First, we replicated the finding that people believed the paying the fine obligation was tacked onto the body more than anything else.
zoib paytracksbody if payorder == 1 & comprehend == 2, robust
Iteration 0: log pseudolikelihood = -255.22053
Iteration 1: log pseudolikelihood = -233.36594
Iteration 2: log pseudolikelihood = -233.00395
Iteration 3: log pseudolikelihood = -233.00382
Iteration 4: log pseudolikelihood = -233.00382
ML fit of zoib Number of obs = 261
Wald chi2(0) = .
Log pseudolikelihood = -233.00382 Prob > chi2 = .
------------------------------------------------------------------------------
| Robust
paytracksb~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
_cons | -.0864161 .1260564 -0.69 0.493 -.3334822 .16065
-------------+----------------------------------------------------------------
oneinflate |
_cons | -.4300364 .1572541 -2.73 0.006 -.7382488 -.121824
-------------+----------------------------------------------------------------
zeroinflate |
_cons | -.1238695 .1441435 -0.86 0.390 -.4063856 .1586466
-------------+----------------------------------------------------------------
ln_phi |
_cons | .1433044 .121872 1.18 0.240 -.0955603 .3821692
------------------------------------------------------------------------------
with [DV] being the variablename either pay jail car or spouse. This initial analysis will help give an idea of how participants decide what obligations track what aspects.
We predict we will replicate the majority of participants will select tracking the body for the pay and car variables, but tracking the mind for jail and spouse variables.
Second, we predict that not all variables will show the same amount of 'obligation is destroyed' responses (selecting zero from both options). This will be tested by predicting the zeroes option from the scenario. This will be done using the following code:
probit na1st i.dv, vce(robust)
We predict the obligations that track the mind will show the greatest amount of obligation negation.
Third, we predict that there will be sex differences in the spouse response, such that men will be more likely to say the obligation tracks the body and women more likely to say the obligation tracks the mind. We also predict that there will be an interaction based on whether the participants are answering for JOhn or Jane. We will test this using the following code:
zoib tracksbodyspouse female##jane, zeroinflate(female##jane) oneinflate(female##jane) robust
Finally, we will test the possibility that responses change over time, meaning order effects in the response options. We do not predict this will be the case, however.
There are indeed order effects for all of the variables.
For pay, the likleihood of choosing the tracking body goes down over scenarios.
For jail and car, the likleihood of choosingn tracking the body goes up!. For car as well, the liklihood of choosing the mind also goes up after repreated viewings. Only for spouse does the liklihood the mind goes up over repeated scenarios, suggesting people are altering their responses the more familiar they become with these types of scenariors.
We also found the sex differences but only for female participoants who were more likely to schoose a monogmistic response (either aLL BODY or all mind) than men were.
zoib spousetracksbody, zeroinflate(i.female) oneinflate(i.female) robust
Iteration 0: log pseudolikelihood = -1060.9309
Iteration 1: log pseudolikelihood = -1011.9659
Iteration 2: log pseudolikelihood = -1010.9796
Iteration 3: log pseudolikelihood = -1010.9793
Iteration 4: log pseudolikelihood = -1010.9793
ML fit of zoib Number of obs = 1226
Wald chi2(0) = .
Log pseudolikelihood = -1010.9793 Prob > chi2 = .
