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1. Introduction 

When the author of this article was trying to develop the multiple summations of geometric 

series, a new idea stimulated his mind to create a combinatorial geometric series [1-9]. The 

combinatorial geometric series is a geometric series whose coefficient of each term of the 

geometric series denotes the binomial coefficient 𝑉𝑛
𝑟 . In this article, binomial identities and 

multinomial theorem is provided using the binomial coefficients for combinatorial geometric 

series.  

 

2. Combinatorial Geometric Series  
The combinatorial geometric series [1-9] is derived from the multiple summations of geometric 

series[10-19]. The coefficient of each term in the combinatorial refers to the binomial coefficient 

𝑉𝑛
𝑟 .    

∑ ∑ ∑ ⋯
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𝑛
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 &  𝑉𝑛
𝑟 =

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) ⋯ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)

𝑟!
, 

where  𝑛 ≥ 0, 𝑟 ≥ 1  𝑎𝑛𝑑  𝑛, 𝑟 ∈ 𝑁 = {0, 1, 2, 3, ⋯ }.  

Here, ∑ 𝑉𝑖
𝑟𝑥𝑖

𝑛

𝑖=0

refers to the combinatorial geometric series and   

𝑉𝑛
𝑟 𝑖𝑠 the binomial coefficient for combinatorial geometric series. 

 

𝐋𝐞𝐦𝐦𝐚 𝟐. 𝟏: 𝑉𝑘
𝑛−𝑘 + 𝑉𝑘+1

𝑛−𝑘−1 = 𝑉𝑘+1
𝑛−𝑘. 

 

𝑃𝑟𝑜𝑜𝑓: 𝑉𝑘
𝑛−𝑘 + 𝑉𝑘+1

𝑛−𝑘−1

=
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3) ⋯ (𝑘 + 𝑛 − 𝑘)

(𝑛 − 𝑘)!
+

(𝑘 + 2)(𝑘 + 2) ⋯ (𝑘 + 𝑛 − 𝑘)

(𝑛 − 𝑘 − 1)!

=
(𝑘 + 2)(𝑘 + 3) ⋯ (𝑘 + 𝑛 − 𝑘)

(𝑛 − 𝑘 − 1)!
(

𝑘 + 1

𝑛 − 𝑘
+ 1)

=
(𝑘 + 2)(𝑘 + 3) ⋯ (𝑘 + 𝑛 − 𝑘)

(𝑛 − 𝑘 − 1)!
(

𝑘 + 1 + 𝑛 − 𝑘

𝑛 − 𝑘
) = 𝑉𝑘+1

𝑛−𝑘. 

Hence, the lemma is proved. 
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For examples, 

𝑉0
𝑛 + 𝑉1

𝑛−1 = 𝑉1
𝑛;  𝑉1

𝑛−1 + 𝑉2
𝑛−2 = 𝑉2

𝑛−1;  𝑉2
𝑛−2 + 𝑉3

𝑛−3 = 𝑉3
𝑛−2. 

Similarly, we can constitute more examples using Lemma 3.1. 

 

3. Conclusion  
In this article, a lemma on binomial coefficients was constituted. This idea can enable the 

scientific researchers to solve the real life problems. 
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