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Abstract: This paper presents a lemma on binomial coefficients. This idea can enable the
scientific researchers to solve the real life problems.
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1. Introduction

When the author of this article was trying to develop the multiple summations of geometric
series, a new idea stimulated his mind to create a combinatorial geometric series [1-9]. The
combinatorial geometric series is a geometric series whose coefficient of each term of the
geometric series denotes the binomial coefficient ;. In this article, binomial identities and
multinomial theorem is provided using the binomial coefficients for combinatorial geometric
series.

2. Combinatorial Geometric Series

The combinatorial geometric series [1-9] is derived from the multiple summations of geometric
series[10-19]. The coefficient of each term in the combinatorial refers to the binomial coefficient
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V7 is the binomial coefficient for combinatorial geometric series.
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Hence, the lemma is proved.
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For examples,

Ve + Vit =V vt vt = VL VR Ve = VR

Similarly, we can constitute more examples using Lemma 3.1.

3. Conclusion
In this article, a lemma on binomial coefficients was constituted. This idea can enable the
scientific researchers to solve the real life problems.
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