------------------------------------------------------------------------------
| Robust
spousetrac~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
_cons | -.0558881 .0339434 -1.65 0.100 -.1224159 .0106397
-------------+----------------------------------------------------------------
oneinflate |
female |
Female | .4570229 .1529339 2.99 0.003 .157278 .7567679
_cons | -1.332492 .1097552 -12.14 0.000 -1.547608 -1.117376
-------------+----------------------------------------------------------------
zeroinflate |
female |
Female | .4170998 .1390871 3.00 0.003 .144494 .6897056
_cons | -1.051978 .0985633 -10.67 0.000 -1.245159 -.8587975
-------------+----------------------------------------------------------------
ln_phi |
_cons | 1.473979 .0738234 19.97 0.000 1.329288 1.61867
------------------------------------------------------------------------------
. probit spousetracksbody i.female if spousetracksbody == 0 | spousetracksbody == 1, vce(robust)
Iteration 0: log pseudolikelihood = -361.59074
Iteration 1: log pseudolikelihood = -361.56503
Iteration 2: log pseudolikelihood = -361.56503
Probit regression Number of obs = 528
Wald chi2(1) = 0.05
Prob > chi2 = 0.8208
Log pseudolikelihood = -361.56503 Pseudo R2 = 0.0001
----------------------------------------------------------------------------------
| Robust
spousetracksbody | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
female |
Female | .0249274 .1100452 0.23 0.821 -.1907573 .2406121
_cons | -.1755395 .0807626 -2.17 0.030 -.3338312 -.0172478
----------------------------------------------------------------------------------
. zoib paytracksbody payorder, zeroinflate(payorder) oneinflate(payorder) robust
Iteration 0: log pseudolikelihood = -1330.7409
Iteration 1: log pseudolikelihood = -1211.9713
Iteration 2: log pseudolikelihood = -1208.1513
Iteration 3: log pseudolikelihood = -1208.1463
Iteration 4: log pseudolikelihood = -1208.1463
ML fit of zoib Number of obs = 1403
Wald chi2(1) = 1.92
Log pseudolikelihood = -1208.1463 Prob > chi2 = 0.1657
------------------------------------------------------------------------------
| Robust
paytracksb~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
payorder | -.0526121 .037957 -1.39 0.166 -.1270064 .0217823
_cons | .0483906 .1057935 0.46 0.647 -.1589608 .255742
-------------+----------------------------------------------------------------
oneinflate |
payorder | -.2654542 .0692384 -3.83 0.000 -.4011589 -.1297495
_cons | -.6678655 .1771451 -3.77 0.000 -1.015063 -.3206675
-------------+----------------------------------------------------------------
zeroinflate |
payorder | -.0848798 .058459 -1.45 0.147 -.1994575 .0296978
_cons | -.7020696 .1596682 -4.40 0.000 -1.015014 -.3891257
-------------+----------------------------------------------------------------
ln_phi |
_cons | .3815811 .0491075 7.77 0.000 .2853321 .4778301
------------------------------------------------------------------------------
. hist paytracksbody if payorder == 1 & comp1pin == 1 & comp2bday == 1
(bin=10, start=0, width=.1)
. zoib jailtracksbody jailorder, zeroinflate(jailorder) oneinflate(jailorder) robust
Iteration 0: log pseudolikelihood = -1156.0782
Iteration 1: log pseudolikelihood = -1112.5845
Iteration 2: log pseudolikelihood = -1111.3181
Iteration 3: log pseudolikelihood = -1111.3172
Iteration 4: log pseudolikelihood = -1111.3172
ML fit of zoib Number of obs = 1326
Wald chi2(1) = 0.04
Log pseudolikelihood = -1111.3172 Prob > chi2 = 0.8493
------------------------------------------------------------------------------
| Robust
jailtracks~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
jailorder | -.0056789 .0298787 -0.19 0.849 -.0642401 .0528822
_cons | -.0719867 .0864471 -0.83 0.405 -.2414198 .0974465
-------------+----------------------------------------------------------------
oneinflate |
jailorder | .1549988 .0698059 2.22 0.026 .0181819 .2918158
_cons | -1.593244 .2030695 -7.85 0.000 -1.991253 -1.195235
-------------+----------------------------------------------------------------
zeroinflate |
jailorder | .0129075 .0549507 0.23 0.814 -.0947939 .120609
_cons | -.5174807 .1530476 -3.38 0.001 -.8174485 -.2175128
-------------+----------------------------------------------------------------
