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Abstract— Developmental studies of hormones and behavior
often include litter mates—rodent siblings that share early-life
experiences and genes. Due to between-litter variation (i.e., litter
effects), the statistical assumption of independent observations
is untenable. In two literatures—natural variation in maternal
care and prenatal stress—entire litters are categorized based
on maternal behavior or experimental condition. Here, we (1)
review both literatures; (2) simulate false positive rates for
commonly used statistical methods in each literature; and (3)
characterize small sample performance of multilevel models
(MLM) and generalized estimating equations (GEE). We found
that the assumption of independence was routinely violated (>
85 %), false positives exceeded nominal levels (up to 0.70), and
power rarely surpassed 0.80 (even for optimistic sample and
effect sizes). Additionally, we show that MLMs and GEEs have
adequate performance for common research designs. We discuss
implications for the extant literature, the field of behavioral
neuroendocrinology, and provide recommendations.

1. INTRODUCTION

Research on rodents sharing litters is at the core of
developmental studies of hormones and behavior. Common
paradigms take advantage of naturally occurring variation
(Champagne et al., 2003), for example differential maternal
care (Beery and Francis, 2011; Francis and Meaney, 1999),
or experimentally expose entire litters to the same experience
such as prenatal stress (Weinstock, 2017). While natural
occurring variation and variation due to experimental design
seek to answer different questions, each paradigm faces
similar statistical challenges due to between-litter variation
(Holson and Pearce, 1992; Lazic and Essioux, 2013): both
research designs categorize entire litters (i.e., siblings) based
on maternal behavior or whether they were exposed to the
same experimental condition (Figure 1). Additionally, litters
are comprised of siblings that share early-life experiences
and genes that can contribute to litter effects (Lazic and
Essioux, 2013). Therefore, the statistical assumption that
the observations are independent will routinely be violated
(Lazic, 2010). The central question is thus the extent to which
unaccounted dependencies (e.g., litter effects) can lead to
erroneous conclusions in realistic research settings.

In the present paper, we elucidate the importance of
this issue for the field of behavioral neuroendocrinology.
Specifically, we: (1) review contributions from two influential
literatures—natural variation in maternal care and prenatal
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stress; (2) provide theoretical rationale that the assumption
of independence will be violated; (3) examine statistical
methods commonly used in both literatures and simulate
type I one error (false positive) rates for each approach, in
addition to multilevel models (MLM) and generalized esti-
mating equations (GEE); and (5) examine how between-litter
variation influences power, and thus experimental design.

1.1. Background

Developmental programming is a process by which early-
life experiences influence the phenotype on an organism,
including physiological and behavioral trajectories (Gore,
2008). Since the stress axis plays a critical role in survival
(Lupien et al., 2009; OConnor et al., 2000) and reproduction
(Chatterjee and Chatterjee, 2009; McGrady, 1984), devel-
opmental effects on this neuroendocrine system have been
thoroughly characterized in laboratory rodents (McEwen,
2008; Sapolsky and Meaney, 1986). The role of maternal
care has played a central role in this research. Earlier studies
used direct manipulations such as handling (Deitchman et al.,
1977) or separation (Hofer, 1973), whereas more recent stud-
ies have investigated the role of naturally occurring variation
in maternal care (Cameron, 2011; Curley and Champagne,
2016). In addition, the effects of prenatal experiences have
been investigated for decades (Bond and di Giusto, 1976;
Joffe, 1977). While many aspects of prenatal environment
have been investigated, we focus on prenatal stress because
of the thoroughness of the literature. For example, several
prenatal stress manipulations have been developed and the ef-
fects on offspring development described (Weinstock, 2017,
2008).

1.2. Naturally occurring: maternal care

The finding that naturally occurring variation in maternal
care can influence development provided a foundation from
which an organism can be programmed by their environment
(Cameron, 2011). For example, maternal tactile stimula-
tion—licking and grooming (LG)—has been shown to induce
changes in the hypothalamic-pituitary-adrenal (HPA) axis of
developing offspring (Liu et al., 1997). Behaviorally, this
reportedly allows for differential responsiveness to stressful
stimuli across the lifespan (Fish et al., 2004). Offspring from
so-called high LG mothers demonstrate less fear responsivity
(Menard et al., 2004) and more exploratory behavior in
novel environments than offspring of low LG mothers (Starr-
Phillips and Beery, 2014). These opposing phenotypes are
thought to be modulated in part by differential glucocorticoid



Fig. 1: both research areas—natural variation in maternal care and prenatal stress—categorize entire litters based on maternal behavior or experimental
condition. For example, litter mates from High LG/Prenatal Stress and Low LG/Prenatal Control dams are coded the same way. When groups are compared
(0 vs. 1), unaccounted for between-litter variation (i.e., dependent measures) violates the statistical assumption of independence. Use of a t-test would be
incorrect for this research design.

activity in the hippocampus that promotes feedback inhibi-
tion of stress reactivity (Jacobson and Sapolsky, 1991). In
support of this notion, high and low LG offspring reportedly
differ in HPA responsiveness (Liu et al., 1997), sensitivity to
feedback inhibition (Liu et al., 1997), expression profiles of
glucocorticoid receptors (GR) (Hellstrom et al., 2012), and
epigenetic modifications to NR3c1 (McGowan et al., 2011).

