokers.	

3.3	Bundled	Relationships	

As	 a	 direct	 result	 of	 modularity,	 end-users	 are	 increasingly	 confronted	 with	 bundles	 of	 service	
relationships	when	using	digital	 functionality.	 The	 explosive	 rise	 of	 tracking	of	website	 visitors	 is	 best	
documented.	Recent	research	established	that	by	merely	visiting	the	top	100	most	popular	sites,	end-
users	 collect	 a	 staggering	 6,000	 HTTP	 cookies	 in	 the	 process	 (Altaweel	 et	 al.	 2015).	 The	 researchers	
conclude	 that	 a	 user	 who	 browses	 the	 most	 popular	 websites	 “must	 vet	 dozens,	 even	 hundreds	 of	
policies	 to	 understand	 the	 state	 of	 data	 collection	 online”	 (Altaweel	 et	 al	 2015).	 Notably,	 such	 web	
privacy	measurement	studies	tend	to	be	limited	to	the	study	of	tracking	that	is	visible	to	the	researchers	

39	As	we	discuss	in	Section	5	the	usage	of	this	data	increasingly	constitutes	a	core	ingredient	for	developing	these	
services	and	further	strengthens	this	dynamic.	
40	Examples	that	come	to	mind	are	the	Facebook-Datalogix	deal	that	allows	advertisers	to	evaluate	the	impact	of	
their	advertising	on	in-store	sales	on	an	individualized	level	(see	https://www.facebook-
studio.com/news/item/making-digital-brand-campaigns-better)	or	the	Foursquare	American	Express	deal	that	
closes	the	loop	between	location	check-ins	and	purchases	(see	
http://www.nytimes.com/2011/06/23/technology/23locate.html).	
41	Many	of	the	resulting	services,	such	as	Facebook	authentication,	amount	to	what	economists	would	call	2-sided	
market	platforms,	serving	both	end-users	and	organizational	users.	

	
15

(Englehardt	 and	 Narayanan	 2016).	 The	 exchange	 and	 collection	 of	 data	 through	 first	 and	 third-party	
services	that	are	not	visible	to	end-users	is	typically	not	accounted	for.	Advertising	networks	are	known	
to	 exchange	 data	 amongst	 each	 other	 through	 ad	 exchanges,	 parallel	 to	 bidding	 on	 advertisement	
placement	options.	First	parties	may	also	end	up	having	to	track	and	share	data	about	multiple	devices	
belonging	 to	 an	 individual	 end-user,	 and	 precisely	 monitor	 their	 consumption	 of	 services	 on	 these	
devices	(e.g.,	number	of	installations,	deletions,	amount	of	use),	due	to	licensing	of	third	party	services.	
	
Some	of	the	services	that	curators	default	their	users	into	are	by	now	well	known	to	end-users	as	they	
are	operated	by	major	 internet	companies	 that	have	a	 large	and	growing	offering	of	 services,	 such	as	
Google	or	Facebook.	While	these	internet	companies	may	produce	and	organize	their	offering	based	on	
the	modularity	principle,	this	does	not	have	to	be	the	case	for	the	way	in	which	they	negotiate	privacy	
with	end-users.	For	 instance,	Google	consolidated	its	privacy	policy	across	all	 its	different	services	 into	
one	 privacy	 policy	 which	 generally	 allows	 user	 data	 to	 be	 shared	 amongst	 the	 different	 service	
components	 operated	 by	 the	 company	 (Google	 2012),	 resulting	 in	 regulatory	 action	 in	 Europe	
(Schechner	and	Ifrati	2012).	The	company	does	provide	a	host	of	specific	privacy	controls	to	end-users	
with	respect	to	the	different	service	components	but	 in	many	cases	only	the	use	of	data	for	particular	
features	 can	 be	 controlled.	 Thus,	 the	 benefits	 that	 modularity	 could	 offer	 in	 allowing	 for	 the	
negotiations	 around	 privacy	 with	 end-users	 on	 a	 more	 granular	 level	 generally	 do	 not	 seem	 to	
materialize.	 What	 such	 benefits	 are,	 and	 which	 privacy	 engineering	 solutions	 could	 be	 deployed	 to	
accrue	these	benefits,	are	questions	that	a	more	systematic	study	of	the	implications	of	modularity	for	
privacy	 could	 help	 to	 answer.	
	
We	have	used	the	term	end-users	to	refer	to	a	multiplicity	of	roles	that	individuals	can	have.	These	roles	
include	 the	 role	 of	 the	 consumer,	 shopper,	 employee,	 student,	 patient,	 voter,	 traveler,	 fans.	 The	 fact	
that	 the	 same	 services	 are	 integrated	 by	 curators	 along	 a	 wide	 variety	 of	 domains	 without	
differentiation	 in	 privacy	 governance	 is	 one	 of	 the	 reasons	 why	 privacy	 may	 be	 eroded,	 or	 perhaps	
better,	 flattened	 to	 notice	 and	 choice/consent	 negotiations.	 The	 case	 of	 curators	 in	 the	 sphere	 of	
government	 and	 education	 has	 received	 some	 discussion	 in	 the	 privacy	 literature.	 Soghoian,	 for	
instance,	called	attention	to	the	exposure	of	White	House	website	visitors	to	YouTube	tracking	in	2009,	
in	ways	 that	were	 problematic	 considering	 the	 rules	 relating	 to	 the	 use	 of	 cookies	 on	 federal	 agency	
Web	 sites	 (Soghoian	 2009).	 The	White	 House	 later	 reconfigured	 the	 YouTube	 integration	 to	 prevent	
tracking	of	users	that	were	not	watching	YouTube	videos	on	the	site.	In	the	education	context,	service	
providers	have	also	been	challenged	to	adopt	more	context-appropriate	privacy	practices.	Google	Apps	
for	Education	switched	 its	Gmail	 related	advertising	 for	 students	off	after	a	 legal	 complaint	about	 the	
scanning	of	emails	by	students	and	alumni	 from	the	University	of	California-Berkeley	(Brown	2016).	 In	
Germany,	the	integration	of	Facebook	like-buttons	on	shopping	sites	has	been	the	subject	of	successful	
litigation	(Bolton	2016).	While	these	cases	indicate	that	certain	actors	may	use	legal	or	other	means	to	

	
16

demand	respect	for	contextual	privacy	norms	from	service	providers,	this	result	may	not	be	attainable	
for	actors	with	insufficient	economic,	social	or	legal	leverage.	

3.4	Responsibility	for	Privacy	in	a	Hyperconnected	Service	Environment	

The	modularization	of	services	raises	the	question	of	who	exactly	is	and	should	be	responsible	to	ensure	
privacy	as	a	matter	of	policy,	law	and	principle.	In	the	hyperconnected	service	environments	that	have	
emerged	 over	 the	 last	 decades,	 this	 question	 is	 non-trivial	 to	 answer	 and	 policy	makers	 continue	 to	
struggle	to	find	the	right	answers.	What	responsibility	does	and	should	a	curator	have	with	respect	to	
the	 privacy	 governance	 of	 integrated	 services	 affecting	 its	 end-users?	 How	 realistic	 is	 it	 to	 allocate	
responsibility	 to	 curators,	 if	 they	 have	 no	 bargaining	 power	 over	 increasingly	 dominant	 service	
operators?	 Reversely,	 what	 role	 could	 the	 operators	 of	 services	 have	 in	 ensuring	 the	 use	 of	 their	
offerings	 respects	 privacy?	 And	 who	 could	 and	 should	 develop	 and	 implement	 which	 engineering	
solutions	to	address	privacy	issues	in	business	to	business	relations?	
	
In	 Europe,	 where	 a	 comprehensive	 data	 privacy	 framework	 exists	 to	 ensure	 the	 lawful,	 fair	 and	
transparent	processing	of	personal	data,	 regulators	have	 struggled	 to	allocate	 legal	 responsibility	as	a	
result	of	modularization.	European	data	protection	imposes	its	interlinked	obligations	on	so-called	data	
controllers,	 i.e.	 the	 entity	 that	 determines	 the	 purposes	 and	 means	 of	 a	 particular	 personal	 data	
processing	operation.	In	addition,	the	EU	legal	framework	entails	the	concept	of	processors,	which	are	
entities	 that	process	personal	data	under	 the	 instruction	and	authority	of	data	controllers,	but	do	not	
process	personal	data	for	their	own	purposes.	
	
