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Introduction

3. This handbook is mostly intended for consultation.

4. Each section can be read independently.

5. Due to (3) and (4), there are redundancies in many of the definitions.

6. At the beginning of each section, we present the references used.

Metalinguistic Symbols

7. [1, 2]

8. A metalinguistic symbol is not part of the language.

9. The symbol := means that what is on the left side is defined by the
right side of it.

10. The symbol :≡ means that the strings of symbols (within a language)
on each side of it are identical.

11. ⊢ means deduction, logically implies

12. |= means satisfy, truth (if there is a structure on the left), logical
implication (if there is a set of sentences on the left), model

13. ⊥ (read false or eet) := contradictory sentence

14. The symbol ∼≻ appears for pedagogical purpose for the sake of ab-
breviating an explanation; it can be read as from, of, with, leads to,
in which, etc.

Symbols and Syntax

15. [1, 2]



16. syntax := symbols (of a language)

17. string := string of symbols := a sequence of symbols

List of Symbols

18. [1, 2]

19. ∈ := membership relation

20. ∕∈ := negation of the membership relation

21. ⊻ := exclusive or

22. ⊆ := subset, substructure

23. ≺ := elementary substructure/extension

24. ∪ := union of sets

25. ∩ := intersection of sets

26. ∅ := empty set

27. f ↾A := restriction of the function f to the domain A

First-order Language

28. [1, 2]

29. first-order language := infinite collection of distinct symbols (no
one of which is properly contained in another) separated into the fol-
lowing:

(a) Parentheses: (, )

(b) Connectives: ∨,¬



(c) Quantifier: ∀
(d) Variables (one for each positive integer n): v1, v2, ..., vn, ...

Vars = {v1, v2, v3, ...} := set of variable symbols

(e) Equality: =

(f) Constant: Some set of zero or more symbols

(g) Function: For each positive integer n, some set of zero or more
n-ary function symbols

(h) Relation: For each positive integer n, some set of zero or more
n-ary relation symbols

Terms

30. [1, 2]

31. term of L := nonempty finite string t of symbols from L such that
either:

(a) t := constant symbol (c), or

(b) t := variable (v), or

(c) t :≡ ft1t2...tn, where
f := n-ary function symbol of L and
ti := term of L.

32.
t := c ⊻ v ⊻ f

33. L := first-order language

34. L-symbols := symbols of a language L

35. Note that (31.c) is a definition by recursion, since t is a term if it
contains substrings that are terms.

36. substring := subset of a string



Formulas

37. [1–3]

38. formulas := assertions about the objects of the structure (model)

39. formula of L :≡ nonempty finite string φ of symbols from L such that
either:

(a) φ :≡ = t1t2, or

(b) φ :≡ Rt1t2...tn, or

(c) φ :≡ (¬α), or

(d) φ :≡ (α ∨ β), or

(e) φ :≡ (∀v)(α).

40. L := first-order language

41. t1, t2, ..., tn := terms of L

42. R := n-ary relation symbol of L

43. α, β := formulas of L

44. v := variable

45. Note that (39.c, d, e) are definitions by recursion, since φ is a formula
if it contains other formulas.

46. In (39.e), we say that the scope of the quantifier ∀ is α.

47. p ∧ ¬p has two formula occurrences of p

Atomic Formulas

48. [1, 2]



49. atomic formula of L := nonempty finite string φ of symbols from L
such that either:

(a) φ :≡ = t1t2, or

(b) φ :≡ Rt1t2...tn.

50. L := first-order language

51. t1, t2, ..., tn := terms of L

52. R := n-ary relation symbol of L

53. Atomic formulas are the primitives (not defined under recursion).

54. atom := atomic formula

55. literal := atom or its negation

Complexity

56. [1, 2]

57. simpler formula := fewer number of connectives/quantifiers

58. simpler formula := subformula of a more complex formula

Mathematical Induction

59. [1, 2]

60. proof by induction on the structure (complexity) of the formula

Free Variables

61. [1, 2]



62. v := free in φ if

(a) φ is atomic and v occurs in (is a symbol in) φ, or

(b) φ :≡ (¬α) and v is free in α, or

(c) φ :≡ (α ∨ β) and v is free in at least α or β, or

(d) φ :≡ (∀u)(α) and v is not u and v is free in α.

63. u, v := variables

64. φ,α, β := formulas

Sentences

65. [1, 2]

66. sentences := formulas that can be either true or false (with no free
variables)

67. There are no free variables in the definition of a sentence so that it
can be either true or false.

68. L := first-order language

Structures

69. [1, 2]

70. A := set A together with

(a) an element cA of A, for each constant symbol c of L,

(b) a function fA : An → A, for each n-ary function f of L, and

(c) an n-ary relation RA on A (i.e., a subset of An), for each n-ary
relation symbol R of L.



71.
A = (A, cA, fA, RA)

72. cA ∈ A, fA : An → A, RA ⊆ An; A ∕= ∅

73. L := first-order language

74. A := L-structure

75. A := the universe of A

76. Note that the variables are not part of the definition (70).

Variable Assignment Function

77. [1, 2]

78. assignment functions

(i) begin the process of tying together the symbols with the struc-
tures)

(ii) formalize the interpretation of a term/formula in a structure

79. variable assignment function into A := function s that assigns
to each variable an element of A,

s : Vars → A

80. Vars := set of variable symbols (domain)

81. A := universe of A (codomain)

82. s[x|a](v) =

s(v), if v is a variable other than x

a, if v is the variable x

83. s := variable assignment function into A



84. x := variable; a ∈ A

85. s[x|a](v) := x-modification of the assignment function s

86. In s[x|a](v), x is assigned to a.

87. L := first-order language

88. A := L-structure

Term Assignment Function

89. [1, 2]

90. s := term assignment function generated by s

(a) (t := variable) → (s(t) = s(t))

(b) (t := constant symbol c) → (s(t) = cA)

(c) (t := ft1t2...tn) → (s(t) = fA(s(t1), s(t2), ..., s(tn)))

91. s (term) is the generalization of s (variable).

92. Note that s is defined recursively.

93. set of L-terms := domain of s

94. A := codomain of s

95. s := variable assignment function into A

96. cA ∈ A

97. L := first-order language

98. A := L-structure



Satisfaction

99. [1, 2]

100. satisfaction := truth

101.
(A |= φ[s]) := A satisfies φ with assignment s if

(i) (φ :≡= t1t2) ∧ (s(t1) is the same element of A as s(t2)), or

(ii) (φ :≡ Rt1t2...tn) ∧ ((s(t1), s(t2), ..., s(tn)) ∈ RA), or

(iii) (φ :≡ ¬α) ∧ (A ∕|= α[s]), or

(iv) (φ :≡ α ∨ β) ∧ ((A |= α[s]) ∨ (B |= β[s])), or

(v) (φ :≡ ∀xα) ∧ (∀a ∈ A : A |= α[s(x|a)]).

102. L := first-order language

103. A := L-structure

104. φ := L-formula

105. s : Vars → A

106. s := variable assignment function into A

107. Vars := set of variable symbols

108. A := universe of A

109. (A |= Γ[s]) ≡ (∀γ ∈ Γ : A |= γ[s])

110. Γ := set of L-formulas



True Sentences

111. [1, 2]

112.
(σ is true in A) ↔ (A |= σ[s])

113. σ := sentence

114. A := structure

115. s := variable assignment function into A

116. Note that the definition of satisfaction is relative to an assignment
function.

On the equality of term assignment functions

117. [1, 2]

118.
(∀v ∈ t : s1(v) = s2(v)) → (s1(t) = s2(t))

119. A := structure

120. v := variable

121. s1, s2 := variable assignment functions into A

122. t := term

Satisfaction of a formula with different vari-
able assignment functions

123. [1, 2]



124.
(∀v ∈ φ : s1(v) = s2(v)) → (A |= φ[s1] ↔ A |= φ[s2])

125. A := structure

126. v := free variable

127. s1, s2 := variable assignment functions into A

128. φ := formula

Satisfaction for all variable assignment func-
tions

129. [1, 2]

130.
(∀s : A |= σ[s]) ⊻ (A |= σ[s] for no s)

131. L := first-order language

132. A := L-structure

133. σ := sentence in L

134. s := variable assignment function into A

Model (formula)

135. [1, 2]

136. (A |= φ) := A is a model of φ

137.
A |= φ ↔ ∀s : A |= φ[s]



138.
A |= Φ ↔ ∀φ ∈ Φ : A |= φ

139. φ := formula in L

140. s := variable assignment function into A

141. Φ := set of L-formulas

142. L := first-order language

143. A := L-structure

True Sentences

144. [1, 2]

145.
A |= σ ↔ ∀s : A |= σ[s]

146. (A |= σ) := A is a model of σ

147. σ := sentence in L

148. σ is true in A

149. s := variable assignment function into A

150. Φ := set of L-formulas

151. L := first-order language

152. A := L-structure



Satisfaction of formulas with the connective
“and”

153. [1, 2]

154.
A |= (α ∧ β)[s] ↔ A |= α[s] ∧ A |= β[s]

155. (α ∧ β) ≡ (¬((¬α) ∨ (¬β)))

156. (155) is an abbreviation.

157. s := variable assignment function into A

158. α[s], β[s] := L-formulas with assignment function s

159. L := first-order language

160. A := L-structure

Satisfaction with the existential quantifier

161. [1, 2]

162.
A |= (∃x)(α)[s] ↔ ∃a ∈ A : A |= α[s[x|a]]

163. A := structure

164. A := universe of A; a ∈ A

165. x := variable

166. s[x|a](v) := x-modification of the assignment function s

167. α := formula with the x-modification of the assignment function s



Substitution into a Term

168. [1, 2]

169.
uxt (u with x replaced by t) if

(i) (u is a variable not equal to x) → (uxt is u)

(ii) (u is x) → (uxt is t)

(iii) (u is a constant symbol) → (uxt is u)

(iv) (u :≡ fu1u2...un) → (uxt is f (u1)xt (u2)xt ...(un)xt )

170. u, t, uxt , ui := terms

171. x := variable

172. f := n-ary function

173. Note that in (169.iv), the parentheses have been added for the purpose
of readability; so, (u1)xt :≡ u1

x
t .