1.3. Experimental: prenatal stress

For several decades, it has been known that prenatal stress
can influence offspring development (Archer and Blackman,
1971; Kapoor et al., 2006). More recently, the notion of fetal
programming was put forth, where it is hypothesized that
the in-utero environment can make offspring susceptible to
adverse outcomes later in life (Seckl and Holmes, 2007).
One aspect of fetal programming is prenatal stress (PNS)
which has been investigated by exposing pregnant rodents
to stressors including restraint, electrical shock, and social
stress across the gestational period (Weinstock, 2017). In-
creased stress reactivity and anxiety-like behavior have been
observed in male and female offspring (Wilson et al., 2013).
Later in life, PNS rodents show increased HPA axis reactivity
to stressors, such as increases in corticosterone (Koehl et al.,
1999) and the adrenocorticotropic hormone (McCormick et
al., 1995), as well as up-regulated corticotrophin-releasing
factor (CRF) (Cratty et al., 1995). The feedback properties
of the hippocampus on the stress response are also affected
by PNS (Boersma and Tamashiro, 2015). For example,
hippocampal GR are differentially regulated in offspring,
but primarily in females (Szuran et al., 2000). In PNS

males, increased levels of CRF expression and reductions
in GR expression were detected (Mueller and Bale, 2008).
Furthermore, the CRF gene had reduced levels of methy-
lation, whereas more methylation was observed on NR3c1
(Gudsnuk and Champagne, 2012).

1.3. Rational for between-litter variation

Although maternal care and prenatal stress are important
components of the environment, there are many others factor
that can contribute to between-litter differences. For example,
litters size influences many aspects of offspring development
(Tanaka, 2004), including age at sexual maturity and repro-
ductive behaviors in females (Mendi, 1988). Furthermore, ex-
perimentally manipulating pre-weaning litter sizes increased
anxiety-like behaviors of adult rodents (Dimitsantos et al.,
2007). This has led to routine culling procedures that are
often used to control for the effects of variable litter sizes
(Agnish and Keller, 1997). In addition, litter mates also
share the same prenatal (Marceau et al., 2016) and social
environments (von Engelhardt et al., 2015), each of which
presents challenges for controlled experiments. Although
litter size can be held constant, the hormonal composition
of placental fluid or behavioral types within-litter cannot
be controlled. There is evidence that in-utero hormonal
milieus (Fowden and Forhead, 2004) and the early social
environment influence development (Turecki and Meaney,
2016). While litter effects are not of primary interest in
these studies, they provide indirect evidence for between-
litter variation. That is, the fact that the early environment
influences development, also suggests that those sharing the



same environment (pre- or post-natal) will be more alike
than those from different environments (Lazic and Essioux,
2012).

The role of genes on physiological and behavioral pheno-
types cannot be understated, and this has been shown in a
variety of species (Inoue-Murayama, 2009). Like many ques-
tions, laboratory rodents have provided valuable insight into
the importance of genetics (Crabbe et al., 1999; Wahlsten
et al., 2007). For example, common strains of inbred mice
differ in locomotor activity, novelty seeking, fear reactivity,
and maternal care (Champagne et al., 2007; Ramos et al.,
1997). Neurobiological differences have also been observed
such as neurotransmitter levels (Brodkin et al., 1998), gene
expression profiles (Kimpel et al., 2007), and structural
morphology (Scholz et al., 2016). Whereas inbred mice are
genetically identical, outbred rodents from the same litter
are effectively dizygotic twins (Lazic and Essioux, 2013).
In humans, dizygotic twins show correlations in cognitive
ability (Haworth et al., 2010), personality traits (Jang et
al., 1996), and brain structure (Scamvougeras et al., 2003).
Furthermore, it is sometimes the case that genes contribute
more to the adult phenotype than the shared environment in
humans (Haworth et al., 2010). Although quantitative genetic
approaches are not common in the neuroendocrinology liter-
ature, a reasonable assumption is that between-litter variation
due to genetics would be found in litter mates that are outbred
rodents (Glowa and Hansen, 1994).

natural variation in maternal care and prenatal stress
literatures have proven extremely influential. Although an
apparently clean picture has emerged, these findings are
dependent upon the statistical tests used and the assumptions
of those tests (Scariano and Davenport, 1987). An important
question is whether group differences were examined without
accounting for the fact that individual rodents were litter
mates. This would indicate methodological limitations in two
prominent research areas in the field of behavioral neuroen-
docrinology, but would also provide useful information that
could improve both fields.

2. METHODS AND MATERIALS

2.1. Literature search

We examined how between-litter variation was accounted
for in the natural variation in maternal care and prenatal
stress literatures. A search was performed using Web of
Science that included all studies published before the search
date of May 20, 2017. We sought to understand how litter has
been broadly accounted for, which served as a foundation for
simulating false positive rates and power, as well as allowing
for inferring the extent to which our findings may apply. For
naturally occurring variation, the search term was ‘maternal
care’ AND ‘licking grooming.’ Only studies that categorized
quasi-experimental groups based on the amount of maternal
care were considered. The search term for prenatal stress
was ‘prenatal stress.’ Because this returned 2,799 hits, we
included the 100 most recent studies directly related to the
neuroendocrine system. For both literatures, outcomes could
be either behavioral or physiological.

The identified original research articles were used to
qualitatively describe methods used to account for litter
dependencies. Based on previous work (Holson and Pearce,
1992; Lazic and Essioux, 2013; Zorrilla, 1997), we expected
aspects of litter to be underreported. Accordingly, we at-
tempted to answer broad questions including: (1) how often
multiple animals from the same litter were included in the
analyses; (2) whether the paper considered litter effects; and
(3) how often litter effects were reported.

To provide realistic simulation conditions, we also ob-
tained the following information: (1) number of litters in-
cluded in the analyses; (2) number of pups used per litter;
(3) methods used to account for litter effects. We documented
the search procedure, and provided those documents on the
Open Science Framework (https://osf.io/fxy7h/).