The	Article	29	Working	Party,	i.e.	the	EU-level	body	of	independent	data	privacy	regulators,	has	signaled	
the	willingness	of	European	regulators	to	attribute	significant	responsibility	to	curators.42	For	 instance,	
in	the	case	of	behavioral	advertising,	it	has	asserted	that	“publishers	should	be	aware	that	by	entering	
into	contracts	with	ad	networks	with	the	consequence	that	personal	data	of	their	visitors	are	available	
to	ad	network	providers,	they	take	some	responsibility	towards	their	visitors”	(Article	29	Working	Party	
2010b).	While	 it	 remains	 somewhat	 vague	 about	 their	 precise	 responsibility,	 including	 the	 extent	 to	
which	 publishers	 become	 (joint)	 data	 controllers	 for	 the	 processing	 of	 personal	 data	 by	 third	 party	
advertising	networks	operating	on	their	website,	it	has	concluded	that	such	responsibility	exists	at	least	
for	the	initial	processing	of	visitor	data	in	the	case	of	redirects	(Article	29	Working	Party	2010b).	More	
broadly,	 one	 of	 the	 criteria	 the	 Article	 29	 Working	 Party	 has	 developed	 for	 establishing	 who	 is	 the	
controller,	 is	 whether	 there	 is	 control	 over	 the	 processing	 of	 personal	 data	 as	 a	 result	 of	 ‘implicit	
competence’	 (Article	 29	Working	 Party	 2010a).	 An	 educational	 institution’s	 implicit	 competence	 over	

42	Cloud	computing	services,	including	IaaS	subcontracting,	has	led	to	a	similar	(ongoing)	discussion	of	controller	
and	processor	responsibilities	under	EU	data	protection	law.	Notably,	the	GDPR	contains	additional	obligations	for	
processors.	

	
17

the	 processing	 of	 (its)	 student	 data	 or	 the	 employer’s	 implicit	 competence	 over	 the	 processing	 of	 its	
employee’s	data	 (by	 third	party	 services)	 could	be	 seen	as	examples	of	 this.	 In	practice,	 this	principle	
would	 imply	 that	 end-user	 facing	 curators	 have	 significant	 responsibility	 over	 the	 data	 privacy	
governance	by	service	operators	they	have	integrated.	While	EU	regulators	have	taken	a	similar	stance	
over	the	obligations	of	curators	in	service	integration	decisions,	we	still	see	little	evidence	that	they	have	
made	much	progress	in	enforcing	this	principle.	

4.	Temporality	

In	 addition	 to	 modularization,	 the	 agile	 turn	 comes	 with	 a	 number	 of	 changes	 in	 the	 temporal	
relationships	 between	 end-users	 and	 the	 service	 developers	 and	 operators.	 First,	 in	 shrink-wrap	
software	the	transaction	between	developers	and	end-users	is	limited	to	a	short	moment	at	the	point	of	
sale	 (or	 download).	 With	 services,	 the	 transaction	 gets	 prolonged	 throughout	 the	 use,	 and,	 when	 it	
comes	to	privacy,	sometimes	beyond	that.	Second,	service	users	are	subject	to	a	continuously	evolving	
relationship	with	a	 cascade	of	 curated	 services	 --	 an	end-user	 facing	 service	may	 integrate	or	 remove	
third	party	 services,	which	 similarly	may	 integrate	or	 remove	 third	parties.	 Finally,	 any	 such	 service	 is	
optimized	over	time	to	capture	relevant	user	activities	and	 interactions	through	the	management	of	a	
dynamic	feature	space.43	Consequently,	the	distinction	between	the	production	and	use	phase	of	digital	
functionality	that	was	inherent	to	shrink-wrap	software	is	blurred	significantly.		
	
The	 blurring	 of	 the	 distinction	 between	 the	 production	 phase	 and	 use	 in	 combination	 with	 the	
acceleration	 in	 the	 dynamic	 production	 of	 services	 has	 serious	 implications	 for	 privacy	 governance.	
Privacy	 governance	 still	 implicitly	 and	 predominantly	 relies	 on	 this	 distinction,	 from	 the	 era	 of	 the	
waterfall	model	and	its	temporal	underpinnings.	To	explore	these	 implications	for	privacy	governance,	
we	 juxtapose	 some	 of	 the	 temporal	 assumptions	 that	 seem	 to	 underlie	 the	 agile	 turn.	 This	 helps	 to	
surface	certain	gaps	in	current	privacy	theory	and	data	protection	regimes	that	need	to	be	addressed	in	
research	as	well	as	practice.	

4.1	Temporality	and	Privacy	

Privacy	 theories	 and	models	 tend	 to	 consider	 spatial	 aspects	of	privacy	more	explicitly	 than	 temporal	
ones.	Specifically,	visibility,	location,	intimacy	and	information	flow	(from	A	to	B	in	an	abstract	space)	are	
prioritized,	while	temporal	aspects	are	often	only	addressed	incidentally	or	implicitly.	It	is	not	that	these	
aspects	are	separable.	Every	spatial	description	has	a	temporal	aspect:	when	we	discuss	being	in	public	
or	private	space,	time	is	always	implied.	At	the	level	of	privacy	theory,	even	if	contextual	integrity	“is	not	
conditioned	on	dimensions	of	time,	location,	and	so	forth”	(Nissenbaum	2009),	it	could	still	be	seen	as	a	

43	For	our	discussion	of	capture,	see	Section	5.	

	
18

theory	that	requires	looking	back	in	time	with	the	intent	of	identifying	the	relevant	social	norms	for	the	
appropriate	 flow	 of	 information,	 that	 can	 inform	 the	 design	 of	 future	 socio-technical	 systems.	 This	
complex	time	construction	that	is	inherent	to	contextual	integrity	nicely	illustrates	that	time	is	not	linear	
but	a	complex	concept	that	may	provide	a	rich	lens	through	which	to	consider	what	is	happening	in	the	
increasingly	dynamic	privacy	relationship	between	end-users	and	services.	
	
Data	privacy	regimes,	such	as	the	FIPPS	or	EU	data	protection	can	at	times	be	more	explicit	with	respect	
to	temporal	aspects	of	the	different	principles.	Data	retention	and	the	so-called	right	to	be	forgotten	are	
clearly	 expected	 to	 regulate	 how	 long	 into	 the	 future	 captured	 data	 can	 be	 projected.	 Yet,	 data	
protection	 principles	 often	 assume	 the	 use	 of	 the	 planned	 and	up-front	 design	 development	 and	 the	
associated	 long	 production	 phases	 of	 shrink-wrap	 software.	 For	 example,	 it	 is	 common	 to	 hear	 that	
privacy	by	design	is	to	be	applied	from	the	very	beginning	of	software	design	and	not	as	an	afterthought	
when	 the	 system	 is	 ready	 for	 deployment.	 However,	 “the	 beginning”	 of	 digital	 functionality	 that	 is	
offered	 as	 a	 bundle	 of	 services	 is	 hard	 to	 establish,	 and	 even	 if	 it	 could	 be	 established,	 not	 the	 only	
moment	at	which	privacy	by	design	is	required.	In	addition,	it	seems	likely	that	“the	end”	of	a	service,	a	
service	component,	or	the	removal	of	a	feature	may	be	just	as	relevant	for	privacy.		
	