174. Substitution into a term (169) is a definition by recursion.

Substitution into a Formula

175. [1, 2]

176.
φx
t (φ with x replaced by t) if

(i) (φ :≡= u1u2) → (φx
t is = (u1)

x
t (u2)

x
t )

(ii) (φ :≡ Ru1u2...un) → (φx
t is R(u1)

x
t (u2)

x
t ...(un)

x
t )

(iii) (φ :≡ ¬(α)) → (φx
t is ¬(αx

t ))

(iv) (φ :≡ (α ∨ β)) → (φx
t is (αx

t ∨ βx
t ))



(v) φ :≡ (∀y)(α) → φx
t =


φ, if x is y
(∀y)(αx

t ), otherwise

177. L := first-order language

178. φ,φx
t := L-formulas

179. t := term

180. x := variable

181. R := n-ary relation

182. Note that in (176), the parentheses have been added for the purpose
of readability; so, (φ1)

x
t :≡ φ1

x
t .

183. Substitution into a formula (176) is a definition by recursion.

A term substitutable for a variable in a for-
mula

184. [1, 2]

185.
t is substitutable for x in φ if

(i) φ is atomic, or

(ii) φ :≡ ¬(α) and t is substitutable for x in α, or

(iii) φ :≡ (α ∨ β) and t is substitutable for x in both α and β, or

(iv) φ :≡ (∀y)(α) and either

(a) x is not free in φ, or
(b) y does not occur in t and t is substitutable for x in α.

186. L := first-order language



187. φ,α, β := L-formulas

188. t := term

189. x := variable

190. Notice that

(i) certain operations are allowed only if t is substitutable for x in
φ;

(ii) this restriction is important to preserve the truth of formulas after
performing substitutions.

Logical Implication (sets of formulas)

191. [1, 2]

192.
(∀A : A |= ∆ → A |= Γ) → (∆ |= Γ)

193. (∆ |= Γ) := ∆ logically implies Γ

194. L := first-order language

195. A := L-structure

196. ∆,Γ := sets of L-formulas

197. (192) says that if ∆ is true in A, then Γ is true in A.

198. Recall that ∆ is true in A if ∀s : A |= ∆[s].

199. s := variable assignment function into A



Valid Formulas

200. [1, 2]

201.
(|= φ) → (φ is valid)

202. (∅ |= φ) :≡ (|= φ) := (∀s : φ is true)

203. L := first-order language

204. φ := L-formula

205. s := variable assignment function

206. Notice that

(i) A |= σ means truth (if there is a structure on the left), whereas

(ii) Γ |= σ means logical implication (if there is a set of sentences on
the left).

207. A := L-structure

208. Γ := set of sentences in L

209. σ := sentence

Universal Closure of a Formula

210. [1, 2]

211.
|= φ ↔ |= (∀x)(φ)

212.
(φ has free variables x, y, z) → (|= φ ↔ |= ∀x∀y∀zφ)

213. ∀x∀y∀zφ := sentence called universal closure of φ



214. L := first-order language

215. φ := L-formula

216. x, y, z := variables

On the validity of a conditional statement of
formulas

217. [1, 2]

218. |= (φ → ψ) → φ |= ψ

219. φ,ψ := formulas

“Bottom-up” Deduction

220. [1, 2]

221.
(D :≡ Σ ⊢ φ) if ∀i : 1 ≤ i ≤ n, either

(i) φi ∈ Λ, or

(ii) φi ∈ Σ, or

(iii) ∃(Γ,φi) : Γ ⊆ {φ1,φ2, ...,φi−1}.

222. D :≡ (Σ ⊢ φ) := deduction from Σ of φ

223. L := first-order language

224. φ,φi := L-formulas

225. Λ := set of L-formulas (logical axioms)

226. Σ := collection of L-formulas (nonlogical axioms)



227. (Γ,φi) := rule of inference

228. D := finite sequence (φ1,φ2, ...,φn) of L-formulas

229. bottom-up := it defines a deduction in terms of its parts

“Top-down” Deduction

230. [1, 2]

231.
ThmΣ = {φ | Σ ⊢ φ} is the smallest set C such that

(i) Σ ⊆ C

(ii) Λ ⊆ C

(iii) ((Γ, θ) := rule of inference ∧ Γ ⊆ C) → (θ ∈ C)

232. L := first-order language

233. Σ,Λ := sets of L-formulas

234. top-down := we can think of the collection of deductions from Σ

(called ThmΣ) as the closure of axioms under the application of the
rules of inference.

Decidable Set of Axioms

235. [1, 2]

236. decidable set of axioms := (we will be able to decide whether)

φ ∈ Λ ⊻ φ ∕∈ Λ

237. L := first-order language

238. Λ := collection of logical axioms for L



(Non)Logical Axioms

239. [1, 2]

240.
Λ ∪ Σ := expanded set of axioms

241. L := first-order language

242. Λ := collection of logical axioms for L

243. Σ := collection of nonlogical axioms for L

244. Λ is fixed

245. The rules of inference are fixed.

246. Σ must be specified for each deduction.

247. The collection Λ of logical axioms is decidable.

248. nonlogical axioms := additional axioms, beyond the set of logical
axioms

249. formula := (axiom) ⊻ (arise from previous formulas in the deduction
via a rule of inference)

Equality Axioms

250. [1, 2]

251. (E1)
x = x for each variable x

252. (E2)

[(x1 = y1) ∧ (x2 = y2) ∧ ... ∧ (xn = yn)] →
→ (f (x1, x2, ..., xn) = f (y1, y2, ..., yn))



253. (E3)

[(x1 = y1) ∧ (x2 = y2) ∧ ... ∧ (xn = yn)] →
→ (R(x1, x2, ..., xn) = R(y1, y2, ..., yn))

Quantifier Axioms

254. [1, 2]

255. (Q1): Universal instantiation

(∀xφ) → φx
t , if t is substitutable for x in φ

256. (Q2): Existential generalization

φx
t → (∃xφ), if t is substitutable for x in φ

Rules of Inference

257. [1, 2]

258. There are two types of rules of inference: propositional conse-
quence and one dealing with quantifiers.

259. The set of rules of inference is decidable.

Propositional Consequence: Definition

260. [1, 2]

261. If every truth assignment that makes each propositional formula in ΓP

true also makes φP true, then φP is a propositional consequence
of ΓP .

262. ΓP := set of propositional formulas



263. φP := propositional formula

264. Note that

(φP := tautology) ↔ (φP is a propositional consequence of ∅).

Propositional Consequence: Tautology

265. [1, 2]

266.

(φP is a propositional consequence of ΓP ) ↔
↔ ([γ1P ∧ γ2P ∧ ... ∧ γnP ] → φP ) is a tautology

267. ΓP = {γ1P , γ2P , ..., γnP} := nonempty finite set of propositional for-
mulas

268. φP := propositional formula

Propositional Consequence: Extension to First-
order Logic

269. [1, 2]

270.

(φP is a propositional consequence of ΓP ) →
→ (φ is a propositional consequence of Γ)

271. L := first-order language

272. Γ := finite set of L-formulas

273. φ := L-formula



Rule of Inference of type (PC)

274. [1, 2]

275.

φ is a propositional consequence of Γ →
→ (Γ,φ) is a rule of inference of type (PC)

276. L := first-order language

277. Γ := finite set of L-formulas

278. φ := L-formula

Rules of Inference of type (QR)

279. [1, 2]

280. Rules of inference of type (QR)

(i) ({ψ → φ}, (∀xφ))
(ii) ({φ → ψ}, (∃xφ) → ψ)

281. x := variable (not free in ψ)

282. ψ,φ := formulas

283. (280) means if x is not free in ψ:

(i) from φ → ψ, it may be deduced ψ → (∀xφ) ;

(ii) from ψ → φ, it may be deduced (∃xφ) → ψ.



On the validity and tautology of formulas

284. [1, 2]

285. (θ is not valid) → (θP is not a tautology)

286. (θP is tautology) → (θ is a valid)

287. θ := formula in first-order logic

288. θP := formula in propositional logic

List of requirements for axioms and rules of
inference

289. [1, 2]

290. The following list is required for our axioms and rules of inference:

(i) There will be an algorithm that will decide, given a formula θ,
whether or not θ is a logical axiom.

(ii) There will be an algorithm that will decide, given a finite set of
formulas Γ and a formula θ, whether or not (Γ, θ) is a rule of
inference.

(iii) For each rule of inference (Γ, θ), Γ will be a finite set of formulas.

(iv) Each logical axiom will be valid.

(v) Our rules of inference will preserve truth. In other words, for
each rule of inference (Γ, θ), Γ |= θ.

291. The requirements in (290) provide the basis of the Soundness Theorem.

Logical Axioms: Valid

292. [1, 2]



293. Theorem: The logical axioms are valid.

Rule of Inference: Theorem

294. [1, 2]

295. Theorem:

(Γ, θ) := rule of inference → Γ |= θ

Soundness Theorem

296. [1, 2]

297.
Σ ⊢ φ → Σ |= φ

298. L := first-order language

299. Σ := set of L-formulas

300. In words, the Soundness Theorem (297) tells us that in any structure
A that makes all of the formulas of Σ true, φ is true as well.

301. If there is a deduction from Σ of φ, then Σ logically implies φ.

302. The purely syntactic notion of deduction is linked to the notions of
truth and logical implication.

303. The Soundness Theorem is explicitly trying to relate the syntactical
notion of deducibility (⊢) with the semantical notion of logical
implication (|=).