2.2. Simulation: false positives

We examined false positive rates for commonly used
approaches for dealing with between-litter variation. We
were specifically interested in the degree to which between-
litter variation inflates false positive rates. From the literature
search, we found that litter was not often accounted for,
or was considered as a covariate (https://osf.io/fxy7h/). In
three papers, a statistical model was used that accounted for
non-independence with a random effect (Barha et al., 2007;
Neeley et al., 2011) or corrected standard errors (Amugongo
and Hlusko, 2014). As such, we compared error rates of
four models, including: (1) t-tests (litter not included in the
model): (2) analyses of covariance (ANCOVA; litter included
as a covariate); (3) multilevel models (MLM; Roux, 2002);
and (4) generalized estimating equations (GEE; Hanley et
al., 2003). For the MLMs, litter was included as a random
effect (varying intercept) that accounts for within-cluster
correlations (Gelman and Hill, 2007). A GEE similarly ac-
counts for cluster-related variation, but does so by estimating
a population-average model that relaxes many assumptions
of MLMs (Hubbard et al., 2010). For example, a MLM
assumes that random effects are normally distributed and are
uncorrelated with the fixed effects. The latter may or may not
be plausible when including litter and maternal care in the
same analysis. In contrast, GEEs make no such assumptions.
However, in small sample situations, GEEs require standard
error corrections to ensure nominal error rates (Gunsolley
et al., 1995; Li and Redden, 2015). We determined the
appropriate bias correction with simulations (see below for
litterEffects package).

Reasonable estimates for between-litter variation were
obtained from our own data and methodologically oriented
papers. We found that litter accounted for upwards of 60 %
of the residual variation (Lazic and Essioux, 2013). In our
simulations, variability between litters (σ2

u ) was computed as
an intra-class correlation coefficient (ICC):

ICC =
σ2

u

σ2
u +σ2

e
(1)

that is the percentage of residual variation explained by litter
(where σ2

e is within-litter variation). The ICC can also be



Table 1
Results from literature search

Used multiple
animals from the

same litter

Explicitly
mentioned litter

effects

Reported litter
effects

Assumption of
independence
likely violated

Natural variations
in maternal care

24 / 24 (100 %) 7 / 32 (22 %) 0 / 33 (0 %) 24 / 28 (86 %)

Prenatal Stress 84 / 95 (88 %) 30 / 98 (31 %) 0 / 89 (0 %) 81 / 95 (85 %)
Note. These estimates were computed from primary studies (natural variation in maternal care = 35 and prenatal stress = 100) in
which sufficient information was provided. For example, 84 / 89 (88 %) indicates that 11 studies did not provide enough information
to answer that specific question.

thought of as the correlation between observations within
a given litter. The data generating model was a MLM,
since it allows for specifying within-cluster correlations. We
found that few studies reported the number of litters and
the number of animals per litter. As such, we assumed a
range of simulation conditions (litters = 4, 8, and 12; pups
per litter = 2, 4, 6, and 8; ICC = 0–0.70 by increments of
0.05). For a given condition, observations from half of the
litters were dummy coded as 0, whereas observations from
the remaining litters were coded as 1 (Figure 1). The average
difference between groups (0 vs. 1) was set to zero (a true
null hypothesis), thus the expected error rate was 5 %.

2.3. Simulation: conditional false positives

While not an approach we would advocate, common
practice is to use non-significance to exclude a variable
from a model. As such, we also investigated whether false
positive rates are conditional on a significant litter effect. We
computed the significance of litter as a MLM random effect,
and then analyzed the data with a t-test. In this way, we
obtained:

P(FEp−value < 0.05|REp−value > 0.05) (2)

P(FEp−value < 0.05|REp−value < 0.05) (3)

where (2) denotes the probability that the fixed effect
(FEp−value) is significant, given the random effect is non-
significant (REp−value) . Alternatively, (3) is conditioned on
a significant litter effect.

2.4. Simulation: power

We present two approaches-MLMs and GEEs-to incorpo-
rate between-litter variation into experimental design with
power calculations. We were specifically interested in how
differing ICC values influence power and how this varies
with the ratio of litters to observations per litter, holding the
total sample size constant. That is, we addressed whether it is
more advantageous to increase litters or pups per litter. Based
on the literature search, we found that group sizes varied, but
were typically small. We chose an extremely optimistic value
of 24 observations per group (N = 48) that can be thought
of as the best scenario, and varied the composition of the
samples (litters = 4, 6, 8, and 12; pups per litter = 12, 8,
6, and 4). Standard effect size measures (Cohen’s d) do not
exist for MLMs, since variance is partitioned among levels.

We thus used an effect size, delta total variance δT (Hedges,
2007), defined as:

δT =
β√

σ2
u +σ2

e
(4)

where the difference between groups (β ) is divided by the
square root of the variance components summed. We found
that significant effects in the literatures were typically large
(d > 1.0), but simulated power for a range of values (δT
= 0.20, 0.50, 0.80, 1.10). The interpretation of δT follows
d, so the selected values covered what are considered small
(0.20), medium (0.50), and large effects (0.80).

2.5. Simulation: uncertainty due to litter

In addition, we conducted a simulation to demonstrate how
between-litter variation influences uncertainty of the fixed
effect estimate. This was achieved by computing confidence
intervals for an unstandardized group difference (β = 8.0)
across a range of ICC values. Since a 95-% interval excluding
zero is significant at the α = 0.05 level, this allowed for
visualizing how litter impacts false positives and power.