Notice	 and	 choice/consent	 and	 purpose	 limitation	 all	 assume	 (for	 their	 effectiveness)	 that	 the	
functionality	on	offer	can	be	stabilized	enough	to	present	to	the	users	and	that	relevant	changes	to	the	
functionality	are	rare	enough	to	make	a	renegotiation	of	consent	feasible.	The	introduction	of	frequent	
updates	 and	 dynamic	 permissions	 that	 prompt	 users	 during	 the	 use	 of	 a	 service	 show	 that	 for	 the	
current	 software	 ecosystem,	 the	 consent	 of	 a	 user	may	 be	 under	 continuous	 re-evaluation.	 Absent	 a	
substantial	 stability	 in	 the	 service,	 these	 principles	 can	 easily	 lose	 meaning	 in	 establishing	 privacy	
protection	and	lead	to	symbolic	 industry	practices	(Van	Hoboken	2016).	As	a	result	of	‘big	data’,	many	
have	 already	 given	 up	 on	 the	 possibility	 to	 continue	 to	 give	 meaning	 to	 these	 principles	 (Cate	 and	
Mayer-Schönberger	2012).	The	widely	heard	calls	for	the	focus	on	the	regulation	of	the	use	of	personal	
data	 instead	of	the	regulation	of	collection	could	be	seen	as	a	response	to	the	temporal	dimension	of	
privacy,	although	these	proposals	may	concede	too	much	to	be	 taken	as	serious	proposals	 to	address	
privacy	(Nissenbaum	2016),	as	opposed	to	throwing	in	the	towel.	
	
Some	 privacy	 scholars	 have	 explicitly	 discussed	 temporal	 aspects	 of	 privacy	 and	 design.	 Palen	 and	
Dourish	 build	 on	 Altman’s	 theory	 of	 privacy	 management	 to	 argue	 that	 people	 inform	 their	 privacy	
practices	in	the	present	based	on	past	experiences	as	well	as	in	anticipation	of	future	actions	(Palen	and	
Dourish,	 2003).	 In	 contrast,	 Agre’s	 theory	 of	 capture	 tries	 to	 understand	 privacy	 in	 relation	 to	 the	
practice	of	producing	socio-technical	systems.	More	specifically,	 the	 ‘grammar	of	action’	model	claims	
that	 the	 reorganization	 of	 existing	 activity	 is	 inherent	 to	 the	 development	 and	 operation	 of	 socio-
technical	systems	(Agre	1994,	11).	This	means	that	the	design	of	functionality	builds	on	past	activities,	
but	also	implies	that	observation	of	end-users	allows	for	the	regulation	of	future	activities	in	ways	that	

	
19

may	infringe	upon	end-users’	autonomy.	The	introduction	of	the	Facebook	like	button,	its	dissemination	
across	the	web,	and	its	recent	diversification	into	“Facebook	reactions”	can	be	seen	in	this	light	as	one	
instance	of	the	evolution	of	regulation	of	“self-expression”	over	time	(Kant,	2015).	

4.2	A	Dynamic	Environment	of	Services	and	Features	

The	temporal	dimension	plays	out	in	relation	to	privacy	in	digital	functionality	at	multiple	levels	thanks	
to	the	three	shifts	in	software	production.	An	agile	service	operator	can	shape	the	temporal	relationship	
with	its	users	by	successfully	leveraging	the	increased	control	developers	have	in	curating	and	designing	
the	 server-side	 functionality.	 Thanks	 to	 the	 high	 degree	 of	 modularity,	 which	 allows	 for	 the	 loose	
coupling	of	 service	components,	 service	curators	 can	 integrate,	 switch	or	 remove	services	 throughout	
deployment.	Further	flexibility	and	scalability	is	achieved	by	relying	on	the	shift	to	cloud	computing	and	
the	 available	 services	 for	 development	 and	 programming,	 in	 addition	 to	 dynamic	 functionality	 and	
associated	business	development.	
	
Specifically,	 agile	 programming	 practices	 allow	 developers	 across	 services	 to	 continuously	 tweak,	
remove,	or	add	new	features	using	“build-measure-learn	feedback	loops”.44	Weekly	sprints,	scrums	and	
daily	standup	meetings	are	the	rituals	of	this	accelerated	production	of	features	that	is	unleashed	into	
the	world.45	This	includes	experimental	features,	minimum	viable	products,	alpha	releases,		and	may	be	
best	 captured	 by	 the	 term	 ‘perpetual	 beta’,	 which	 stands	 for	 a	 never	 ending	 development	 phase	
(O'Reilly	2005).	Minor	changes	to	existing	features	happen	daily,	while	major	changes	can	be	introduced	
every	 two	 weeks	 to	 two	 months.46	 For	 example,	 Microsoft	 Bing	 boasts	 that	 they	 are	 “deploying	
thousands	of	 services	20	 times	per	week,	with	600	engineers	contributing	 to	 the	codebase”,	“pushing	
over	4000	 individual	changes	per	week,	where	each	code	change	submission	goes	through	a	test	pass	
containing	over	20,000	tests”.47	For	smaller	companies	the	numbers	are	of	course	smaller,	but	the	time	
intervals	of	daily	tweaking,	weekly	releases	and	quarterly	feature	overhauls	are	common.		
	

44“Build-measure-learn	feedback	loops”	is	a	term	coined	by	lean	methodology	proponents	who	claim	that	“[t]he	
fundamental	activity	of	a	startup	is	to	turn	ideas	into	products,	measure	how	customers	respond,	and	then	learn	
whether	to	pivot	or	persevere”.	See	http://theleanstartup.com/principles/.	
45	Research	as	well	as	the	interviews	we	conducted	in	preparation	of	this	paper	show	that	there	are	great	
differences	between	start-ups	and	large	companies	in	how	agile	methods	are	applied.	Often	there	is	a	divergence	
between	the	ideals	of	the	manifestos	for	agile	programming	and	actual	practice,	which	we	do	not	discuss	further.	
We	are	also	brushing	over	the	challenges	of	applying	agile	methods	in	distributed	teams,	where	knowledge,	
economic,	and	racial	hierarchies	exist	between	those	developers	located	in	Silicon	Valley	or	its	competitor	sites	in	
the	Global	North	and	those	predominantly	located	in	the	Global	South.		
46	While	we	make	it	sound	like	rapid	feature	release	is	an	easy	feat,	in	reality	it	is	a	complex	management	challenge	
and	may	result	in	problems	such	as	overproduction	(see	e.g.	https://www.oreilly.com/ideas/overproduction-in-
theory-and-practice)	and	feature	drifts.	
47	See	http://stories.visualstudio.com/bing-continuous-delivery/.	

	
20

Yet,	the	constant	evolution	of	the	feature	space	is	not	just	a	compulsive	programming	activity	but	a	way	
to	situate	 the	business	 in	 the	marketplace.	Companies	big	and	small	will	opt	 for	new	 features	 to	gain	
advantage	over	or	to	catch	up	with	competitors.	Features	provide	the	distinctive	flavors	that	distinguish	
one	service	from	another.	Venture	Capitalists	may	evaluate	 investments	based	on	feature	portfolios.48	
Given	 these	 influence	 factors,	 dominant	 companies	 and	 investors	 in	 a	 given	 market	 can	 play	 an	
important	role	in	feature	design	trends	across	the	industry.	
	
In	 practice,	 the	 management	 of	 the	 introduction,	 change	 or	 removal	 of	 features	 is	 mainly	 the	
responsibility	 of	 product	managers	who	 keep	 an	 eye	 out	 on	 competitors	 or	 talk	with	 clients	 to	 drive	
decisions	on	new	features.	Depending	on	their	standing	in	the	company,	user	experience	(UX)	engineers	
or	 sales	 teams	may	 also	 ask	 for	 new	 features.	 The	 demand	 for	 features	may	 also	 originate	 from	 the	
developers	themselves.	For	example,	due	to	accelerated	production,	engineering	teams	may	incur	what	
is	 coined	 technical	 debt:	 quality	 of	 engineering	 suffers	 due	 to	 speedy	 production	 and	 code	 hacks	 to	
release	 features	 which	 may	 lead	 to	 increasing	 costs,	 system	 brittleness	 and	 reduced	 rates	 of	
innovation.49	Features	may	be	redesigned	to	pay	off	technical	debt	accrued	from	rapid	feature	release.	
In	total,	features	provide	refined	and	flexible	units	for	defining	and	evaluating	business	ambitions	in	sync	
with	development	activities.	

c.		 Changes	of	the	feature	space	and	autonomy	

For	end-users,	the	result	of	this	feature	 inflation	means	that	they	may	interact	with	features	that	 look	
the	same	but	do	different	 things,	 interact	with	multiple	 features	 that	do	the	same	thing,	and	 in	some	
cases,	may	see	their	favorite	features	simply	disappear.	On	the	surface,	using	a	service	implies	agreeing	
to	change	in	functionality	across	time.	Under	the	hood,	it	 implies	that	the	relationship	between	a	user	
and	 services	 is	 constantly	 reconfigured	 by	 a	 line-up	 of	 service	 providers,	 their	 curatorial	 choices	 in	
services,	as	well	as	agile	programming	practices.	
	