ln_phi |
_cons | 1.521155 .0706067 21.54 0.000 1.382768 1.659541
------------------------------------------------------------------------------
. zoib cartracksbody carorder, zeroinflate(carorder) oneinflate(carorder) robust
Iteration 0: log pseudolikelihood = -1187.5345
Iteration 1: log pseudolikelihood = -1133.1167
Iteration 2: log pseudolikelihood = -1131.6823
Iteration 3: log pseudolikelihood = -1131.6816
Iteration 4: log pseudolikelihood = -1131.6816
ML fit of zoib Number of obs = 1331
Wald chi2(1) = 1.44
Log pseudolikelihood = -1131.6816 Prob > chi2 = 0.2305
------------------------------------------------------------------------------
| Robust
cartracksb~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
carorder | .0345054 .028774 1.20 0.230 -.0218906 .0909015
_cons | -.0831177 .076487 -1.09 0.277 -.2330294 .0667941
-------------+----------------------------------------------------------------
oneinflate |
carorder | .2433311 .0649393 3.75 0.000 .1160525 .3706097
_cons | -1.81486 .1821837 -9.96 0.000 -2.171933 -1.457786
-------------+----------------------------------------------------------------
zeroinflate |
carorder | .2136124 .056432 3.79 0.000 .1030077 .3242171
_cons | -1.289281 .1551905 -8.31 0.000 -1.593449 -.9851132
-------------+----------------------------------------------------------------
ln_phi |
_cons | 1.297821 .0644837 20.13 0.000 1.171435 1.424207
------------------------------------------------------------------------------
. zoib spousetracksbody spouseorder, zeroinflate(spouseorder) oneinflate(spouseorder) robust
Iteration 0: log pseudolikelihood = -1060.9309
Iteration 1: log pseudolikelihood = -1014.4564
Iteration 2: log pseudolikelihood = -1013.7641
Iteration 3: log pseudolikelihood = -1013.7639
Iteration 4: log pseudolikelihood = -1013.7639
ML fit of zoib Number of obs = 1226
Wald chi2(1) = 1.53
Log pseudolikelihood = -1013.7639 Prob > chi2 = 0.2160
------------------------------------------------------------------------------
| Robust
spousetrac~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
spouseorder | -.0373116 .0301571 -1.24 0.216 -.0964185 .0217953
_cons | .0349855 .07898 0.44 0.658 -.1198124 .1897835
-------------+----------------------------------------------------------------
oneinflate |
spouseorder | .0556072 .069355 0.80 0.423 -.0803262 .1915406
_cons | -1.247485 .1886313 -6.61 0.000 -1.617196 -.8777747
-------------+----------------------------------------------------------------
zeroinflate |
spouseorder | .198582 .0632891 3.14 0.002 .0745375 .3226264
_cons | -1.359219 .1794538 -7.57 0.000 -1.710942 -1.007496
-------------+----------------------------------------------------------------
ln_phi |
_cons | 1.476344 .0734871 20.09 0.000 1.332312 1.620376
------------------------------------------------------------------------------
It tracking the body
August 14, 2019
Here are the results form people’s first responses to each of the tracking scenarios
zoib paytracksbody if payorder == 1, robust
Iteration 0: log pseudolikelihood = -367.07211
Iteration 1: log pseudolikelihood = -330.92904
Iteration 2: log pseudolikelihood = -330.06886
Iteration 3: log pseudolikelihood = -330.06842
Iteration 4: log pseudolikelihood = -330.06842
ML fit of zoib Number of obs = 351
Wald chi2(0) = .
Log pseudolikelihood = -330.06842 Prob > chi2 = .
------------------------------------------------------------------------------
| Robust
paytracksb~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
proportion |
_cons | -.0000288 .0938174 -0.00 1.000 -.1839075 .1838499
-------------+----------------------------------------------------------------
oneinflate |
_cons | -.8865186 .1374105 -6.45 0.000 -1.155838 -.617199
-------------+----------------------------------------------------------------
zeroinflate |
_cons | -.6607119 .1271963 -5.19 0.000 -.9100121 -.4114118
-------------+----------------------------------------------------------------
ln_phi |
_cons | .5189115 .1215484 4.27 0.000 .2806811 .7571419
------------------------------------------------------------------------------
Who is going to jail?
The brain and both of them
Who’s driving the car?
Who’s driving the spouse?
EVRYOONE