For each combination of litters, observations per litter,
and ICC values, 5,000 simulations were performed for
each of the models. False positive rates and power were
computed as the proportion of simulations with p < 0.05.
All computations were done with the R programming lan-
guage. The MLMs were fitted with the package lmerTest
(Kuznetsova et al., 2016) that is a front end to lme4 (Bates
et al., 2015), whereas gee (Ripley, 2015) was used for
the GEEs and saws (Fay, 2015) for the bias corrected
standard errors (R code: https://osf.io/fxy7h/). To aid applied
researchers, we developed a R package (litterEffects) that
allows for simulating false positive rates, power, determining
the optimal GEE bias correction, and includes a tutorial
(https://github.com/donaldRwilliams/litterEffects).

3. RESULTS

3.1. Literature search

We identified 35 articles from the natural variations in
maternal care (MC) literature and 100 articles from the
prenatal stress (PNS) literature. We found that descriptions
were too varied to get precise estimates of the number of
litters and observations per litter (https://osf.io/fxy7h/), but
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Fig. 2: t-tests and ANCOVAs have inflated type I error rates when between-litter variation in non-zero (ICC > 0 %), and this is directly related to
the degree of between-litter variation. That is, error rates are dependent upon similarities among litter mates. MLMs and GEEs—statistical methods that
account for dependent measures—have adequate performance across most conditions.

multiple animals from the same litter were used in most
studies (MC = 100 % and PNS = 88 %). Although litter
effects were explicitly considered (MC = 22 % and PNS
= 31 %), this often resulted in reducing the number of
litter mates used. That is, dependent measures were still
included in the study. In three studies (Amugongo and
Hlusko, 2014; Barha et al., 2007; Neeley et al., 2011), a
statistical method explicitly for correlated observations was
used. In both literatures, we found that the most common
statistical approach assumed independence of observations
(MC = 86 % and PNS = 85 %). In other words, a large
percentage (> 80 %; Table 1) of the reviewed studies likely
violated the assumption of independent observations.

We highlight two papers that, while not using a statistical
method for dependent measures, considered litter effects by
either averaging within litter or using one animal per litter.
The former was used in Starr-Phillips and Beery (2014):

To avoid the possibility that major findings arise from
litter effects rather than maternal care effects, effects of
maternal care on social behavior were also analyzed
by litter, using litter means in place of individual
subject data points.

Both approaches produced similarly significant effects, but
litter means were only used for a subset of outcomes.
Interestingly, one prenatal stress paper mentioned that litter
mates are siblings and selected one animal per litter:
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Fig. 3: power is related to the degree of between-litter variation and sample size composition (power is higher with fewer dependent measures [green]).
For these simulation conditions, power is rarely at the nominal level of 0.80. Importantly, since we used an optimistic sample size (N = 48; two-groups
of 24) these are likely overestimates of typical power in both literatures.

To avoid litter effects, only one rat from each of four
litters per group was tested in each experiment. Hence,
for this study, n implies that four unique (non-siblings)
prenatally stressed or control rats were used separately
for each method of analysis (Baier et. al).

3.2. False positive rates

The results are presented in Figure 2, including type I
error rates of four models: (1) t-test (green): (2) ANCOVA
(blue); (3) MLM (yellow); and (4) GEE (grey). Each model
compared mean differences—assuming a true null hypoth-
esis—between two groups, but differed in how litter was
accounted for (see section 2.1. Simulation: false positives).
Due to expected sampling variability in simulations, reported
quantities were rounded to the hundredth decimal place.

When litter was not included in the model, as in the t-
test, type I error rates exceeded nominal levels (α = 0.05;
red dashed line). Error rates ranged from approximately
0.05–0.51. The latter indicates an almost 1,000 % increase
from 0.05. For all condition in which the litter ICC was
0, nominal levels were achieved. In other words, when
litter mates did not resemble one another, the t-test had
optimal performance. However, when the ICC was 5 %,

error rates approached 0.10 (litters = 12 and per litter =
8). For sample sizes more commonly seen in behavioral
neuroendocrinology, error rates approached 0.30 when the
litter ICC was 40 % (litters = 4 and per litter = 6). Across all
conditions, the magnitude of the ICC was directly related to
the increase in error rates and this became more pronounced
with larger sample sizes.

With litter modeled as a covariate in an ANCOVA, we
observed the same patterns as the t-test. That is, error rates
increased with the degree of between-litter variation, and this
was influenced by the sample size. Furthermore, when the
ICC was 0, nominal levels were achieved. Across all con-
ditions, however, there were substantial differences between
the t-test and ANCOVA in that the latter had markedly higher
error rates (t-test: 0.05–0.51 vs. ANCOVA: 0.04–0.66). For
a total sample size of 24 (litters = 4 and per litter = 6) and
an ICC of 40 %, the error rate was 0.37 (640 % increase
from the alpha level of 0.05).

Based on the same data generating process as for the t-
tests and ANCOVAs, we examined error rates for statistical
methods that are specifically for non-independent data. In
Figure 2, the MLMs (yellow) and GEEs (grey) showed
similar performance. This was expected, and highlights that



both methods generally performed well across all conditions.
However, we also observed that both methods could be
conservative and anti-conservative (MLM: 0.03–0.08 vs.
GEE: 0.04–0.07). The conservative estimates (i.e., < 0.05)
were observed when samples were small (N = 8; litters
= 4 and per litter = 2) and the ICC values were close
to zero. However, when the number of litters were more
representative of both literatures (litters > 4), both methods
had optimal performance in that error rates were close to
0.05 (see here for estimates: https://osf.io/fxy7h/).