This	 continuous	 reconfiguration	 is	 barely	 communicated	 in	 privacy	 policies	 and	 terms	 of	 use	 and	 is	
generally	not	open	to	negotiation.	 In	this	constellation,	 informed	consent	runs	into	its	temporal	 limits.	
Even	if	the	service	bundle	remains	stable,	changes	to	features	means	that	the	information	captured	by	
the	 services	 is	 easily	 likely	 to	 be	 repurposed.	 This	 raises	 the	 question	 whether	 and	 under	 what	
conditions	changes	to	features	require	re-establishing	informed	consent.	
	
So,	what	happens	 to	 the	relationship	between	end-users	and	services	once	 the	service	 is	no	 longer	 in	
use?	In	general,	data	privacy	regimes	are	very	concerned	with	the	governance	of	information	collection	

48	And	their	effectiveness	and	scalability	in	terms	of	capturing	unique	user	data.	
49	Technical	debt	may	include	the	intensification	of	interdependencies	that	break	modularity,	in	which	case	teams	
may	start	talking	about	concepts	like	“changing	anything,	changes	everything”	(Sculley	et	al.	2014).	

	
21

and	processing	activities,	but	they	are	silent	as	to	what	happens	when	a	 functionality	 is	 removed	or	a	
service	 relationship	 ends.	Depending	on	 the	 functionality,	 removal	 of	 features	may	 impact	 end-users’	
ability	 to	complete	tasks,	organize	their	work	with	and	 in	relation	to	others,	or	access	related	data.	 In	
contrast,	with	every	removal	of	a	service	from	a	curator’s	bundle,	the	relationship	between	the	user	and	
the	removed	service	becomes	ambiguous.		
	
Finally,	 the	 conflation	 of	 production	 and	 use	may	 have	 its	 advantages,	 too.	 If	 a	 feature	 is	 seen	 as	 a	
privacy	disaster,	it	can	be	easily	redesigned,	or	simply	removed.	At	the	same	time,	the	ability	to	silently	
change	features	also	means	that	service	providers	are	more	susceptible,	for	example,	to	requests	from	
government	agencies	to	design	features	or	break	privacy	functionality	for	surveillance	purposes,	as	was	
the	 case	 for	 Lavabit	 (Van	 Hoboken	 and	 Rubinstein	 2014).	 We	 also	 heard	 many	 examples	 of	 service	
providers	 being	 subject	 to	 the	 interests	 of	 intellectual	 property	 holders.	 Such	 developments	 are	 not	
independent	 of	 these	 temporal	 shifts	 inherent	 to	 the	 production	 of	 services.	 The	 increased	 ability	 of	
service	providers	to	fiddle	with	functionality	at	the	request	of	powerful	third	parties,	together	with	their	
ability	to	use	features	to	optimize	user	activities	to	business	goals	 illustrates	that	services	are	 likely	to	
amplify	potential	infringements	upon	the	autonomy	of	users.	

5.	Capture	

The	agile	turn	takes	the	capture	model	to	its	logical	extreme.	Capture	is	an	alternative	privacy	concept	
developed	by	Agre	in	the	1990s	to	highlight	the	conditions	of	privacy	in	relation	to	the	construction	of	
socio-technical	 information	 systems	 (Agre	 1994).	 Capture	 involves	 the	 reorganization	 of	 everyday	
human	 activities	 through	 improvements	 of	 their	 legibility	 and	 evaluation	 for	 economic	 purposes.	
Specifically,	 it	 implies	 the	 development	 and	 imposition	 of	 ‘grammars	 of	 action’	 --	 specifications	 of	
possible	activities	enabled	by	systems	and	 that	can	be	mixed	and	matched	by	users	 --	 that,	when	put	
into	 use,	 can	 come	 to	 reconfigure	 everyday	 activities	 while	 subjecting	 them	 to	 commodification	 and	
economic	 incentives.	 In	 contrast	 to	 surveillance	 models	 of	 privacy	 that	 focus	 on	 how	 technological	
advances	 intrude	 upon	 private	 space	 and	 that	 derive	 from	 histories	 of	 government	 surveillance,	 the	
capture	model	 has	 its	 roots	 in	 automation,	 industrial	management	 (including	 Taylorism)	 and	 systems	
engineering.	
	
In	this	section,	we	question	the	reasonableness	of	treating	information	flows	as	the	central	concern	to	
privacy,	 and	 as	 something	 that	 can	 be	 discussed	 independent	 of	 the	 design	 and	 production	 of	
functionality.	 Leveraging	 capture,	 service	 providers	 may	 accumulate	 power	 through	 their	 ability	 to	
reorganize	and	optimize	user	activities,	leading	to	a	host	of	other	problems.	We	argue	that	discussions	
of	 privacy	 need	 to	 consider	 capture	 through	 service	 and	 feature	 production	 in	 a	way	 that	 recognizes	
their	impact	on	user	activities,	autonomy,	labor,	and	markets.		

	
22

5.1	The	Ingredients	of	Capture	

Agre	described	how	capture	is	produced	based	on	software	engineering	practices	in	the	beginning	of	the	
90s,	well	before	 the	agile	 turn.	He	defines	 capture	 in	 five	 (potentially	 iterative)	phases.	 In	phase	one,	
someone	 analyzes	 human	 activities	 of	 interest	 and	 their	 fundamental	 units.	 For	 example,	 a	
requirements	engineer	may	 study	a	bank	 to	 identify	 relevant	activities	which	may	 include	opening	an	
account,	and	making	and	auditing	transactions.	Next	the	developer	team	articulates	this	ontology	 in	a	
technical	system	with	which	end-users	will	be	able	to	put	those	units	of	activity	together	 into	possible	
grammars	of	action.	When	eventually	the	bank	deploys	this	system,	these	designed	units	of	action	are	
imposed	onto	the	users	and	employees	of	the	bank	who	inevitably	have	to	reorganize	their	activities	(or	
resist	 to	 do	 so)	 in	 a	 way	 compatible	 with	 the	 grammars	 of	 action	 inherent	 to	 the	 system.	 The	 bank	
system	can	now	maintain	a	running	parse	of	all	activities	that	can	be	instrumented	through	their	system.	
Once	trackable,	records	of	the	reorganized	activity	of	the	bank	customers	and	employees	can	be	stored,	
inspected,	audited,	merged	and	employed	as	the	basis	of	optimization,	performance	measurement,	and	
quality	assurance	(elaboration).		
	
In	 comparison	 to	 the	 1990s,	 the	 way	 capture	 functions	 has	 transformed	 in	 technical	 and	 economic	
terms,	 due	 to	 the	modularization	 and	 the	new	 temporalities	 of	 software	 and	 service	production.	 It	 is	
realized	through	an	assemblage	of	features,	services	and	multilayered	testing	in	which	the	end-users	are	
being	 tracked	 and	 enlisted	 to	 test	 capture’s	 efficiency.	 Specifically,	 every	 feature	 is	 a	 real-time	probe	
into	 the	 continuous	 reorganization	 of	 users’	 activities.	 End-user	 activity	 becomes	 a	 key	 ingredient	 in	
managing	 the	 system.	Or,	 as	 Tim	O’Reilly	 asserts:	 “users	must	 be	 treated	 as	 co-developers”	 (O’Reilly	
2005).	The	mantra	“release	early	and	release	often”	translates	to	an	imperative	to	closely	monitor	how	
features	 are	 used	 to	 decide	 whether	 and	 how	 they	 will	 remain	 part	 of	 a	 service.	 As	 O’Reilly	 further	
highlights,	“if	users	don't	adopt	[features],	we	take	them	down.	If	they	like	them,	we	roll	them	out	to	the	
entire	site”	(O’Reilly	2005).	
	