304. If there is a deduction of φ from Σ, then φ is true in any model of Σ.



When a variable is not free in a formula

305. [1, 2]

306.
x is not free in ψ → (φ → ψ) |= [(∃xφ) → ψ]

307. x := variable

308. ψ,φ := formulas

Variable Assignment Functions and Substitu-
tions

309. [1, 2]

310.
s′ = s[x|s(t)] → s(uxt ) = s′(u)

311. u, t := terms

312. x := variable

313. s : Vars → A

314. s := variable assignment function

315. s[x|s(t)] := x-modification of the assignment function s

316. uxt := u with x replaced by t

Term substitution in the x-modification of the
assignment function

317. [1, 2]



318.
A |= φx

t [s] ↔ A |= φ[s′]

319. L := first-order language

320. φ := formula

321. x := variable

322. t := term substitutable for x in φ

323. s : Vars → A

324. s := variable assignment function

325. s′ = s[x|s(t)]

326. s[x|s(t)] := x-modification of the assignment function s

Equality: Equivalence Relation

327. [1, 2]

328. Equality is an equivalence relation

(i) ⊢ x = x

(ii) ⊢ x = y → y = x

(iii) ⊢ (x = y ∧ y = z) → x = z

A set of formulas proves a formula if and only
if it proves the formula for all variables

329. [1, 2]

330.
Σ ⊢ θ ↔ Σ ⊢ ∀xθ



331. For a formula to be true in a structure, it must be satisfied in that
structure with every assignment function.

Adding/deleting a universal quantifier

332. [1, 2]

333.

Σ ⊢ θ → (Σ′ is formed by taking any σ ∈ Σ and
adding or deleting a universal quantifier
whose scope is the entire formula → Σ′ ⊢ θ)

334. If we know Σ ⊢ θ, we can assume that every element of Σ is a sentence:
By quoting (333) several times, we can replace each σ ∈ Σ with its
universal closure.

The Deduction Theorem

335. [1, 2]

336.
(Σ ∪ θ ⊢ φ) ↔ (Σ ⊢ (θ → φ))

337. θ := sentence

338. Σ := set of formulas

339. The Deduction Theorem (336) says that there is a deduction of φ

from the assumption θ if and only if there is a deduction of the impli-
cation θ → φ.

340. In (336), we omit the braces of Σ ∪ {θ} ⊢ φ.

341. deduction := formal equivalents of the mathematical proofs



Proofs by Contradiction

342. [1, 2]

343.
(Σ ⊢ η) ↔ (Σ ∪ (¬η) ⊢ [(∀x)x = x] ∧ ¬[(∀x)x = x])

344. η := sentence

Unary Relation Symbol

345. [1, 2]

346.
⊢ [(∀x)P (x)] → [(∃x)P (x)]

347. P := unary relation symbol

Binary Relation Symbol

348. [1, 2]

349.
(∀x)(∀y)P (x, y) ⊢ (∀y)(∀z)P (z, y)

350. P := binary relation symbol

Two unary relation symbols

351. [1, 2]

352.
⊢ [(∀x)(P (x)) ∧ (∀x)(Q(x))] → (∀x)[P (x) ∧Q(x)]

353. P,Q := unary relation symbols



Complete Deductive System

354. [1, 2]

355.
∀Σ ∀φ (Σ |= φ → Σ ⊢ φ) → (Λ,Γθ) := complete

356. Λ := collection of logical axioms

357. Γθ := collection of rules of inference

358. Σ := set of nonlogical axioms

359. L := first-order language

360. φ := L-formula

361. If φ is an L-formula that is true in every model of Σ, then there will
be a deduction from Σ to φ.

362. Our ability to prove φ depends on φ being true in every model of Σ.

(In)Consistent

363. [1, 2]

364.

∃(Σ ⊢ [(∀x)x = x] ∧ ¬[(∀x)x = x]) → Σ is inconsistent

365.
Σ is not inconsistent → Σ is consistent

366. L := first-order language

367. Σ := set of L-formulas

Σ proves a contradiction → Σ is inconsistent



368.
Σ is inconsistent → ∃(Σ ⊢ φ)

369. φ := L-formula

370. φ := [(∀x)x = x] ∧ ¬[(∀x)x = x]

371. φ is a contradictory sentence (⊥).

372. ⊥ is a sentence that is false in every language and is true in no struc-
ture.

Completeness Theorem

373. [1, 2]

374.
(Σ |= φ) → (Σ ⊢ φ)

375. L := first-order language

376. Σ := set of L-formulas

377. φ := L-formula

378. The Completeness Theorem finishes the link between deducibility
and logical implication.

Soundness + Completeness

379. [1, 2]

380.
(Σ |= φ) ↔ (Σ ⊢ φ)

381. L := first-order language



382. Σ := set of L-formulas

383. φ := L-formula

Compactness Theorem

384. [1, 2]

385.
(∃A : A |= Σ) ↔ (∀Σ0 ∃B : B |= Σ0)

386. Σ := set of axioms

387. (A |= Σ) := A is a model of Σ

388. Σ0 ⊆ Σ

389. Σ0 := finite subset of Σ

390. B := model of Σ0

391. The Compactness Theorem

(i) is one use of the link between deducibility and logical implication;

(ii) focus our attention on the finiteness of deductions;

(iii) says that

Σ is satisfiable ↔ Σ is finitely satisfiable.

(Finitely) Satisfiable

392. [1, 2]

393.
(∃A : A |= Σ) → (Σ is satisfiable)



394.
(∀Σ0 ∃B : B |= Σ0) → (Σ is finitely satisfiable)

395. Σ := set of axioms

396. (A |= Σ) := A is a model of Σ

397. Σ0 ⊆ Σ

398. Σ0 := finite subset of Σ

399. B := model of Σ0

Finite subset of a set of formulas

400. [1, 2]

401.
(Σ |= θ) ↔ (∃Σ0 ⊆ Σ : Σ0 |= θ)

402. L := first-order language

403. Σ := set of L-formulas

404. θ := L-formula

405. Σ0 := finite subset of Σ

First-order Sentences: Natural Numbers

406. [1, 2]

407. No set of first-order sentences can completely characterize the struc-
ture of the natural numbers.



Theory of a Structure

408. [1, 2]

409.
Th(A) = {φ | A |= φ}

410.
Th(A) = Th(B) → A ≡ B

411.
(A ≡ N) → (A is a model of arithmetic)

412. L := first-order language

413. A,B := L-structures

414. φ := L-formula

415. (A ≡ B) := A and B are elementarily equivalent

416. LNT = {0, S,+, ·, E,<}

417. LNT := language of number theory

418. N := LNT -structure

Substructure

419. [1, 2]

420. A ⊆ B if

(i) A ⊆ B

(ii) ∀c : cA = cB

(iii) ∀R : RA = RB ∩ An

(iv) ∀f : fA = fB ↾An



421. (420.iv) means

(∀f ) (∀a ∈ A) : fA(a) = fB(a).

422. L := first-order language

423. A,B := L-structures

424. (A ⊆ B) := A is a substructure of B

425. A := universe of A

426. B := universe of B

427. R := n-ary relation symbol

428. f := n-ary function symbol

429. fB ↾An := restriction of the function fB to the set An

430. A substructure of B is completely determined by its universe, and this
universe can be any nonempty subset of B that contains the constants
and is closed under every function f .

Elementary Substructure/Extension

431. [1, 2]

432.

(A ≺ B) := A is an elementary substructure of B
(equivalently, B is an elementary extension of A) if

∀s∀φ : A |= φ[s] ↔ B |= φ[s]

433. L := first-order language

434. A,B := L-structures



435. A ⊆ B

436. φ := L-formula

437. s : Vars → A

438. Vars := set of variables

439. A := universe of A

Truth in elementary substructure/extension

440. [1, 2]

441.
(A ≺ B) → (σ is true in A ↔ σ is true in B)

442. A,B := structures

443. σ := sentence

Condition for an elementary substructure

444. [1, 2]

445.

(A ⊆ B) ∧ (∀α ∀s : B |= ∃xα[s], ∃a : B |= α[s[x|a]]) → (A ≺ B)

446. A,B := structures

447. A ⊆ B

448. α := formula

449. s : Vars → A

450. A := universe of A



Hilbert Axiomatic System

451. [4, 5]

452. Hilbert-style calculus is performed in the Hilbert Axiomatic System,
composed by 9 axioms and 1 rule (Modus Ponens).

453. rule := inference rule of logic

Axioms of the Hilbert-style Calculus

454. [4, 5]

455. A,B,C := propositional variables or formulas

456. ⊢ A → (B → A)

457. ⊢ (A → (B → C)) → (A → B) → (A → C)

458. ⊢ (¬A → ¬B) → B → A

459. ⊢ A → (A ∨B)

460. ⊢ A → (B ∨ A)

461. ⊢ (A → B) → ((C → B) → (A ∨ C → B))

462. ⊢ (A ∧B) → A

463. ⊢ (A ∧B) → B

464. ⊢ A → (B → (A ∧B))

Inference Rule of the Hilbert-style Calculus

465. [4, 5]



466. Modus Ponens
⊢ P

⊢ P → Q

⊢ Q

Sequent Systems: Classical Logic

467. [3, 6]

468. LK := sequent system for classical logic

469. sequents := basic syntactic units (finite sequence of formulas)

470. αi, βi := formulas

471.
α1, ...,αm ⇒ β1, ..., βn

472. m,n ≥ 0

473. (471) is a sequent.

474. ⇒ is a sequent arrow.

475. α1, ...,αm := antecedents (conjunctive-like “assumptions”)

476. β1, ..., βn := succedents (disjunctive-like “conclusions”)

477. (471) means that (α1 ∧ ... ∧ αm) implies (β1 ∨ ... ∨ βn).

478.
α1, ...,αm ⇒

means (α1 ∧ ... ∧ αm) leads to a contradiction.

479.
⇒ β1, ..., βn

means (β1 ∨ ... ∨ βn) follows from no assumption.



480. The provability of a sequent is a syntactical approach.

481. The validity of a sequent is a semantical approach.

482. A sequent system contains initial sequents (axiom schemes in Hilbert-
style systems) and rules.

483. rule := one/two upper sequents and one lower sequent

484. The lower sequent can be inferred from the upper sequents.

485.
upper sequents
lower sequent

486. Γ,Π,∆, ... (capital Greek letters) := finite (possibly empty) sequences
of formulas



487. LK has three kinds of rules:

(i) (left/right) rules for ∨,∧,→,¬,

(ii) cut rule,

(iii) (left/right) structural rules.