3.3. Conditional false positive rates

We examined false positive rates for the fixed effect,
conditional on a significant litter effect (random intercept)
in a multilevel model (2.3. Simulation: conditional false
positives). False positive rates were consistently higher when
there was a significant litter effect (Figure 4a). However,
when the litter effect was non-significant, error rates become
problematic when the ICC was greater than 10 %. For an ICC
value reported in a related field (60 %; Lazic and Essioux,
2013), false positive rates exceeded 0.20.

3.4. Power

Since only the MLMs and GEEs achieved nominal error
rates, power was examined for these methods. We were
specifically interested in the degree to which between-litter
variation influences the power to detect a difference, and
how this varies with the ratio of litters to observations per
litter. The results of this simulation are presented in Figure
3, where 0.80 power is indicated with a red dashed line.

For both methods, power was related to the magnitude of
between-litter variation. For example, when δT = 1.1 power
was greater than 0.90 when the ICC was 0 %, but reduced
substantially when the ICC was 70 % (MLM = 0.49 vs. GEE
= 0.47). Indeed, even with optimistic sample sizes (N = 48),
power reached 0.80 in few conditions. Specifically, when the
effect size was very large (δT = 1.1) and the ICC was less
than 20 %. For what is considered small (0.2) and medium
size effects (0.5), power did not exceed 0.32 for both models.
For most conditions, the MLMs had more power than the
GEEs and this was the case across the range of ICCs, but
this differences was generally small (i.e., < 3 %).

In addition, power was directly related to the composition
of the samples for both models. In all conditions, for ex-
ample, power was higher when less animals per litter were
included in the analysis. For a δT of 1.1, power exceeded
0.80 for both MLMs and GEEs when there were 12 Litters
and 4 observations per litter (grey line), but was substantially
lower for 4 litters and 12 observations per litter. In other
words, fewer dependent measures resulted in higher power
(see here for estimates: https://osf.io/fxy7h/).

3.5. Uncertainty due to litter

To make clear how litter affects power and error rates,
we used simulations to compute 95-% confidence intervals
for an unstandardized effect across a range of ICC values
(0–0.70, Figure 4b). As between-litter variation increases,

the confidence intervals become wider. Whereas the effect
was significant when the ICC is 0 %, this was no the case
(interval includes 0) with an ICC of 20 %. The same logic
applies to false positive rates. When between-litter variation
is not accounted for, the width of the confidence interval
will be too narrow and this increases the rate at which the
confidence intervals will exclude zero.

4. DISCUSSION

The present study investigated how between-litter variation
has been accounted for in two literatures—natural variation
in maternal care and prenatal stress. Specifically, we esti-
mated how often dependent measures (i.e., litter effects) have
been considered, as well as the degree to which litter effects
can increase false positives and affect power. Although
aspects of litter were generally underreported (e.g., total
litters included in the study), we found that litter effects
were never reported, most studies used several pups from
the same litter, and only 15 % used a statistical technique
appropriate for data with dependent observations (Table 1).
The latter indicates our simulation results apply widely, in
that expected error rates (α = 0.05) are compromised in a
large portion of the published studies in both research areas.
Furthermore, since litter effects were never reported, our
findings not only apply to analyzing data but also to the
design stage of experiments. That is, to accurately compute
power for a hypothesized effect, one must consider between-
litter variation (Figure 3). This is currently not possible given
the current state of both literatures (3.1. Literature search).

4.1. False positive rates

Based on the literature search, we computed false positive
rates for commonly used statistical approaches for handling
litter effects. The most common approach was to assume
independent observations, followed by including litter as a
covariate. We showed that, across all conditions in which
there was between-litter variation, both approaches produced
inflated error rates. While this was observed for both t-tests
and ANCOVAs, error rates were substantially higher for the
latter. The inclusion of covariates in an ANOVA is known
to increase power (Borm et al., 2007)–assuming an effect
exists. This occurs because residual variance can be reduced
(Cox and McCullagh, 1982), thus increasing power to detect
an effect for the variable of interest (Borm et al., 2007).
However, like ANOVA, and ANCOVA assumes the errors
are uncorrelated which is unlikely to be the case when litter
mates are included in the analysis (Keselman et al., 1998). In
addition, ANCOVA assumes there is no interaction between
the independent variable and covariate (Levy, 1980). This
may or may not be the case in the published literature, but
should be investigated going forward. There is also growing
realization that inclusion of covariates can increase type I
error rates, and allows for substantial researcher research
degrees of freedom. That is, covariates allow for a high
degree of flexibility that can be advantageous in certain
settings, but not when explored until the p < 0.05 threshold
is crossed. To address this potential issue, methodologists
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Fig. 4: a) error rates for the fixed effect (e.g., High LG vs. Low LG)–analyzed with a t-test–are not conditional on a significant litter effect. This can be
thought of as: 1) testing the significance of litter in a MLM (random intercept) and 2) excluding litter from the model when non-significant. In this case,
reliance on statistical significance (p < 0.05) can lead to inflated false positive rates. b) between-litter variation increases uncertainty (standard error =
thick line; 95-% CI = thin line) of the fixed effect estimate. Results for both figures were obtained with simulations (8 litters and 4 observations per litter).

in human oriented psychology are advising to pre-register
covariates (van t Veer and Giner-Sorolla, 2016; Wang et al.,
2017).