This	 refashioning	of	 the	user	 into	 a	 co-developer	 and	 evaluator	 is	worthy	of	 greater	 attention.	When	
features	are	offered	to	millions	of	users,	data	analysts	state	that	user	anecdotes	are	not	a	reliable	source	
of	intelligence	for	the	developers.	Instead,	captured	data	are	assumed	to	reflect	users’	desires,	interests,	
constraints	 and	 opinions.	 Thus,	 user	 (inter)actions	 as	 captured	 by	 the	 system	 can	 easily	 be	 conflated	
with	user	intentions.	As	a	result,	people	are	made	complicit	in	the	capturing	and	re-organization	of	their	
own	behavior	and	in	the	“rapid	development	of	features	that	are	able	to	identify,	sequence,	reorder	and	
transform	 human	 activities”	 (Agre	 1993).	 Again,	 this	 also	 illustrates	 that	 captured	 data	 is	 not	 a	mere	
“byproduct	of	the	digital	mediation	of	otherwise	naturally	occurring	activities.	The	data	are,	at	 least	 in	
part,	evidence	of	the	purposeful	design	of	the	system	that	‘happens’	to	generate	them”	(Barocas	2012).		

	
23

5.2	The	Merging	of	Digital	Functionality	and	Data	

The	tight	feedback	loops	between	features	and	captured	data	means	that	they	may	eventually	melt	into	
each	other.	In	order	to	capture	the	success	of	a	feature,	developers	may	need	to	develop	new	metrics.	
For	example,	sometimes	developers	may	want	to	know	if	 the	user	has	“considered”	the	contents	of	a	
new	 feature,	 say	 a	 new	 information	 box,	 before	 taking	 an	 action.	 Researchers	 have	 shown	 that	 eye-
mouse	coordination	patterns	are	reliable	enough	to	provide	just	such	an	indicator	(Rodden	et	al.	2008).	
So,	now	the	developer	may	integrate	an	analytics	service	that	captures	mouse	movements	to	evaluate	
the	use	of	the	 information	box.	Once	the	service	 is	 integrated,	mouse	movements	may	be	used	in	the	
evaluation	of	other	features,	too.		
	
Beyond	 evaluation,	 captured	 data	 becomes	 a	 key-ingredient	 in	 producing	 services	 and	 their	 features.	
For	 example,	 traditionally	 authentication	 would	 be	 a	 binary	 decision	 problem,	 i.e.,	 matching	 user	
credentials	 to	 an	 authorization	 database.	 After	 the	 agile	 turn,	 it	 can	 be	 turned	 into	 a	 classification	
problem	based	on	user	keystrokes,	browser	information,	and	time	of	login.	Mouse	movement	data,	for	
example,	 can	 be	 used	 for	 continuous	 authentication.	 This	 example	 illustrates	 that	 user	 and	 behavior	
analytics	 and	 A/B	 testing	 that	 were	 essential	 for	 the	 evaluation	 of	 data	 products	 like	 recommender	
systems,	search	ranking,	and	voice	recognition,	are	increasingly	incorporated	into	the	core	functionality.	
Finally,	 all	 the	 captured	 data	 can	 support	 business	 agility.	 Data	 analysts	 in	 small	 startups	 may	 use	
captured	data	and	behavioral	data	to	analyze	user	churn	or	compute	pricing,	as	well	as	 for	evaluating	
future	programming	efforts.	

5.3	Grammars	of	Action,	Flexible	Ontologies	and	Testing	

Agility	 demands	 that	 capture	 operates	 recursively	 and	 in	 a	multi-layered	 fashion.	 Specifically,	 service	
operators	need	to	keep	track	of	their	users	and	their	activities.	They	need	to	keep	track	of	their	service	
components.	 But	 they	 also	 need	 to	 keep	 track	 of	 how	well	 they	 are	 keeping	 track	 of	 their	 users	 and	
service	components.	Each	 service	 that	a	 feature	 resides	 in	 is	a	 specialized	unit	 that	 is	 loosely	 coupled	
into	 a	 dynamic	 ontology	 of	 market	 and	 organizational	 activities.	 Rapid	 feature	 release	 and	 loose	
coupling	of	 services	 (and	 components)	 simplifies	programming	and	management	but	 creates	 complex	
interdependencies	 that	need	to	be	orchestrated	 to	produce	a	seamless	and	adaptive	environment	 for	
user	tracking	in	support	of	the	grammars	of	action	that	are	imposed	on	the	users.	
	
Mastering	 capture	 involves	 an	 elaborate	 system	 of	 automation	 and	 testing.	 New	 software	 may	 be	
released	dozens	of	times	a	day,	where	each	release	may	be	subject	to	1000s	of	automated	tests50.	This	

50		In	a	popular	blog	post	from	2009,	IMVU	developer	Timothy	Fitz	writes:	“We	have	around	15k	test	cases,	and	
they’re	run	around	70	times	a	day.”	(Fitz,	2009).	How	well	such	testing	is	integrated	across	the	industry,	e.g.,	in	
companies	of	different	sizes	and	maturity,	are	a	topic	of	future	research.	

	
24

shifts	 the	 problem	 of	 managing	 interdependencies	 and	 user	 tracking	 to	 the	 management	 of	 tests.	
Specifically,	while	service	and	feature	optimization	is	realized	through	A/B	testing,	user	and	behavioral	
analytics,	 continuous	 software	 delivery	 is	 guaranteed	 through	 a	 host	 of	 internal	 tests	 that	 track	
interfaces,	 dependencies	 and	 users’	 response	 to	 changes.51	 Capturing	 user	 behavior	 and	 tracking	 the	
different	 service	 components	bleeds	 into	 capturing	 the	behavior	of	 the	operator’s	 capture	models.	 In	
conclusion,	 with	 the	 agile	 turn,	 the	 mastery	 of	 keeping	 track	 of	 tracking	 becomes	 central	 to	 the	
production	of	digital	functionality.	

5.4	Limitations	of	Privacy	as	Information	Flow	or	Accumulation	

If	every	form	of	digital	functionality	has	the	potential	to	be	transformed	into	a	data	intensive	machine	
learning	product,	the	application	of	principles	like	data	minimization,	purpose	specification,	and	policies	
that	enforce	some	sort	of	control	over	data	on	the	side	of	end-users	 is	going	to	be	challenging.	At	the	
same	 time,	 much	 of	 service	 capture	 creates	 prime	 opportunities	 to	 apply	 privacy	 technologies	 like	
differential	 or	pan	privacy.	Application	of	 these	 techniques	 could	protect	users	 from	 individual	 harms	
due	to	re-identification	of	data.	Furthermore,	the	interviews	taught	us	that	metrics	for	user	behavior	in	
services	 are	 still	 in	 the	developing	phase,	meaning	 this	 field	 is	 open	 for	 greater	 study,	 theorizing	 and	
regulatory	 intervention.	 Policy	 makers	 could	 pay	 attention	 to	 services	 that	 provide	 detailed	 user	
analytics,	including	intrusive	techniques	that	facilitate	the	replay	of	individual	users’	gestures	and	video	
of	their	environment.52	Computer	scientists	can	leverage	their	techniques	to	provide	automated	privacy	
support	that	allow	users	to	evaluate	which	information	flows	they	want	to	engage	in	and	how	they	can	
control	these	when	they	use	services.	However,	all	of	these	measures	fall	short	of	addressing	the	privacy	
implications	of	the	capture	model.	