488. The initial sequents are of the form α ⇒ α.

489. Rules for the logical connectives:

490.
α,Γ ⇒ Π β,Γ ⇒ Π

(∨L)
α ∨ β,Γ ⇒ Π

491.
Γ ⇒ Λ,α

(∨R1)
Γ ⇒ Λ,α ∨ β

Γ ⇒ Λ, β
(∨R2)

Γ ⇒ Λ,α ∨ β

492.
α,Γ ⇒ Π

(∧L1)
α ∧ β,Γ ⇒ Π

β,Γ ⇒ Π
(∧L2)

α ∧ β,Γ ⇒ Π

493.
Γ ⇒ Λ,α Γ ⇒ Λ, β

(∧R)
Γ ⇒ Λ,α ∧ β

494.
Γ ⇒ Λ,α β,∆ ⇒ Π

(→L)
α → β,Γ,∆ ⇒ Λ,Π

α,Γ ⇒ Λ, β
(→R)

Γ ⇒ Λ,α → β

495.
Γ ⇒ Λ,α

(¬L)
¬α,Γ ⇒ Λ

α,Γ ⇒ Λ
(¬R)

Γ ⇒ Λ,¬α

496. Cut rule:
Γ ⇒ Λ,α α,∆ ⇒ Π

(cut)
Γ,∆ ⇒ Λ,Π



497. Structural rules:

(i) exchange rules

Γ,α, β,∆ ⇒ Π
(eL)

Γ, β,α,∆ ⇒ Π

Γ ⇒ Π,α, β,Λ
(eR)

Γ ⇒ Π, β,α,Λ

(ii) contraction rules

α,α,Γ ⇒ Π
(cont L)

α,Γ ⇒ Π

Γ ⇒ Π,α,α
(cont R)

Γ ⇒ Π,α

(iii) weakening rules

Γ ⇒ Π
(wL)

α,Γ ⇒ Π

Γ ⇒ Π
(wR)

Γ ⇒ Π,α

498. The parenthesis are labels for the rules.

499. Note that
Γ ⇒ Λ,α β,∆ ⇒ Π

(→L)
α → β,Γ,∆ ⇒ Λ,Π

in the special case where

Γ = α, Λ = ∆ = ∅, Π = β,

the succedent is the Modus Ponens for the sequent arrow,

α ⇒ α β ⇒ β
(→L)

α → β,α ⇒ β
.

500. active formulas := formulas in the rules

501. cut formula := active formula of the cut rule

502. principal formula := formulas in lower sequents of the rules

503. side formulas := other formulas

504. left rules := (# ⇒)



505. right rules := (⇒ #)

506. When the upper sequent is provable, its lower sequent is also provable.

507. The structural rules control the order (exchange), duplication (con-
traction), and omission (weakening) of formulas in the cedents of a
given sequent.

508. The left contraction rule means that each formula occurrence in the
antecedents can be used more than once.

Proofs and Provability (in LK)

509. [3]

510.

P := proof (in LK) of (Γ ⇒ ∆),

:= a finite tree-like figure defined inductively as follows

(i) every sequent in P, except the initial sequents, is obtained by an
application of any one of the rules,

(ii) (Γ ⇒ ∆) := end sequent of P.

511. LK := sequent system for classical logic

512. (Γ ⇒ ∆) := sequent

513. end sequent := single lowest sequent

514.

(Γ ⇒ ∆ is provable in LK) ↔ (there is a proof of Γ ⇒ ∆)

515.
(α is provable in LK) ↔ (⇒ α is provable in LK)



516. α := formula

517. (⇒ α) := sequent

Rules for single formulas (in LK)

518. [3]

519. We will rewrite the rules of LK considering only single formulas in
the sequents, instead of sequences of formulas, assuming that some
sequences are empty.

520. LK := sequent system for classical logic

521. Rules for the logical connectives:

522.
α ⇒ π β ⇒ π

(∨L)
α ∨ β ⇒ π

523.
γ ⇒ α

(∨R1)
γ ⇒ α ∨ β

γ ⇒ β
(∨R2)

γ ⇒ α ∨ β

524.
α ⇒ π

(∧L1)
α ∧ β ⇒ π

β ⇒ π
(∧L2)

α ∧ β ⇒ π

525.
γ ⇒ α γ ⇒ β

(∧R)
γ ⇒ α ∧ β

526.
γ ⇒ α β ⇒ π

(→L)
α → β, γ ⇒ π

α, γ ⇒ β
(→R)

γ ⇒ α → β

527.
γ ⇒ λ,α

(¬L)
¬α, γ ⇒ λ

α, γ ⇒ λ
(¬R)

γ ⇒ λ,¬α



528. Cut rule:
γ ⇒ α α ⇒ π

(cut)
γ ⇒ π

529. Structural rules:

(i) exchange rules

α, β ⇒ π
(eL)

β,α ⇒ π

γ ⇒ α, β
(eR)

γ ⇒ β,α

(ii) contraction rules

α,α ⇒ π
(cont L)

α ⇒ π

γ ⇒ α,α
(cont R)

γ ⇒ α

(iii) weakening rules
γ ⇒ π

(wL)
α, γ ⇒ π

γ ⇒ π
(wR)

γ ⇒ π,α

Multisets of Formulas

530. [3]

531.

two multisets are distinguished from each other ↔
↔ the multiplicity of any member of them is different

532.

(∀Φ1,Φ2 ∈ S∗ : Φ1 ≃ Φ2) ↔
↔ (∀s ∈ S : multiplicity of s in Φ1 = multiplicity of s in Φ2)

533. multiplicity := number of occurrences of any formula

534. {α, β,α} = {β,α,α} ∕= {α, β}

535. S := set of formulas; S∗ := set of multisets



536. S∗ := all finite sequence of s ∈ S

537. ≃ := equivalence relation on S∗

538. S∗ = {Φi | Φi := multiset}

539. Φ1,Φ2 := multisets

540.

(M = S∗/ ≃) → (M := the set of all finite multisets of s ∈ S)

541. S∗/ ≃ := quotient set

Logical constant 0

542. [3]

543. 0 := falsum (falsehood) := arbitrary contradiction

544. (¬α) ≡ (α → 0)

545. (0 ⇒) := initial sequent meaning the falsum implies anything

Orthologic

546. [7, 8]

547. orthologic (minimal quantum logic) := logic associated with the
order relation of ortholattices

548.

O := ortholattice := bounded lattice with p⊥

549.
∀p ∈ O : p ∨ p⊥ = ⊤



550. bounded lattice := lattice with smallest (⊥) and biggest (⊤) ele-
ments

551. lattice := poset such that every two elements have an infimum and
a supremum

552. poset := partial ordered set

553. partial order := reflexive, transitive, and antisymmetric relation

554. p⊥ := orthocomplement (order-reversing involution p → ¬p)

555. In particular, ∀p, q ∈ O:

p ≤ q ⇒ q⊥ ≤ p⊥

¬p⊥ = p

¬⊥ = ⊤
¬(p ∨ q) = p⊥ ∧ q⊥

¬(p ∧ q) = p⊥ ∨ q⊥

p ∧ p⊥ = ⊥

556. The other De Morgan’s laws hold.

557. ∄ distributive law between (∧,∨)

558. In the sequent calculus style the axiomatization of orthologic is sound
and complete.

559. Axiomatization of Orthologic:

560.
ax

A ⊢ A
A ⊢ B B ⊢ C

cut
A ⊢ C

561.

∧1L
A ∧B ⊢ A

∧2L
A ∧B ⊢ B

C ⊢ A C ⊢ B ∧R
C ⊢ A ∧B

⊤R
C ⊢ ⊤



562.

∨1R
A ⊢ A ∨B

∨2R
B ⊢ A ∨B

A ⊢ C B ⊢ C ∨L
A ∨B ⊢ C

⊥L
⊥ ⊢ C

563.
A ⊢ B ¬

¬B ⊢ ¬A
¬¬R

A ⊢ ¬¬A
¬¬L

¬¬A ⊢ A
tnd

⊤ ⊢ A ∨ ¬A

564. (560) ∼≻ (pre) order relation

565. (561) ∼≻ bounded inf semi-lattice

566. (562) ∼≻ bounded sup semi-lattice

567. (563) ∼≻ ingredients related to the orthocomplement ¬A

568. (565) + (566) ∼≻ provides the structure of a bounded lattice

Intuitionistic Reasoning

569. [9]

570. ¬A is an abbreviation for A → ⊥, i.e.,

¬A ≡ (A → ⊥).

571. Conjecture: Nothing is a proof of ⊥ (falsity).

572. Many laws from classical logic are no longer valid due to the
constructive meaning of the intuitionistic connectives.

573. The validity of A ∨ ¬A means there is a method to solve all mathe-
matical problems.

574. There is a translation from classical formulas to intuitionistic
ones.



575. Classical propositional logic can be defined within the intuitionistic
logic.

576. →,∧,∨ are all independent.

577. In intuitionistic propositional logic, an infinite number of non-equivalent
formulas can be built from only one atomic formula P [10].

578. Due to the intuitionistic refinement, equivalent formulas in classical
propositional logic become no longer equivalent in intuitionistic propo-
sitional logic.

579. The intuitionistic logic has a richer language than the classical one.

580. Atomic formulas and connectives have a constructive interpretation.

Intuitionistic Propositional Logic: Syntax

581. [9]

582.
alphabet := consists of the following symbols:

(i) P1, P2, P3, ... := atomic formulas or propositional variables [inter-
preted as (atomic) propositions]

(ii) →,∧,∨,¬ := connectives

(iii) (, ) := brackets

583. Constructive interpretation of the connectives:

(i) (A → B) := one has a construction that transforms any proof of
A into a proof of B,

(ii) (A∧B) := one can construct a proof of A and one can construct
a proof of B



(iii) (A ∨ B) := one has an algorithm that yields a proof of A or a
proof of B

(iv) (¬A) := (A → ⊥)

(v) ⊥ := atomic formula (falsity)

584. A proof of ⊥ implies a proof of any formula.

585. Formulas

(i) (P := P1 ⊻ P2 ⊻ P3 ⊻ ...) → (P := atomic formula)

(ii) (A,B := formulas) → ((A → B), (A ∧ B), (A ∨ B), (¬A) :=

composite formulas)

586. ⊻ is the exclusive or.

