Main content
Early and persistent supershear rupture of the 2018 Mw 7.5 Palu earthquake
- BAO, HAN
- Jean-Paul Ampuero
- Lingsen Meng
- Eric J. Fielding
- Cunren Liang
- Hui Huang
- Tian Feng
Date created: | Last Updated:
: DOI | ARK
Creating DOI. Please wait...
Category: Project
Description: Supershear earthquakes with rupture velocity exceeding shear-wave speeds, previously observed in laboratory experiments and large strike-slip events, often have an initial sub-shear stage before they transition to supershear. In this study, integrated geophysical observations of the 2018 Mw 7.5 Palu, Indonesia earthquake, provide robust evidence of an early and persistent supershear rupture speed. Slowness-enhanced back-projection (SEBP) of teleseismic data provides a sharp image of the rupture process, consistently across multiple arrays. The inferred rupture path agrees with the surface rupture trace inferred from the net surface displacement field derived by sub-pixel InSAR image correlation. The SEBP results indicate a sustained rupture velocity of 4.1 km/s from the rupture initiation to the end, despite large fault bends. The persistent supershear speed is further validated by evidence of far-field Rayleigh Mach waves in regional seismograms. The short or absent supershear transition distance can be caused by high initial shear stress or short critical slip-weakening distance, and promoted by fault roughness near the hypocenter. Steady rupture propagation at a supershear speed considered to be unstable, lower than the Eshelby speed, could result from the presence of a damaged fault zone.