The	 conflation	 of	 user	 intentions	with	 observations	 of	 their	 actions	 raises	 a	 fundamental	 question	 of	
what	it	means	to	consider	users	as	stakeholders	into	the	governance	of	services.		Just	because	users	are	
tracked	 very	 intensely,	 doesn’t	mean	 they	 can	 express	 themselves.	 Studies	 that	 purport	 the	 “privacy	
paradox”,	that	users	say	they	want	their	privacy	but	then	act	otherwise,	are	symptomatic	of	the	same	
ideology	 that	suggests	 that	actions	are	 intentions.	 It	 is	a	challenge	 for	privacy	 research	 to	express	 the	

51	Developers	are	often	encouraged	to	write	their	unit	tests	before	writing	their	code.	Further	tests	include	
integration	testing,	system	testing,	acceptance	testing,	and	regression	testing.	The	last	one	refers	to	making	sure	
that	a	new	release	is	compatible	with	past	versions	(Humble	and	Farley,	2010).	The	automation	of	testing	and	
management	of	testing	results	has	become	a	science	in	itself	(Boyapati	et	al.	2002).	
52	FullStory	captures	every	detail	of	your	customer’s	experience	on	your	site	or	web	app.	
http://www.fullstory.com;	Jaco,	“We	Collect	Everything.	Jaco	records	and	plays	exactly	what	your	users	are	seeing.	
No	matter	how	complex	your	application	is.”	http://getjaco.com;	Mixpanel,	“Mixpanel	gives	you	the	ability	to	
easily	measure	what	people	are	doing	in	your	app	on	iOS,	Android,	and	web.”	http://mixpanel.com.	
	

	
25

fundamental	 damage	 of	 such	 positions	 and	 the	 practice	 of	 user	 capture	 to	 people’s	 autonomy	 and	
human	dignity	(Rouvroy	and	Poullet	2009,	Cohen	2012).	

Finally,	 we	 are	 doubtful	 that	 constraints	 on	 information	 flows,	 derived	 from	 contextual	 values	 or	
regulatory	 frameworks,	will	be	able	 to	 fully	address	 the	 implications	of	services	 for	 the	reorganization	
and	optimization	of	 everyday	activities.	 First,	 this	would	 require	 the	development	of	 a	 framework	 for	
evaluating	 the	 agile	 production	 practices	 using	 appropriate	 information	 flows,	 which	 will	 be	 a	
considerable	challenge.	Data	privacy	regimes	rarely	attend	to	the	conditions	of	production,	nor	do	they	
easily	address	the	implication	of	users	being	enlisted	as	labor	in	the	production	of	services	through	the	
process	 of	 capture.	 The	 experimentation	 with	 user	 populations	 in	 the	 process	 of	 feature	 production	
requires	a	debate	on	the	conditions	under	which	these	practices	remain	legitimate	under	the	disguise	of	
digital	 innovation.	All	 in	 all,	 given	how	 fundamental	 services	have	become	 to	people’s	 everyday	 lives,	
their	 work	 activities,	 their	 education	 and	 their	 enjoyment	 of	 (health)care,	 the	 agile	 turn	 raises	 the	
question	whether	other,	 or	 complementary	 regulatory	 approaches	 are	 called	 for.	 Rather	 than	 turning	
them	into	questions	of	information	flows	and	data	privacy,	consumer	protection,	software	regulation	or	
the	treatment	of	certain	services	as	new	types	of	utility	providers	may	be	better	suited	to	address	these	
deeper	challenges	associated	with	the	agile	turn.	

6.	Conclusion	

In	exploring	questions	of	privacy	governance	in	light	of	the	agile	turn,	much	of	this	chapter’s	attention	
has	been	directed	to	framing	its	consequences	and	the	best	ways	to	start	exploring	these	in	more	depth.	
We	conclude	 that	modularity,	 temporality	and	capture	are	central	 to	understanding	 the	way	 in	which	
digital	functionality	comes	into	the	world	and	affect	privacy	and	the	conditions	for	its	governance.	This	is	
the	case	from	a	regulatory	as	well	as	technical	and	organizational	perspective.	
	
The	modularity	in	production	presents	us	with	a	fine	paradox	of	sorts.	There	is	significant	independence	
of	basic	 service	components	but	at	 the	higher	 level	and	 the	way	 in	which	 the	world	presents	 itself	 to	
end-users,	 interdependency	 is	 king.	 Service	 curators	 are	 key	 in	 production	 and	default	 end-users	 into	
bundles	 of	 service	 relationships.	 Production	 has	 become	 increasingly	 dynamic	 and	 puts	 stress	 on	 the	
temporal	dimensions	of	privacy.	It	also	drives	the	capture	of	user	activities	and	data	to	a	new	level.	End-
users	 are	often	depicted	as	mere	 consumers,	while	 the	 capture	of	 their	 activity	 and	 the	data	derived	
from	it	has	become	an	essential	ingredient	in	service	production.		
	
Much	 of	 privacy	 scholarship	 has	 decoupled	 the	 consideration	 of	 information	 flows	 from	 the	 dynamic	
construction	 of	 functionality	 for	 users,	 not	 engaging	 in	 depth	 in	 the	 latter.	 Not	 only	 should	 privacy	
scholarship	pay	more	attention	to	how	current-day	software	is	produced,	it	should	also	more	centrally	

	
26

focus	on	what	 functionality	ends	up	being	offered	and	how	 it	 reorganizes	user	activities.	The	study	of	
algorithms	as	a	 lens	 is	 likely	 to	 fall	 short	of	addressing	 the	complexities	of	 the	production	of	different	
types	 of	 digital	 functionality	 for	 similar	 reasons.	 We	 believe	 that	 our	 argument	 for	 studying	 the	
conditions	 of	 production	 is	 more	 broadly	 applicable,	 especially	 considering	 the	 collapse	 of	 the	
distinction	between	consumption	and	production	we	discuss	in	this	chapter.	
	
Finally,	this	chapter	forcefully	raises	the	question,	what	are	the	kind	of	privacy	solutions	that	are	most	
likely	 to	work	after	 the	agile	 turn.	Which	aspects	of	production	should	be	embraced	as	 they	allow	for	
effective	privacy	governance	and	which	aspects	should	be	constrained	since	they	are	incompatible?	Or	
should	the	focus	simply	be	placed	on	creating	alternatives	to	centralized	data-driven	service	production?	
From	 the	 industry	 itself,	we	expect	 the	 further	 emergence	of	 ‘privacy	 as	 a	 service’	 offerings	 in	which	
specialized	 services,	 internally	 and	 externally,	 help	 curators	 and	 operators	 comply	 with	 data	 privacy	
regulations	and	the	strategic	challenges	 inherent	 in	 intrusive	and	data-intensive	offerings.	Perhaps	the	
production	 of	 privacy-friendly	 alternatives	 should	 be	 stimulated	 for	 essential	 types	 of	 functionality.	
However,	 the	 economics	 of	 service	 modularity	 pose	 a	 significant	 challenge	 for	 independent	 privacy	
applications.	Privacy	is	not	the	“doing	one	thing	really	well”	kind	of	problem.

References	

Agre,	 Philip	 E.	 "Surveillance	 and	 capture:	 Two	models	 of	 privacy."	 The	 Information	 Society	 10,	 no.	 2	
(1994):	101-127.	

Altaweel,	 Ibrahim,	Nathan	Good,	 and	 Chris	 Jay	Hoofnagle.	 "Web	 Privacy	 Census."	Technology	 Science	
(2015).	Available	at	http://techscience.org/a/2015121502/.	

Anthonysamy,	Pauline,	 and	Awais	Rashid.	 "Software	engineering	 for	privacy	 in-the-large."	 In	Software	
Engineering	 (ICSE),	 2015	 IEEE/ACM	 37th	 IEEE	 International	 Conference	 on,	 vol.	 2,	 pp.	 947-948.	 IEEE,	
2015.	