Axiom Schema for Intuitionistic Propositional
Logic

587. [9]

588. There are ten axioms and one rule in the intuitionistic propositional
logic, which is obtained by replacing the axiom ¬¬A → A of classical
logic by ¬A → (A → B).

589. Axioms:

590. A → (B → A)

591. (A → B) → ((A → (B → C)) → (A → C))

592. A → (B → A ∧B)

593. A ∧B → A

594. A ∧B → B



595. A → A ∨B

596. B → A ∨B

597. (A → C) → ((B → C) → (A ∨B → C))

598. (A → B) → ((A → ¬B) → ¬A)

599. ¬A → (A → B)

600. Rule of inference: (Modus Ponens)

A,A → B ⊢ B.

Modal operators

601. [3]

602. □,♦ := (unary) modal operators

603. ♦ϕ ≡ ¬□¬ϕ

604. □ can be interpreted as necessarily.

605. ♦ can be interpreted as possibly.

606. ϕ := formula

Decision problem

607. [16]

608. In computability theory and computational complexity theory,
a decision problem is a problem that can be posed as a yes–no ques-
tion of the input values.

609. An example of a decision problem is deciding whether a given natural
number is prime.



610. A decision problem which can be solved by an algorithm is called
decidable.

611.

Undecidable

612. [15]

613. In computability theory and computational complexity theory, an
undecidable problem is a decision problem for which it is proved
to be impossible to construct an algorithm that always leads to a correct
yes-or-no answer.

614. The halting problem is an example: it can be proven that there is no
algorithm that correctly determines whether arbitrary programs even-
tually halt when run.

Word problem

615. [17]



616. In mathematics and computer science, a word problem for a set S

with respect to a system of finite encodings of its elements is the al-
gorithmic problem of deciding whether two given representatives rep-
resent the same element of the set.

617. The problem is commonly encountered in abstract algebra, where
given a presentation of an algebraic structure by generators and rela-
tors, the problem is to determine if two expressions represent the same
element; a prototypical example is the word problem for groups.

618. Less formally, the word problem in an algebra is: given a set of identi-
ties E, and two expressions x and y, is it possible to transform x into
y using the identities in E as rewriting rules in both directions?

619. While answering the question in (618) may not seem hard, the re-
markable (and deep) result that emerges, in many important cases, is
that the problem is undecidable.

620. Many, if not most all, undecidable problems in mathematics can be
posed as word problems.

621. List of undecidable problems
https://en.wikipedia.org/wiki/List_of_undecidable_problems

Natural Deduction in Heyting Semantics

622. [19, 20]

623. rules of natural deduction + Heyting Semantics ∼≻ special way of
constructing functions

624. A,B,Bi := formulas

625. formula A := set of its possible deductions; e.g., if A = {α, β} then
both α and β prove A

https://en.wikipedia.org/wiki/List_of_undecidable_problems


626. hypotheses Bi ∈ A

627. (B1, ..., Bn ⊢ A) ≡ t[x1, ..., xn] : B1 × ...× Bn → A

628. xi := variables

629. Two occurrences of the same formula Bi in the same parcel of hypothe-
ses correspond to the same variable.

630. The rules

(i) Hypothesis: A

(ii) Introductions:

A B
∧I

A ∧B

[A]
...
B

→ Ix
A → B

A
∀I

∀x.A
A[a/x]

∃I
∃x.A

A
∨1I

A ∨B

B
∨2I

A ∨B

[A]
...
⊥

¬I
¬A

[A]
...
B

[B]
...
A

↔ I
A ↔ B

(iii) Eliminations:

A ∧B
∧1E

A

A ∧B
∧2E

B

A → B A
→ E

B

∃x.A

[A]
...
B

∃E
B

∀x.A
∀E

A[a/x]



A ∨B

[A]
...
C

[B]
...
C

∨E
C

¬A A
¬E

⊥

A ↔ B A
↔ E1

B

A ↔ B B
↔ E2

A

(iv) Absurdity:
[¬A]

...
⊥

⊥
A

⊥
⊥E

B

631. In ∃E , x cannot be free in B and in any hypothesis that has not
being canceled, except in A, in the deduction of B.

632. In ∀I, x cannot be free in any hypothesis that has not being canceled
in the deduction of A.

633. In (630), a is free for x in A.

634. The left deduction of (630.iv) is called reductio ad absurdum.

635. The fingerprint of classical logic is the reductio ad absurdum.

636. Interpretation of the rules

(i) ∃!B1 : B1 ⊢ A ⇒ x ≡ (B1 ⊢ A) ⇒ x ∈ B1 ∈ A

(ii) (u[x1, ..., xn] : A) ∧ (v[x1, ..., xn] : B) ⇒
⇒ 〈u[x1, ..., xn], v[x1, ..., xn]〉 : A ∧B

(note that u and v have been made to depend on the same vari-
ables; their choices are correlated)



...

u : A

...

v : B

...
u : A

...
v : B

〈u, v〉 : A ∧B

(iii) t[x1, ..., xn] : A ∧B ⇒ π1t[x1, ..., xn] : A

t := proof of a conjunction
π1t := first projection
π2t : B

π2t := second projection

...

t : A ∧B

...
t : A ∧B

π1t : A

...
t : A ∧B

π2t : B

The following equations are the essence of the correspondence
between logic and computer science :

π1〈u, v〉 = u; π2〈u, v〉 = v; 〈π1t, π2t〉 = t.

...
u : A

...
v : B

〈u, v〉 : A ∧B

u : A

...

u : A

...
u : A

...
v : B

〈u, v〉 : A ∧B

π2〈u, v〉 : A

...

v : B



(iv) λx.v is a function from A to B with v[a, x1, ..., xn] ∈ V , a ∈ A

(in λx.v[x, x1, ..., xn], x is bound)
(note that binding corresponds to discharge)

[x : A]
...

v : B

λx.v : A → B

(v) (t[x1, ..., xn] : A → B) ∧ (u[x1, ..., xn] : A) ⇒
⇒ t[x1, ..., xn]u[x1, ..., xn] : B

t : A → B for fixed values of x1, ..., xn
u ∈ A; t(u) ∈ B

t : A → B u : A

tu : B

We have:

(λx.v)u = v[u/x],

λx.tx = t (when x is not free in t).

[x : A]
...

v : B

λx.v : A → B

t : A → B u : A

v : B

[x : A]
...

v[u/x] : B

637. In natural deduction, a proof is normal if it does not contain any
sequence of an introduction and an elimination rule.
(menemonic rule: Nnie)

Lambda Calculus: Types

638. [19]



639. In Heyting’s approach, formulas become types.

640. The only types are the following:

(i) T1, ..., Tn := atomic types := types;

(ii) (U, V := types) ⇒ (U × V, U → V := types).

Lambda Calculus: Terms

641. [19]

642. Proofs become terms.

643. mnemonic rule: (fty.pte) ≡ (formulas ∼≻ types, proofs ∼≻ terms)

644. term of type A := proof of a formula A

645. xT0 , ..., x
T
n , ... := terms of type T

646. (u, v := terms of types U and V ) → (〈u, v〉 := term of type U × V )

647. (t := term of type U × V ) → (π1t, π2t := terms of types U and V ,
respectively)

648. ((v := term of type V ) ∧ (xUn := variable of type U)) →
→ (λxUn .v := term of type U → V )

649.
[xUn ∈ U ]

...
v ∈ V

λxUn .v ∈ U → V

650. (t, u := terms of type U → V and U , respectively) →
→ (t u := term of type V )



Lambda Calculus: Denotational significance

651. [19]

652. (object of type U → V ) ≡ (function f : U → V )

653. (object of type U × V ) ≡ (ordered pair 〈u, v〉, u ∈ U and v ∈ V )

654. xT := variable of type T

655. 〈u, v〉 := ordered pair

656. π1t := first projection of t

657. π2t := second projection of t

658. λxU .v : U → V such that λxU .v[u] = v[u/x] with xU ≡ u

659. u := object of type U

660. tu := function t applied to the argument u

661. The following are primary equations:

π1〈u, v〉 = u,

π2〈u, v〉 = v,

(λxU .v)u = v[u/x].

662. The following are secondary equations:

〈π1t, π2t〉 = t,

λxU .tx = t (x not free in t).

System of equations in lambda calculus:
Consistent and decidable

663. [19]



664. Theorem. The system given by (661) and (662) is consistent and
decidable.

665. Consistency means that x = y, where x and y are distinct vari-
ables, cannot be proved.

Conversion

666. [19]

667. t, t′ := terms

668. In natural deduction, a proof is normal if it does not contain any
sequence of an introduction and an elimination rule.
(menemonic rule: Nnie)

669. (λxU .v)u ∼≻ introduction

670. {π1〈u, v〉, π2〈u, v〉} ∼≻ elimination

671. none subterms are of the form (λxU .v)u or π1〈u, v〉 or π2〈u, v〉 ⇒
⇒ term := normal form

672. t converts to t′ if either:

(i) t = π1〈u, v〉, t′ = u; or

(ii) t = π2〈u, v〉, t′ = v; or

(iii) t = (λxU .v)u, t′ = v[u/x].

[xU ∈ U ]
...

v ∈ V

λxU .v ∈ U → V

673. t := redex

674. t′ := contractum



675. t and t′ are of the same type

676. ∃ sequence u = t0, t1, ..., tn−1, tn = v : for i = 0, 1, ..., n− 1,
ti+1 is obtained from ti by replacing a redex by its contractum ⇒
⇒ u ⇝ v

677. (u ⇝ v) := u reduces to v

678. ⇝ is reflexive and transitive.