In addition, we examined error rates of statistical meth-
ods–multilevel models and generalized estimating equa-
tions–specifically for data with dependent measures. Across
most conditions, nominal error rates were achieved for both
methods. It should be noted that, when samples were small
(N = 8), both methods produced error rates problematically
above or below the expected level (α = 0.05). However,
these were not near the levels observed in the t-tests and
ANCOVAs. In some literatures, it has been suggested that
MLMs and GEEs should not be used with small samples
(Callens et al., 2005), such as those that are typical in
behavioral neuroendocrinology. When the goal is to account
for dependent measures, and not necessarily on estimating
the random effect with a certain degree of precision, we show
that both methods can be used to ensure nominal error rates
when samples are small and clusters (i.e., litters) are few.
With a sample of eight (N = 8), for example, adequate perfor-
mance was achieved for mid-range ICC values. Furthermore,
GEEs do not provide an estimate of the random effect,
but do need small sample corrections to ensure nominal
levels for the fixed effect (Gunsolley et al., 1995). We stress
this point–bias corrections are a necessity–because default
standard error estimators can produce error rates greater than
0.20 for small sample sizes (Gunsolley et al., 1995).

4.2. Conditional false positive rates
We also showed that false positive rates to not depend on

a significant litter effect (Figure 4A). This can be thought of
as mimicking a two-step procedure:
• the significance of a variable was assessed
• if non-significant, the variable was removed from the

model

The important question is not whether the effect of litter
is significant, but whether it is exactly–or very close to–zero.
Thus, statistical significance is irrelevant in this context and
a better solution is to rely on knowledge of experimental
design and study subjects, regardless of the observed p-value.
It should be noted that the notion of parsimony is often
invoked when analyzing data (Bates et al., 2015a). However,
all decisions have statistical consequences that need to be
considered. In this case, pursuing the most parsimonious
model can lead to erroneous conclusions (Barr et al., 2013).
Additionally, those who make inferences via the standard
error are making statements about expectation over the long
run (i.e., hypothetical replications; Greenland et al., (2016)).
Accordingly, even if a litter effect is estimated as zero, it is
important to consider whether this is a reasonable expectation
in future studies.

4.3. Power
Since only MLMs and GEEs achieved nominal false posi-

tive rates, we explored power of these models (Figure 3). We
were most interested in how power is influenced by between-
litter variation, and the composition of the sample (i.e., the
ratio of litters to observations per litter). We found that it
is more advantageous to reduce the number of dependent
measures. For example, power was consistently higher with
12 litters and 4 observations per litters that the reverse (litters
= 4; per litter = 12). When the effect size was small (δT =
0.2), there was negligible power and this was the case for
both models. Given the same sample and effect size on d
scale (N = 48, d = 0.20), power for an independent t-test
is 0.10 which parallels the MLM (0.08) and GEE (0.09)
estimates when there were 12 litters and 4 observations per
litter. Of course, power would be higher if all observations
were obtained from separate litters. In addition to optimal
power, using one observation per litter would be particularly



advantageous in the maternal care literature. For example, in
these studies, the mother is the observational unit and within
litter differences in maternal care received are not usually
considered (van Hasselt et al., 2012).

Our simulations showed that power reached 0.80 in very
few conditions. The implications of this are two-fold. First,
significance can be thought of a ratio of signal (the effect)
to noise (standard error). In small samples noise is generally
high, so the effect needs to be very large to reach significance
(Walum et al., 2016). This is problematic because the error
surrounding a significant effect can make it uninterruptable.
To make this point, we selected a significant effect from one
papers and computed Cohens d (d 2.3, 95-% CI = [0.42
4.17]) (Champagne et al., 2003b). Given this effect, we can
safely reject values less than 0.42 and 4.17 which shows that
the true effect could be small/medium in size to unreasonably
large (Kruschke, 2013). Second, non-significant effects are
also difficult to interpret. For example, assuming the effect
is centered at zero but the interval is the same width (d =
0, 95-% CI = [-1.88 1.88]) indicates that even very large
effects are still possible and should not be confused with no
effect (Lakens, 2017). Together, this lack of power is directly
related to small sample sizes and this affects interpretation
of significant as well as non-significant effects (Button et al.,
2013).

4.4. Comparison to methodological papers

It should be noted that our results parallel methodologi-
cally oriented papers on similar topics. For example, Holson
and Pearce (1992) showed that between-litter variation in-
flated false positive rates and Zorrilla (1997) found that the
assumption of independence was violated in 85 % of the
reviewed papers. Over one decade later, Lazic and Essioux
(2013) found that 91 % of studies in the valproic acid litera-
ture used an invalid statistical method for analyzing data with
litter mates. We built upon these previous papers in several
ways, First, our paper addresses these issues specifically
in the field of behavioral neuroendocrinology. Second, in
addition to varying the sample sizes, we investigated how the
magnitude of between-litter variation affects false positives
and power. Third, we showed that an ANCOVA inflates
false positives more than a t-test. Fourth, as an alternative
to MLMs, we characterized the performance GEEs for
typical research designs. Fifth, we developed a R package
(litterEffects) that allows for investigating power, determining
the appropriate GEE bias correction, and includes a tutorial.
Sixth, we discussed the implications of our findings in the
broader context of replication efforts in related fields.