Article	 29	 Working	 Party	 (2010a).	 “Opinion	 1/2010	 on	 the	 concepts	 of	 ‘controller’	 and	 ‘processor”,	
Brussels,	 2010.	 Available	 at	
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2010/wp169_en.pdf	

Article	29	Working	Party	 (2010b).	 “Opinion	2/2010	on	online	behavioural	advertising”,	Brussels,	2010.	
Available	at	http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2010/wp171_en.pdf	

Article	 29	 Working	 Party.	 “Opinion	 05/2012	 on	 Cloud	 Computing”,	 Brussels,	 2012.	 Available	 at	
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-
recommendation/files/2012/wp196_en.pdf.		

	
27

Baldwin,	 Carliss	 Y.	 "Modularity	 and	 Organizations."	 In:	 International	 Encyclopedia	 of	 the	 Social	 &	
Behavioral	Sciences.	Elsevier,	2nd	ed.	(2015):	718–723.	

Bamberger,	 Kenneth	 A.	 and	 Deirdre	 K.	 Mulligan.	 Privacy	 on	 the	 Ground	
Driving	Corporate	Behavior	in	the	United	States	and	Europe.	MIT	Press,	2015.	

Barocas,	 Solon.	 ‘Big	 data	 are	made	 by	 (and	 not	 just	 a	 resource	 for)	 social	 science	 and	 policy-making’	
(Abstract),	 Internet,	 Politics,	 Policy	 2012	 Conference,	 Oxford	 University	 (2012).	 Available	 at	
http://ipp.oii.ox.ac.uk/2012/programme-2012/track-c-data-methods/panel-1c-what-is-big-data/solon-
barocas-big-data-are-made-by-and	

Black,	 Benjamin.	 “EC2	 Origins”.	 Jan	 25,	 2009.	 Available	 at	 http://blog.b3k.us/2009/01/25/ec2-
origins.html.	

Blanchette,	Jean-François	(2015).	“Introduction.	Computing’s	Infrastructural	Moment”.	In:	Christopher	S.	
Yoo	&	 Jean-François	 Blanchette	 (eds.),	Regulating	 the	 Cloud.	 Policy	 for	 Computing	 Infrastructure,	 The	
MIT	Press.	Cambridge,	MA,	p.	1-21.	

Bolton,	Doug.	“Facebook	 'Like'	button	may	be	against	 the	 law,	German	court	 rules.”	The	 Independent,	
Mar	10,	 2016.	Available	 at	 http://www.independent.co.uk/life-style/gadgets-and-tech/news/facebook-
like-button-illegal-data-protection-germany-court-a6923026.html	

Bonneau,	Joseph,	Edward	W.	Felten,	Prateek	Mittal,	and	Arvind	Narayanan.	"Privacy	concerns	of	implicit	
secondary	factors	for	web	authentication."	In	SOUPS	Workshop	on	“Who	are	you.	2014.	

Boyapati,	 Chandrasekhar,	 Sarfraz	 Khurshid,	 and	 Darko	Marinov.	 "Korat:	 Automated	 testing	 based	 on	
Java	predicates."	In	ACM	SIGSOFT	Software	Engineering	Notes,	vol.	27,	no.	4,	pp.	123-133.	ACM,	2002.	

Brown,	 Emma.	 “UC-Berkeley	 students	 sue	 Google,	 alleging	 their	 emails	 were	 illegally	 scanned.”	 The	
Washington	 Post,	 Feb	 1st,	 2016.	 Available	 at	 https://www.washingtonpost.com/news/grade-
point/wp/2016/02/01/uc-berkeley-students-sue-google-alleging-their-emails-were-illegally-scanned/	

Carlson,	 Lucas.	 “4	ways	Docker	 fundamentally	 changes	application	development.”	 InfoWorld,	 Sept	18,	
2014.	 Available	 at	 http://www.infoworld.com/article/2607128/application-development/4-ways-
docker-fundamentally-changes-application-development.html.	

Cohen,	Julie	E.	"What	privacy	is	for."	Harv.	L.	Rev.	126	(2012):	1904.	

Cate,	Fred	H.,	and	Viktor	Mayer-Schönberger.	"Notice	and	consent	in	a	world	of	Big	Data."	International	
Data	Privacy	Law	3,	no.	2	(2013):	67-73.	

Clark,	David	D.,	 John	Wroclawski,	Karen	R.	 Sollins,	 and	Robert	Braden.	 "Tussle	 in	 cyberspace:	defining	
tomorrow's	internet."	In	ACM	SIGCOMM	Computer	Communication	Review,	vol.	32,	no.	4,	pp.	347-356.	
ACM,	2002.	

	
28

Cloud	Native	Computing	Foundation	(2016).	Available	at	https://cncf.io/.	

Dörbecker,	 Regine,	 and	 Tilo	 Böhmann.	 "The	 Concept	 and	 Effects	 of	 Service	 Modularity--A	 Literature	
Review."	In	System	Sciences	(HICSS),	2013	46th	Hawaii	International	Conference	on,	pp.	1357-1366.	IEEE,	
2013.	

Douglass,	Bruce	P.	Agile	Systems	Engineering.	Morgan	Kaufmann,	2015.	

Englehardt,	Steven	&	Arvind	Narayanan.	“Online	tracking:	A	1-million-site	measurement	and	analysis”.	
In	Proceedings	of	the	2016	ACM	SIGSAC	Conference	on	Computer	and	Communications	Security	(CCS’16),	
(2016):	1388-1401.	

Erickson,	 Seth	 and	 Christopher	M.	 Kelty.	 "The	 Durability	 of	 Software",	 In	 Irina	 Kaldrack	 and	Martina	
Leeker	eds.,	There	is	no	Software,	there	are	just	Services,	Meson	Press,	2015.	

Estler,	Hans-Christian,	Martin	Nordio,	Carlo	A.	Furia,	Bertrand	Meyer,	and	Johannes	Schneider.	"Agile	vs.	
structured	distributed	 software	development:	A	 case	 study."	Empirical	 Software	Engineering	 19,	no.	5	
(2014):	1197-1224.	

Exposito,	Ernesto	and	Code	Diop.	Smart	SOA	Platforms	in	Cloud	Computing	Architectures,	John	Wiley	&	
Sons,	2014.	

Fay,	Joe.	“Assembly	of	tech	giants	convene	to	define	future	of	computing”.	The	Register,	Dec	18,	2015.	
Available	at	http://www.theregister.co.uk/2015/12/18/cloud_native_computer_cloud_native/.	

Fitz,	 Timothy.	 "Continuous	 deployment	 at	 IMVU:	 Doing	 the	 impossible	 fifty	 times	 a	 day."	 Blog	 Post,	
February	10	(2009).	Available	at	https://www.timothyfitz.com	Last	visited:	May	16,	2016	

Fuchs,	Christian.	"Class	and	Exploitation	on	the	Internet."	Digital	Labor.	The	Internet	as	Playground	and	
Factory	(2013):	211-224.	

Google.	 “Updating	 our	 privacy	 policies	 and	 terms	 of	 service”.	Official	 Blog.	 Jan	 24,	 2012.	 Available	 at	
https://googleblog.blogspot.com/2012/01/updating-our-privacy-policies-and-terms.html.		

Google.	 “Ten	 Things	 We	 Know	 To	 Be	 True.”	 (2016).	 Available	 at	
https://www.google.com/about/company/philosophy/			

Gürses,	Seda,	and	Jose	M.	del	Alamo.	"Privacy	engineering:	Shaping	an	emerging	field	of	research	and	
practice."	IEEE	Security	&	Privacy	14,	no.	2	(2016):	40-46.	

Helmond,	 Anne.	 "The	 Platformization	 of	 the	Web:	Making	Web	Data	 Platform	Ready."	 Social	Media+	
Society	1.2,	2015.	

Humble,	Jez,	and	David	Farley.	Continuous	Delivery:	Reliable	Software	Releases	through	Build,	Test,	and	
Deployment	Automation	(Adobe	Reader).	Pearson	Education,	2010.	

	
29

Fox,	Armando	and	David	Patterson.	Engineering	Software	as	a	Service:	An	Agile	Approach	Using	Cloud	
Computing,	Strawberry	Canyon	LLC,	2nd	ed.	Edition,	2013.		