679. ((t ⇝ u) ∧ (u := normal)) ≡ (∃!u : u := normal form for t)

680. (t := normal) ↔ t is in head normal form (λx1x2...xn.y u1u2...um)

(where y = xi ⊻ y ∕= xi, uj are normal)

681. A term converts in one step, reduces in many.

682. Conversion can be identified as rewriting, the left member being
rewritten to the right one.

The Curry-Howard Isomorphism

683. [18–20]

684. This is an isomorphism between proofs and functional terms.

685. variable xAi ≡ deduction A (A in parcel i)

686. Recall the following rules for natural deduction

(i) Hypothesis: x : A

(ii) Introductions:

x : A y : B
∧I

xy : A ∧B

[x : A]
...

y : B
→ Ix

λx.xy : A → B

x : A
∀I

∀ξ.A
A[a/ξ]

∃I
∃ξ.A



x : A
∨1I

A ∨B

y : B
∨2I

A ∨B

[x : A]
...
⊥

¬I
¬A

[A]
...
B

[B]
...
A

↔ I
A ↔ B

(iii) Eliminations:

xy : A ∧B
∧1E

x : A

xy : A ∧B
∧2E

y : B

λx.xy : A → B x : A
→ E

y : B

∃x.A

[A]
...
B

∃E
B

∀ξ.A
∀E

A[a/ξ]

A ∨B

[x : A]
...

z : C

[y : B]
...

z : C
∨E

z : C

¬A A
¬E

⊥

A ↔ B A
↔ E1

B

A ↔ B B
↔ E2

A

(iv) Absurdity:
[¬A]

...
⊥

⊥
x : A

687.
...

u : A

...

v : B

...
u : A

...
v : B

∧I
〈u, v〉 : A ∧B



688.
...

t : A ∧B

...
t : A ∧B

∧1E
π1t : A

...
t : A ∧B

∧2E
π2t : B

689. if the deleted hypotheses form parcel i

[xi : A]...
v : B

→ Ixi

λxAi .v : A → B

690. term tu
t : A → B u : A

→ E
tu : B

691. Conversion, normality, and reduction correspond perfectly on both
sides of the isomorphism.
(mnemonic: cnr.iso)

The Normalization Theorem

692. [19]

693. typed λ-calculus ∼≻ behaves well computationally

694. Normalization Theorem ∼≻ existence (normal form)

695. Church-Rosser property ∼≻ uniqueness (normal form)

696. mnemonic: NeCRu

697. (694) ∼≻ two forms:



(i) weak ∼≻ ∃ terminating strategy (normalization)

(ii) strong ∼≻ all possible strategies (normalization) terminate

The lambda-calculus: Introduction

698. [21]

699. λ-calculus ∼≻ collection of several formal systems

700. Example:

701. f (x) = x− y; g(y) = x− y

702. f : x → x− y; g : y → x− y

703. f = λx.x− y; g = λy.x− y

704. f (0) = 0− y; f (1) = 1− y

705. (λx.x− y)(0) = 0− y; (λx.x− y)(1) = 1− y

The lambda-calculus: Formal system

706. [21]

707. λ-term := atom ⊻ application ⊻ abstraction

(a) vi, ci := λ-terms (atoms)

(b) (M,N := λ-terms) → ((MN) := λ-term (application))

(c) (M := λ-term ∧ x := variable) →
→ ((λx.M) := λ-term (abstraction))

708. vi := variables

709. ci := atomic constants



710. x, y, z := distinct variables ⇒ M = yz ⇒ (λx.M) = (λx.(yz)) :=

vacuous abstraction (x does not occur in M) := constant functions

711. λ and λx are not terms.

712. M,N, P,Q, ... := λ-terms

713. x, y, z, u, v, w, ... := variables

714. M ≡ N means syntactic identity, i.e., M is exactly the same term as
N .

715. Application: MNPQ ≡ ((((MN)P )Q)

(association from left to right)

716. λx.PQ ≡ (λx.(PQ))

717. Abstraction: λx1x2...xn.M ≡ (λx1.(λx2.(...(λxn.M))))

(from right to left)

718. menemonic: app.lr, abs.rl

719. (MN ≡ PQ) → (M ≡ P ∧ N ≡ Q)

720. (λx.M ≡ λy.P ) → (x ≡ y ∧ M ≡ P )

721. k = 0 in P ≡ MN1...Nk (k ≥ 0) means P ≡ M .

722. n = 0 in λx1...xn.PQ means PQ.

723. λ := (abbreviated as) λ-calculus in general

724. iff := if and only if

The lambda-calculus: Informal interpretation

725. [21]

726. (M := function/operator) ⇒ (MN := application of M to N)



727. (λx.M)(N) := operator/function substituting N for x in M

728. xy := application

729. λx.x(xy) := the operation of applying a function twice to y

730. (λx.x(xy))(N) = N(Ny) holds for all terms N .

731. λx.y := constant function (value y for all arguments)

732. (λx.y)N = y

Lambda-terms: Length, occurrence, scope, free
and bound variables, substitution

733. [21]

734.
lgh(M) := total number of occurences of ci, vi in M

(a) lgh(a) = 1

(b) lgh(MN) = lgh(M) + lgh(N)

(c) lgh(λx.M) = 1 + lgh(M)

735. lgh(M) := length of M

736. M,N, P,Q := λ-terms

737. ci, vi, a, x := λ-terms (atoms)

738. x, y, z, u, v, vi := variables

739. induction on M ≡ induction on lgh(M)

740. e.g., M ≡ xyz(λxy.uv) → lgh(M) = 7



741.

P occurs in Q ≡ P is a subterm of Q ≡ Q contains P

(relation defined by induction on Q)

(a) P occurs in P

(b) (P occurs in M) ∨ (P occurs in N) → (P occurs in MN)

(c) (P occurs in M) ∨ (P ≡ x) → (P occurs in λx.M)

742. In z(λy.(xyz)) there are two occurences of z and y, and one occurrence
of x.

743. In λx.M , M is the scope of λx.

744. (i) (x ∈ M in λx.M) → (x is bound)

(ii) the x in λx is bound and binding

(iii) x is free otherwise

745. In xλx.x, the left x is a free variable and the right x is a bound variable.

746. FV(P ) := set of all free variables of P

747. closed term := a term with no free variables

748.
[N/x]M := substitution of N, ∀xf ∈ M

749. xf := free occurrence of x

750. The definition of substitution is by induction on M :
(let x ∕≡ y and z ∕∈ FV(NP ))

(a) [N/x]x ≡ N

(b) [N/x]a ≡ a, ∀a ∕≡ x

(c) [N/x](PQ) ≡ ([N/x]P [N/x]Q)

(d) [N/x](λx.P ) ≡ λx.P



(e) x ∕∈ FV(P ) → [N/x](λy.P ) ≡ λy.P

(f) (x ∈ FV(P ) ∧ y ∕∈ FV(N)) → [N/x](λy.P ) ≡ λy.[N/x]P

(g) (x ∈ FV(P ) ∧ y ∈ FV(N)) → [N/x](λy.P ) ≡ λz.[N/x][z/y]P

751. (a) [x/x]M ≡ M

(b) x ∕∈ FV(M) → [N/x]M ≡ M

(c) x ∈ FV(M) → FV([N/x]M) = FV(N) ∪ (FV(M)− {x})
(d) lgh([y/x]M) = lgh(M)

752. Let x, y, v be distinct, let no variable bound in M be free in vPQ

(a) v ∕∈ FV(M) → [P/v][v/x]M ≡ [P/x]M

(b) v ∕∈ FV(M) → [x/v][v/x]M ≡ M

(c) y ∕∈ FV(P ) → [P/x][Q/y]M ≡ [([P/x]Q)/y][P/x]M

(d) y ∕∈ FV(P ) ∧ x ∕∈ FV(Q) → [P/x][Q/y]M ≡ [Q/y][P/x]M

(e) [P/x][Q/x]M ≡ [([P/x]Q)/x]M

Lambda-terms: Change of bound variables,
congruence

753. [21]

754. P contains an occurrence of λx.M .

755. y ∕∈ FV(M)

756.

(λx.M ≡ λy.[y/x]M) := change of bound variable
(α-conversion in P )

757. (P ≡α Q) ↔ P can be converted to Q by a finite (or empty) number
of changes (756)



758. (P ≡α Q) := P is congruent to Q := P α-converts to Q

759.
P ≡α Q → FV(P ) = FV(Q)

760. ≡α is an equivalence relation.

761. Removing the condition on bounded variables in M , (752) also holds
for ≡α.

762.
(M ≡α M ′) ∧ (N ≡α N ′) → [N/x]M ≡α [N ′/x]M ′

763. (762) shows that substitution is well-behaved regarding ≡α.

764. We can think of ≡ and ≡α as being identical.

Lambda-terms: Simultaneous substitution

765. [21]

766. See (750).

767.

[N1/x1, ..., Nn/xn]M := simultaneous substitution for n ≥ 2

768. [N1/x1, ..., Nn/xn]M can be different from [N1/x1]...[Nn/xn]M .

Lambda-terms: β-reduction

769. [21]

770.
(λx.M)N := β-redex of [N/x]M



771.
[N/x]M := contractum of (λx.M)N

772. In this context ⊇ means contains an occurrence of a λ-term.

773.

(P ⊇ (λx.M)N) ∧ P ′ ≡ [[N/x]M ]P/(λx.M)N) ↔ P ⊲1β P
′

774. (P ⊲1β P
′) := P β-contracts to P ′ (contraction of the redex-occurrence

in P )

775. (P ⊲β P
′) := P β-reduces to Q

iff P can be changed to Q by a finite number of β-contractions and
changes of bound variables

776. β-reduction not necessarily simplifies a term; it terminates when there
are no redexes.

Lambda-terms: β-normal form

777. [21]

778. β-normal form (β-nf) := a term with no β-redexes

779. β-nf (or λβ-nf) := class of all β-normal forms

780. P ⊲1β (Q in β-nf ) → Q := β-normal form of P

781. P,Q := terms

782. A term can have a normal form and also an infinite reduction.

783. Ω ≡ (λx.xx)(λx.xx)

784. Ω is not a normal form (it always reduces to itself)

785. Ω := minimal (it cannot be reduced to any different term)



786. The α-steps (756) are allowed in β-reductions in order to change bound
variables at the beginning of the reduction and therefore avoid having
to change variables while substituting.