4.5. Implications: natural occurring maternal variation and
prenatal stress

The natural variation in maternal care and prenatal stress
literatures have proven influential in the field of behav-
ioral neuroendocrinology (Curley and Champagne, 2016;
Goldstein et al., 2014). The former has provided a foun-
dation in which developmental programming could occur
in nature (Cameron, 2011), whereas the latter has provided

insights into the etiology of neurobiological disorders such
as autism (Kinney et al., 2008) and schizophrenia (Markham
and Koenig, 2011). Although empirical findings are well
documented in both literatures, our findings highlight areas
for improvement in both research areas. There is substantial
evidence that true effects likely exist. However, due to not
accounting for between-litter variation caution is warranted
when interpreting past research. In addition to our findings, it
should be noted that we are unaware of direct replications in
either literature. As such, we take the position that the general
hypotheses may have support, but do not offer evidence for
specific effects. For example, in the general sense, maternal
care probably does affect offspring development. However,
stating that maternal care can reliably induce epigenetic
modifications to a specific gene is not currently supported by
the literature. Evidence for this can only be obtained through
replication, in addition to using appropriate statistical meth-
ods. Revisiting previous data would address the issues we
raised here (e.g., potential false positives), but would not
address the lack of replications in both literatures.

4.6. Implications: reproducible science

The replication crisis has so far been dominated by hu-
man oriented psychology in general, and social psychology
in particular (OSC, 2015). Yet, other research areas are
also experiencing difficulties replicating findings including
biomedical related fields (< 25 %; Prinz et al., 2011). Even
if we assume that the reported results in the primary studies
are unbiased, using an inappropriate statistical analysis can
produce unreliable results. This finding parallels a recent
paper that examined clusters in fMRI research in which they
concluded that commonly used software could produce false
positive rates upwards of 0.70 (Eklund et al., 2016). In con-
trast to this paper, where it was suggested that interpretation
of weakly significant findings was mostly affected, we cannot
make this claim. The present simulations show that false
positives depends on the number of litters, observations per
litter, and between-litter variation, each of which need to be
taken on a case-by-case basis (Figure 2). In studies in which
the ICC of litter was 0 %, for example, the p-value would
not change by incorporating a random intercept.

It has been argued that most research findings are false
(Ioannidis et al., 2005), the literature is skewed towards posi-
tive results due to publication bias (Francis, 2012), individual
researchers actively engage in questionable research practices
(e.g., HARKing: Kerr, 1998 and p-hacking: Simmons et
al., 2013), and that seemingly justified choices can make
it so results cannot be replicated (e.g., garden of forking
paths: Gelman and Loken, 2014) . It should be noted that
our analysis does not address these issues. Nevertheless, the
take home for replication efforts in neuroendocrinology is
that we need not exclusively focus on biases or ill-intent
on the part of individual researchers. It is entirely plausible
that misspecified statistical models account for many failed
replications, in that the original effect may have never
been statistically significant to begin with. Furthermore, our
simulations showed that power depends on many aspects of



litter including the degree of between-litter variation (Figure
3). In other words, detecting a significant finding would
prove difficult if the magnitude of between-litter variation
was larger in a replication attempt than the original study.

4.7. MLM vs. GEE

In contrast to MLMs, GEEs are less documented in R
(Bates et al., 2015; Halekoh et al., 2006; Pinheiro and Bates,
2000), present difficulties for evaluating model fit (Horton et
al., 1999), and there are few examples of their use in the
hormones and behavior literature (Muth et al., 2016). When
sample sizes are small, GEEs require bias corrections to
ensure nominal type I error rates (Gunsolley et al., 1995; Li
and Redden, 2015). In fact, many bias corrections exist which
can introduce substantial researcher degrees of freedom into
the analysis (Fay and Graubard, 2001; Pan and Wall, 2002).
While GEEs can only consider one source of variation,
MLMs offer greater flexibility and provide more information
that can be used prospective power analyses (estimates of the
random effects that are not provided by GEEs). This flexibil-
ity comes with a cost, however, as a misspecified MLM can
substantially inflate the error rates. For example, when two
treatments are administered to subjects from the same litter,
variability in the experimental effect must be considered with
a random slope, in addition to the random intercept of litter
(Aarts et al., 2015). In small sample situations, this presents
challenges in a frequentist framework since convergence
issues can arise when the number of estimated parameters
exceeds the total number of observations. In these situations,
Bayesian methods can be used (Baldwin and Fellingham,
2013)

4.8. Statistical assumptions

Even a simple t-test can be thought of as modeling
biological phenomena, in which inference is dependent on
many assumptions. To ensure assumptions are met, further
statistical tests are often used such as Shapiro-Wilk for
normality (Shapiro and Wilk, 1965). In contrast, we do not
know of tests explicitly for the assumption of independence.
Consideration of the research design, model organism, expert
opinion, and reason can all be used. If non-independence
is suspected, but not present, inclusion of a random effect
will give equivalent estimates to a fixed effect only model
(Gelman and Hill, 2006).

Heterogeneous variances can increase false positives in
parametric, as well as so-called non-parametric tests (Zim-
merman, 1987). However, data that departs from normal-
ity can still have the nominal error rates. Non-parametric
tests for clustered data are underdeveloped (Noguchi et al.,
2012) and expected error rates have not been examined
to our knowledge. When distributional assumptions are not
met, caution is therefore warranted when choosing which
violations require action. Rather than transforming data to
normality, for example, a distribution other than Gaussian
can be assumed (e.g., Poisson for count outcomes). These
questions are challenging and demonstrate the difficulty in
modeling hierarchical data structures such as those that

include litter mates. By clearly stating the assumptions that
the results depend on, however, would allow researchers
the opportunity to debate their validity. We consider the
assumption of zero between-litter variation untenable and
that researchers should always use MLMs or GEEs.