Hook,	Leslie.	“Cloud	computing	titans	battle	for	AI	supremacy”,	Financial	Times,	Dec	5th,	2016.	Available	
at	https://www.ft.com/content/bca4876c-b7c9-11e6-961e-a1acd97f622d.	

iOvation.	 “iOvation	 Launches	 Passwordless	 Security	 for	 Consumer-Facing	Websites.”	 Feb	 29th,	 2016.	
Available	 at	 https://www.iovation.com/news/press-releases/iovation-launches-passwordless-security-
for-consumer-facing-websites.		

Jamieson,	Jack.	"Many	(to	platform)	to	many:	Web	2.0	application	infrastructures."	First	Monday	21,	no.	
6	(2016).	doi:10.5210/fm.v21i6.6792.	

Kaldrack,	 Irina	and	Martina	Leeker.	“Introduction.”	 In:	 Irina	Kaldrack	and	Martina	Leeker	eds.,	There	 is	
no	Software,	there	are	just	Services,	Meson	Press,	2015.	

Kant,	Tanya.	"FCJ-180	‘Spotify	has	added	an	event	to	your	past’:(re)	writing	the	self	through	Facebook’s	
autoposting	apps."	The	Fibreculture	Journal	25	2015:	Apps	and	Affect	(2015).	

Knorr,	Eric.	“2016:	The	year	we	see	the	real	cloud	leaders	emerge”,	InfoWorld,	Jan	4th,	2016.	Available	
at	 http://www.infoworld.com/article/3018046/cloud-computing/2016-the-year-we-see-the-real-cloud-
leaders-emerge.html.		

Fowler,	 Martin,	 and	 James	 Lewis.	 "Microservices	 a	 definition	 of	 this	 new	 architectural	 term."	 (2014)	
Available	at	http://martinfowler.com/articles/microservices.html.	

Mahoney,	 Michael	 S.	 "Finding	 a	 history	 for	 software	 engineering."	 IEEE	 Annals	 of	 the	 History	 of	
Computing	26,	no.	1	(2004):	8-19.	

Neubert,	Christoph.	“‘The	Tail	on	the	Hardware	Dog’:	Historical	Articulations	of	Computing	Machinery,	
Software,	and	Services”,	 In	Irina	Kaldrack	and	Martina	Leeker	eds.,	There	is	no	Software,	there	are	just	
Services,	Meson	Press	(2015).	

Newcomer,	Eric,	and	Greg	Lomow.	Understanding	SOA	with	Web	services.	Addison-Wesley,	2005.	

Nissenbaum,	 Helen.	 Privacy	 in	 context:	 Technology,	 policy,	 and	 the	 integrity	 of	 social	 life.	 Stanford	
University	Press,	2009.	

Nissenbaum,	Helen.	"Must	Privacy	Give	Way	to	Use	Regulation?"	Lecture	at	the	Watson	Institute,	Brown	
University,	 March	 15	 (2016):	 2016.	 Available	 at	 http://watson.brown.edu/events/2016/helen-
nissenbaum-must-privacy-give-way-use-regulation.	

O'Reilly,	 Tim.	 "What	 is	 web	 2.0:	 Design	 patterns	 and	 business	 models	 for	 the	 next	 generation	 of	
software.	 Retrieved	 March	 2006."	 (2005).	 Available	 at	
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html.		

	
30

Palen,	Leysia,	and	Paul	Dourish.	"Unpacking	privacy	for	a	networked	world."	In	Proceedings	of	the	SIGCHI	
conference	on	Human	factors	in	computing	systems,	pp.	129-136.	ACM,	2003.	

Parson,	D.	"Agile	software	development	methodology,	an	ontological	analysis.”	(2011).	

Pearson,	Siani.	"Taking	account	of	privacy	when	designing	cloud	computing	services."	In	Proceedings	of	
the	 2009	 ICSE	 Workshop	 on	 Software	 Engineering	 Challenges	 of	 Cloud	 Computing,	 pp.	 44-52.	 IEEE	
Computer	Society,	2009.	

Pringle,	Tom,	T.	Baer,	and	G.	Brown.	"Data-as-a-service:	 the	Next	Step	 in	 the	As-a-service	 Journey."	 In	
Oracle	Open	World	Conference,	2014.	

Rodden,	 Kerry,	 Xin	 Fu,	 Anne	 Aula,	 and	 Ian	 Spiro.	 "Eye-mouse	 coordination	 patterns	 on	 web	 search	
results	 pages."	 In	CHI'08	 extended	 abstracts	 on	Human	 factors	 in	 computing	 systems,	 pp.	 2997-3002.	
ACM,	2008.	

Roy,	Jacques,	(2014).	The	Power	of	Now:	Real-Time	Analytics	and	IBM	Infosphere	Streams.	McGraw	Hill	
Education,	2015.	

Rouvroy,	Antoinette,	and	Yves	Poullet.	"The	right	to	 informational	self-determination	and	the	value	of	
self-development:	Reassessing	the	importance	of	privacy	for	democracy."	Reinventing	data	protection?	
(2009):	45-76.	

Schechner,	Sam	and	Amir	Efrati.	“EU	Privacy	Watchdogs	Blast	Google's	Data	Protection”.	The	Wall	Street	
Journal,	Updated	Oct.	16,	2012.	

Scholz,	Trebor,	ed.	Digital	labor:	The	Internet	as	playground	and	factory.	Routledge,	2012.	

Sculley,	D.,	Todd	Phillips,	Dietmar	Ebner,	Vinay	Chaudhary,	and	Michael	Young.	"Machine	Learning:	The	
High-Interest	Credit	Card	of	Technical	Debt."	(2014).	

Shilton,	 Katie,	 and	 Daniel	 Greene.	 "Because	 privacy:	 defining	 and	 legitimating	 privacy	 in	 ios	
development."	IConference	2016	Proceedings	(2016).	

Simon,	Herbert	A.	"The	Architecture	of	Complexity."	Proceedings	of	the	American	Philosophical	Society	
106,	no.	6	(1962):	467-482.	

Stutz,	 David.	 “The	 Failure	 of	 Shrinkwrap	 Software.”	 (2003).	 Available	 at	
http://www.synthesist.net/writing/failureofshrinkwrap.html.		

Van	Hoboken,	Joris	and	Ira	Rubinstein.	“Privacy	and	Security	in	the	Cloud:	Some	Realism	About	Technical	
Solutions	to	Transnational	Surveillance	in	the	Post-Snowden	Era.”	Maine	Law	Review	66	(2013):	488.	

Van	Hoboken,	 Joris.	 “From	Collection	 to	Use	 in	Privacy	Regulation?	A	Forward	Looking	Comparison	of	
European	 and	 U.S.	 Frameworks	 for	 Personal	 Data	 Processing.”	 Exploring	 the	 Boundaries	 of	 Big	 Data	
(2016):	231.	

	
31

Xu,	 Lai,	 and	 Sjaak	 Brinkkemper.	 "Concepts	 of	 product	 software:	 Paving	 the	 road	 for	 urgently	 needed	
research."	 In	 the	 First	 International	 Workshop	 on	 Philosophical	 Foundations	 of	 Information	 Systems	
Engineering	(PHISE'05),	pp.	523-528.	FEUP	Press,	2005.	

Yegge,	 Steve.	 "Stevey's	 Google	 Platforms	 Rant."	 (2011).	 Available	 at	
https://gist.github.com/chitchcock/1281611.		

Yoo,	 Christopher	 S.,	 and	 Jean-François	 Blanchette,	 eds.	 Regulating	 the	 Cloud:	 Policy	 for	 Computing	
Infrastructure.	MIT	Press,	2015.	

Ziewitz,	Malte.	"Governing	Algorithms	Myth,	Mess,	and	Methods."	Science,	Technology	&	Human	Values	
41.1	(2016):	3-16.	

Zittrain,	Jonathan.	The	Future	of	the	Internet	And	How	to	Stop	It.	Yale	University	Press,	2008.	