787. lambda-calculus ∼ programming language ∼≻ two β-reductions reach
the same normal form ∼≻ the end-result is independent of the path
∼≻ Church-Rosser theorem: the normal form of a term is unique

788. ⊲β, FV, and ⊇: (nothing new can be introduced during a reduction)

P ⊲β Q → FV(P ) ⊇ FV(Q)

789. Substitution and ⊲β: (⊲β is preserved by substitution)

(P ⊲β P
′) ∧ (Q ⊲β Q

′) → [P/x]Q ⊲β [P
′/x]Q′

790. Church-Rosser theorem for ⊲β

(P ⊲β M) ∧ (P ⊲β N) → ∃T : M(⊲βT ) ∧ (N ⊲β T )

P

M N

∃T

791. The property in (790) is called confluence.

792. The theorem (790) states that β-reduction is confluent.

793. If P has a β-normal form, it is unique modulo ≡α

(P ⊲β M) ∧ (P ⊲β N) → M ≡α N

794. β-nf is the smallest class such that:

(a) ∀a (a ∈ β-nf)



(b) M1, ...,Mn ∈ β-nf → ∀a : aM1...Mn ∈ β-nf

(c) M ∈ β-nf → λx.M ∈ β-nf

795. a := atoms

796.

(M ≡ aM1...Mn) ∧ (M ⊲β N) ∧ (Mi ⊲β Ni for i = 1, ...n) →
→ N ≡ aN1...Nn

Lambda-terms: β-equality

797. [21]

798.

P =β Q ↔ ∃P0, ..., Pn (n ≥ 0) :

(∀i ≤ n− 1)(Pi ⊲1β Pi+1 ∨ Pi+1 ⊲1β Pi ∨ Pi ≡α Pi+1),

P0 ≡ P, Pn ≡ Q

799. (P =β Q) := P is β-equal (β-convertible)

800. (P =β Q) means Q can be obtained from P by a finite (or empty)
(reversed) β-contractions and changes of variables.

801.
(P =β Q) ∧ (P ≡α P ′) ∧ (Q ≡α Q′) → P ′ =β Q′

802. Substitution lemma for β-equality

(M =β M ′) ∧ (N =β N ′) → [N/x]M =β [N ′/x]M ′

803. Church-Rosser theorem for =β

P =β Q → ∃T : (M ⊲β T ) ∧ (N ⊲β T )



• • Pn

P • • Pn+1

Tn

∃T
Two β-convertible terms can both be reduced to the same term.

804. β-convertibility is called =.

805.
(P =β Q) ∧ (Q := β-normal form) → P ⊲β Q

806.
(P =β Q) → (P,Q := same β-nf) ⊻ (P,Q := no β-nf)

807.
(P,Q ∈ β-nf) ∧ (P =β Q) → P ≡α Q

808. the relation β-nf is non-trivial ∼≻ not all terms are β-convertible to
each other

809. e.g., since λxy.xy ∕≡α λxy.yx then λxy.xy ∕=β λxy.yx

810. Uniqueness of normal form: A term is β-equal to at most one β-
normal form, modulo changes of bound variables.

811.

(a, b := atoms) ∧ (aM1...Mm =β bN1...Nn) →
→ (a ≡ b) ∧ (m = n) ∧ (Mi =β Ni, ∀i ≤ m)

812. terms without normal forms ∼≻ computed for ever (without reaching
a result)



813. λI-terms

(a) vi, ci := λI-terms (atoms)

(b) (M,N := λI-terms) → ((MN) := λ-term (application))

(c) (M := λI-term ∧ x := free variable in M) →
→ ((λx.M) := λI-term (abstraction))

814. (λI-term := has a normal form) → (all its subterms have a normal
form)

Simple typing, Church-style

815. [21]

816. mathematics ∼≻ definition + function ∼≻ statement of the kind (in-
puts + outputs)

817. λ-calculus ∼≻ modify λ∼≻ attach expressions to terms (called types)
∼≻ like labels (to denote input/output sets)

818. two approaches

(i) Church-style (explicit or rigid)

(ii) Curry-style (implicit)

819. Church-style ∼≻ term’s type is a built-in part of the term

820. atomic types := finite/infinite sequence of symbols

821. Simple types

(a) (∀a : a := atomic type) → (a := type)

(b) (σ, τ := types) → ((σ → τ ) := function type)

822. atomic type ∼≻ denotes a set



823. N := atomic type for the set of natural numbers

824. (σ → τ ) := set of functions from σ (domain) to τ (range)

825. (N → (N → N)) := set of functions from numbers to functions

826. (ρ → σ → τ ) ≡ (ρ → (σ → τ ))

(association from right to left)

Typed λ-calculus

827. [21]

828. x := untyped variable

829. τ, σ := types

830. ∃∞ := there is an infinite number

831. Typed variables

xτ := variable of type τ

(a) (consistency condition) ∄x : (∃xτ∃xσ) ∧ (τ ∕≡ σ)

(b) ∀τ ∃∞xτi

832. xτ ∈ τ

833. xN := arbitrary number

834. xN→N := function

835. xτ := typed variables

836. cτ := typed atomic constants

837. Simply typed λ-terms

(a) xτ , cτ := typed λ-terms



(b) (Mσ→τ , Nσ := typed λ-terms) → (Mσ→τNσ)τ := typed λ-term
of type τ

(c) (xσ := typed variable) ∧ (M τ := typed λ-term) ⇒
⇒ (λxσ.M τ )σ→τ := typed λ-term of type σ → τ

838. M τ := typed term

839. M τ ∈ τ

840. (Mσ→τ := function φ from σ to τ ) ∧ (Nσ := member a of σ) ⇒
⇒ (Mσ→τNσ)τ := φ(a) ∈ τ

841. e.g., 0
N (atom) := zero; σN→N := successor function

The Sequent Calculus LJ

842. [22]

843. LJ := intuitionistic logic

844. The following notation is an abbreviation for an inductive definition

A ::= X | A → A.

845. ::= is a definition by induction.

846. Note that in (844), at the same time that the inductive definition is
given, it is also said that the propositional variable X and the formula
A will be used to denote elements of the set being defined.

847. (844) := grammar for a version of LJ (the implication is the sole con-
nective)

848. X ∈ VF := infinite set of propositional variable names

849. A,B,C := formulas



850. named formula := pair (formula, name)

851. Γ := set of named formulas

852. (Γ ⊢ A) := sequent of LJ

853. (A,A’s name) ∕∈ Γ → ((Γ, A) ≡ (Γ ∪ {A}))

854. Irrelevant formulas in axioms are admitted.

855. Rules of LJ:

Ax
Γ, A ⊢ A

Γ, A,A ⊢ B
Cont

Γ, A ⊢ B

Γ ⊢ A Γ, B ⊢ C
IL

Γ, A → B ⊢ C

Γ, A ⊢ B
IR

Γ ⊢ A → B

Γ ⊢ A Γ, A ⊢ B
Cut

Γ ⊢ B

The Sequent Calculus LJT

856. [22, 23]

857. (Γ;⊢ A), (Γ;A ⊢ A) := sequents of LJT

858. Γ := set of named formulas

859. stoup := the special place between ; and ⊢

860. ∃≤1 formula in the stoup.

861. Rules of LJT:

Ax
Γ;A ⊢ A

Γ, A;A ⊢ B
Cont

Γ, A;⊢ B

Γ;⊢ A Γ;B ⊢ C
IL

Γ;A → B ⊢ C

Γ, A;⊢ B
IR

Γ;⊢ A → B



862. Head-cut rule: (in the stoup)
Γ;Π ⊢ A Γ;A ⊢ B

CH

Γ;Π ⊢ B

863. Mid-cut rule: (not in the stoup)
Γ;⊢ A Γ, A;Π ⊢ B

CM

Γ;Π ⊢ B

864. X := formula

865. (Π = ∅) ⊻ (∃!X ∈ Π)

Translation of proofs from LJ to LJT

866. [22, 23]

867. Irrelevant formulas in axioms are admitted.

868. In the following, ⇝ means translation from LJ to LJT.

869.
Ax

Γ, A ⊢ A ⇝
Ax

Γ, A;A ⊢ A
Cont

Γ, A;⊢ A

870. (A → B) ∈ Γ

...
Γ ⊢ A

...
Γ, B ⊢ C

IL
Γ ⊢ C

⇝

...
Γ;⊢ A

Ax
Γ;B ⊢ B

IL
Γ;A → B ⊢ B

Cont
Γ;⊢ B

...
Γ, B;⊢ C

CM

Γ;⊢ C

871.
...

Γ, A ⊢ B
IR

Γ ⊢ A → B

⇝
...

Γ, A;⊢ B
IR

Γ;⊢ A → B



872.
...

Γ ⊢ A

...
Γ, A ⊢ B

Cut
Γ ⊢ B

⇝
...

Γ;⊢ A

...
Γ, A;⊢ B

CM

Γ;⊢ B



Proofs in Natural Deduction

873. [19, 20]

874. Recall the following rules for natural deduction

(i) Hypothesis: A

(ii) Introductions:

A B
∧I

A ∧B

[A]
...
B

→ Ix
A → B

A
∀I

∀x.A
A[a/x]

∃I
∃x.A

A
∨1I

A ∨B

B
∨2I

A ∨B

[A]
...
⊥

¬I
¬A

[A]
...
B

[B]
...
A

↔ I
A ↔ B

(iii) Eliminations:

A ∧B
∧1E

A

A ∧B
∧2E

B

A → B A
→ E

B

∃x.A

[A]
...
B

∃E
B

∀x.A
∀E

A[a/x]

A ∨B

[A]
...
C

[B]
...
C

∨E
C

¬A A
¬E

⊥



A ↔ B A
↔ E1

B

A ↔ B B
↔ E2

A

(iv) Absurdity:
[¬A]

...
⊥

⊥
A

875. Show that A → (B → C) ⊢ B → (A → C).

876. Proof in natural deduction

A → (B → C) [A]x
→ E

B → C [B]y
→ E

C
→ Ix

A → C
→ Iy

B → (A → C)

877. Proof in simply typed λ-calculus
z : α → (β → γ), x : α, y : β ⊢ z : α → (β → γ) z : α → (β → γ), x : α, y : β ⊢ x : α

→ E
z : α → (β → γ), x : α, y : β ⊢ zx : β → γ z : α → (β → γ), x : α, y : β ⊢ y : β

→ E
z : α → (β → γ), x : α, y : β ⊢ (zx)y : γ

→ Ix
z : α → (β → γ), y : β ⊢ λx.(zx)y : α → γ

→ Iy
z : α → (β → γ) ⊢ λy.λx.(zx)y : β → (α → γ)

878. Proof in the natural deduction with λ-terms

z : A → (B → C) [x : A]
→ E

zx : B → C [y : B]
→ E

(zx)y : C
→ Ix

λx.(zx)y : A → C
→ Iy

λy.λx.(zx)y : B → (A → C)



879.
t = λy.λx.(zx)y = λyx.zxy

880. Derive Pierce’s law: ((A → B) → A) → A.

881. Proof in natural deduction

882.