4.9. Statistical expertise vs. improved training

Certain research questions will inevitably require seeking
statistical expertise. For example, genomic data is often ana-
lyzed by specialists in quantitative oriented fields such as bio-
statistics. Outside expertise can ensure rigor and correctness
for specific problems. However, expertise is also qualified
with being highly specialized in a certain area. Therefore,
specialists in multilevel modeling, or those that know how
to account for clusters more generally, may be a limited
resource (Lazic and Essioux, 2013). In addition, fruitful
collaborations require a certain amount shared knowledge
of one anothers field and specific research question. This
would entail communication of the necessary information so
that the correct analysis is applied. It is plausible that, if
a researcher knew to mention the hierarchical structure of
their data (e.g. rodent pups within litter), they would also
be familiar with the appropriate statistical methods (Lazic
and Essioux, 2013). In turn, if the structure of the data is
not shared and a quantitative expert performed the analyses,
this can give the false impression of statistical correctness.
Since many (possibly most) research designs in behavioral
neuroendocrinology have dependencies or additional sources
of variation, we see a limited role for statisticians in the most
common scenarios.

Alternatively, working towards better quantitative training
for researchers may be a viable option to address many of
the issues that we highlighted. There are many resources
available for individual researchers. While in the past fitting
MLMs was a specialized task, free and easy to use statistical
packages (Bates et al., 2014; Kuznetsova et al., 2016),
tutorials available on blogs (Magnusson, 2016), as well as
other social media forums (e.g., Facebook methods groups)
has made these methods accessible to all researchers. In
addition, since many research designs in behavioral neuroen-
docrinology are simply factorial with clusters, reading books
about multilevel modeling would likely provide a sufficient
introduction.

Despite these limitations, statistical expertise and im-
proved training are important and would likely advance quan-
titative methodology to some degree. However, due to the
near ubiquity of litter use, dependencies mostly unaccounted
for, deficiencies in reporting between-litter variation (Table
1), and substantially inflated false positive rates (Figure 2),
higher-level action by journals and/or funding bodies may be
required.

4.10. Limitations

There are several limitations that deserve attention. Sim-
ulations entail generating data and numerous assumptions.
A valid question is whether our conclusions will generalize
to real research situations. While our findings are built



upon many assumptions, so are all aspects of inference
regardless of whether data was obtained from actual rodents
or simulated to have certain characteristics. When using any
statistical software, the applied algorithm cannot differentiate
between actual and simulated data. This results in all inputted
numbers being treated in the same manner. Furthermore,
exact false positive rates in the published literatures cannot
be determined. Our simulations showed that between-litter
variation can inflate error by some degree, and this is im-
portant to consider when inferring meaning from the extant
literature.

Not providing comparisons between statistical methods
with actual data may be viewed as objectionable or in-
complete. Although using real data may appear more tan-
gible, this would present several difficulties when examining
optimal statistical methods. For example, with actual data,
we do not know whether a true effect exists and cannot
determine which method is arriving at the correct conclusion.
As such, simulations offer clear advantages in that we
know the correct conclusion and can therefore determine the
appropriate method. In addition, commonly used measures
of evidence have meaning in the long run and this makes
exploring expected error rates with one data set problematic
(Greenland et al., 2016).

It is also possible that estimates of between-litter variation
are biased in small sample situations (Maas and Hox, 2005),
which may influence false positive rates and power. Indeed,
simulation based studies have shown that small samples and
few clusters can present challenges for MLMs (Maas and
Hox, 2005) and GEEs (Gunsolley et al., 1995). While it
is true that small samples may show bias, we do not see
this as unique to estimates of litter variation. That is, larger
samples are always preferable irrespective of the parameter
under investigation, as they provide more precise estimates of
the population. We demonstrated that, with only four litters,
expected error rates and optimal power can be achieved.
Thus, even in small sample situations, we see MLMs or
GEEs as methods that should be used for dependent data.

Our results are restricted to specific research designs
(observations fully nested within litter), which limits the
scope of our findings. We see this as a strength, how-
ever, in that we had sufficient focus to answer substantive
questions as opposed to general quantitative practices and
we provided resources for important research topics in the
field of behavioral neuroendocrinology. We also used two
different search strategies for each literature: for prenatal
stress, we only included the 100 most recent studies. This
decision was made because reviewing potentially 1,000’s of
articles seemed unnecessary to achieve our goal of offering
recommendations based on current methodological practices.
Said another way, our interest was not on challenging specific
findings, but to shed light upon an important topic.

4.11. Conclusion

While there are notable limitations, we conclude that
between-litter variation is underappreciated (Table 1), can
lead to increased false positive rates (Figure 2), and reduce

ones ability to detect an effect (Figure 3). Based on the
strength of these findings, we offer several recommendations.
First, it should be noted that our recommendations apply
to research designs in which entire litters are categorized
one way. Litters often receive multiple treatments, and a
thorough discussion of the necessary model to account for
dependencies in these situations is beyond the scope of the
present paper (but see here: Aarts et al., 2015). However,
when all litter mates included in a study are categorized
based on the same characteristic or treatment, we suggest
the following:
• Independence of observations from the same liter cannot

be assumed.
• Including litter as a covariate is not appropriate.
• A statistical method specifically for non-independence

is necessary.
We prefer a multilevel approach, as generalized estimating

equations require small sample corrections for p-values. In
addition, MLM’s provide estimates of between-litter varia-
tion that can be used for prospective power analyses. If a
GEE is used, relevant literature and simulations should be
used to select the appropriate bias correction. An alternative
approach that averages observations within litter can be
found in Starr-Phillips and Beery (2014).
• To facilitate prospective power calculations, empirical

papers should report the amount of between-litter vari-
ation observed.

• Power calculations should assume a range of plausible
values for between-litter variation.

• The statistical significance of litter as a random effect
should not be used to exclude it from the model.
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