Main content

Contributors:
  1. Lingsen Meng
  2. Tian Feng

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Supershear earthquakes with rupture velocity exceeding shear-wave speeds, previously observed in laboratory experiments and large strike-slip events, often have an initial sub-shear stage before they transition to supershear. In this study, integrated geophysical observations of the 2018 Mw 7.5 Palu, Indonesia earthquake, provide robust evidence of an early and persistent supershear rupture speed. Slowness-enhanced back-projection (SEBP) of teleseismic data provides a sharp image of the rupture process, consistently across multiple arrays. The inferred rupture path agrees with the surface rupture trace inferred from the net surface displacement field derived by sub-pixel InSAR image correlation. The SEBP results indicate a sustained rupture velocity of 4.1 km/s from the rupture initiation to the end, despite large fault bends. The persistent supershear speed is further validated by evidence of far-field Rayleigh Mach waves in regional seismograms. The short or absent supershear transition distance can be caused by high initial shear stress or short critical slip-weakening distance, and promoted by fault roughness near the hypocenter. Steady rupture propagation at a supershear speed considered to be unstable, lower than the Eshelby speed, could result from the presence of a damaged fault zone.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.