[¬A]v
[(A → B) → A]w

[¬A]v [A]u
¬E

⊥
⊥E

B
→ Iu

A → B
→ E

A
¬E

⊥
red. abs. v

A
→ Iw

((A → B) → A) → A



883. Show that ∀x(A → B) → (∃xA → ∃xB).

884. Proof in natural deduction

885.

[∃xA]v

[∀x(A → B)]u
∀E

A → B [A]
→ E

B
∃I

∃xB
∃E

∃xB
→ Iv

∃xA → ∃xB
→ Iu

∀x(A → B) → (∃xA → ∃xB)

886. Show that ⊢ (A → (B → C)) → (A → B) → (A → C).

887. Proof in natural deduction

888.
[A → (B → C)]z [A]x

→ E
B → C

[A → B]y [A]x
→ E

B
→ E

C
→ Ix

A → C
→ Iy

(A → B) → (A → C)
→ Iz

(A → (B → C)) → ((A → B) → (A → C))



Proof of sequents in LK

889. [3, 28]

890. Rules for the logical connectives:

891.
α,Γ ⇒ Π β,Γ ⇒ Π

(∨L)
α ∨ β,Γ ⇒ Π

892.
Γ ⇒ Λ,α

(∨R1)
Γ ⇒ Λ,α ∨ β

Γ ⇒ Λ, β
(∨R2)

Γ ⇒ Λ,α ∨ β

893.
α,Γ ⇒ Π

(∧L1)
α ∧ β,Γ ⇒ Π

β,Γ ⇒ Π
(∧L2)

α ∧ β,Γ ⇒ Π

894.
Γ ⇒ Λ,α Γ ⇒ Λ, β

(∧R)
Γ ⇒ Λ,α ∧ β

895.
Γ ⇒ Λ,α β,∆ ⇒ Π

(→L)
α → β,Γ,∆ ⇒ Λ,Π

α,Γ ⇒ Λ, β
(→R)

Γ ⇒ Λ,α → β

896.
Γ ⇒ Λ,α

(¬L)
¬α,Γ ⇒ Λ

α,Γ ⇒ Λ
(¬R)

Γ ⇒ Λ,¬α

897. Cut rule:
Γ ⇒ Λ,α α,∆ ⇒ Π

(cut)
Γ,∆ ⇒ Λ,Π



898. Structural rules:

(i) exchange rules

Γ,α, β,∆ ⇒ Π
(eL)

Γ, β,α,∆ ⇒ Π

Γ ⇒ Π,α, β,Λ
(eR)

Γ ⇒ Π, β,α,Λ

(ii) contraction rules

α,α,Γ ⇒ Π
(cont L)

α,Γ ⇒ Π

Γ ⇒ Π,α,α
(cont R)

Γ ⇒ Π,α

(iii) weakening rules

Γ ⇒ Π
(wL)

α,Γ ⇒ Π

Γ ⇒ Π
(wR)

Γ ⇒ Π,α

899. Prove the following sequent in LK

⇒ A → (B → A).

900. Proof
A ⇒ A

(wL)
B,A ⇒ A

(→R)
A ⇒ B → A

(→R)
⇒ A → (B → A)

901. Prove the following sequent in LK

A → (B → C) ⇒ (A → B) → (A → C).



902. Proof

A ⇒ A

A ⇒ A
(wL)

B,A ⇒ A
(→L)

A → B,A,A ⇒ A
(cont L)

A → B,A ⇒ A

A ⇒ A B ⇒ B
(→L)

A → B,A ⇒ B C ⇒ C
(→L)

B → C,A → B,A ⇒ C
(→L)

A → (B → C), A → B,A,A → B,A ⇒ C
(eL)

A → (B → C), A → B,A → B,A,A ⇒ C
(cont L)

A → (B → C), A → B,A ⇒ C
(→R)

A → (B → C), A → B ⇒ A → C
(→R)

A → (B → C) ⇒ (A → B) → (A → C)

903. Prove the following sequent in LK

⇒ A ∨ ¬A.

904. Proof
A ⇒ A

(∨R)
A ⇒ A ∨ ¬A

(¬R)
⇒ A ∨ ¬A,¬A

(∨R)
⇒ A ∨ ¬A,A ∨ ¬A

(cont R)
⇒ A ∨ ¬A

905. Proof
A ⇒ A

(¬R)
⇒ A,¬A

(∨R)
⇒ A ∨ ¬A,A

(∨R)
⇒ A ∨ ¬A,A ∨ ¬A

(cont R)
⇒ A ∨ ¬A



906. Prove the following sequent in LK

¬(A ∧B) ⇒ ¬A ∨ ¬B.

907. Proof
A ⇒ A

(wL,eL)
A,B ⇒ A

B ⇒ B
(wL)

A,B ⇒ B
(∧R)

A,B ⇒ A ∧B
(¬L,¬R,¬R,eR)

¬(A ∧B) ⇒ ¬A,¬B
(∨R,∨R,cont R)

¬(A ∧B) ⇒ ¬A ∨ ¬B

908. Prove the following sequent in LK

(A → B) → A ⇒ A.

909. Proof
A ⇒ A

(wR)
A ⇒ A,B

(→R)
⇒ A,A → B A ⇒ A

(→L)
(A → B) → A ⇒ A,A

(cont R)
(A → B) → A ⇒ A

910. Prove the following sequent in LK

A → (B → C) ⇒ B → (A → C).

911. Proof

A ⇒ A

B ⇒ B C ⇒ C
(→L)

B → C,B ⇒ C
(→L)

A → (B → C), A,B ⇒ C
(eL,→R)

A → (B → C), B ⇒ A → C
(eL,→R)

A → (B → C) ⇒ B → (A → C)



912. Let Di [S] be a proof tree of the sequent S.

913. D1 [A ⇒ B → A]
A ⇒ A

wL
B,A ⇒ A

→R
A ⇒ B → A

914. D2 [A → B,A ⇒ A]

A ⇒ A

A ⇒ A
wL

B,A ⇒ A
→L,cL

A → B,A ⇒ A

915. D3 [A → B,A ⇒ B]

A ⇒ A B ⇒ B
→L

A → B,A ⇒ B

916. D4 [A → (B → C), A → B,A ⇒ C]

..... D2

A → B,A ⇒ A

..... D3

A → B,A ⇒ B C ⇒ C
→L

B → C,A → B,A ⇒ C
→L,cL

A → (B → C), A → B,A ⇒ C

917. D5 [A → (B → C) ⇒ (A → B) → (A → C)]

..... D4

A → (B → C), A → B,A ⇒ C
→R

A → (B → C) ⇒ (A → B) → (A → C)

918. D6 [⇒ A ∨ ¬A]
A ⇒ A

∨R
A ⇒ A ∨ ¬A

¬R
⇒ A ∨ ¬A,¬A

∨R, cR
⇒ A ∨ ¬A



919. D7 [A,B ⇒ A ∧B]

A ⇒ A
wL,eL

A,B ⇒ A

B ⇒ B
wL

A,B ⇒ B
∧R

A,B ⇒ A ∧B

920. D8 [¬(A ∧B) ⇒ ¬A ∨ ¬B]

..... D7

A,B ⇒ A ∧B
¬L,¬R,¬R,eR

¬(A ∧B) ⇒ ¬A,¬B
∨R,∨R,cR

¬(A ∧B) ⇒ ¬A ∨ ¬B

921. D9 [⇒ A,A → B]
A ⇒ A

wR
A ⇒ A,B

→R
⇒ A,A → B

922. D10 [(A → B) → A ⇒ A]

..... D9

⇒ A,A → B A ⇒ A
→L, cR

(A → B) → A ⇒ A

923. D11 [A → (B → C), A,B ⇒ C]

A ⇒ A

B ⇒ B C ⇒ C
→L

B → C,B ⇒ C
→L

A → (B → C), A,B ⇒ C



924. D12 [A → (B → C) ⇒ B → (A → C)]

..... D11

A → (B → C), A,B ⇒ C
eL,→R

A → (B → C), B ⇒ A → C
eL,→R

A → (B → C) ⇒ B → (A → C)

925. Suppose ⇒ B,A and A ⇒ B.
⇒ B,A A ⇒ B

cut
⇒ B,B

cR
⇒ B

926. A-cut is not contraction-free in LK.
⇒ B,A A ⇒ B

A-cut
⇒ B

927. D13 [⇒ A ∨ ¬A] := contraction-free proof of LEM in LK with A-cut
if A-cut is an atomic (primitive) rule.

A ⇒ A
∨R

A ⇒ A ∨ ¬A
¬R

⇒ A ∨ ¬A,¬A

A ⇒ A
¬L,eL,¬R

¬A ⇒ ¬A
∨R

¬A ⇒ A ∨ ¬A
A-cut

⇒ A ∨ ¬A
928. Suppose ⇒ A,B.

⇒ A,B
∨R,eR

⇒ A ∨B,A
∨R

⇒ A ∨B,A ∨B
cont R

⇒ A ∨B

929. Suppose ⇒ A ∨B.

⇒ A ∨B

A ⇒ A
wR

A ⇒ A,B

B ⇒ B
wR,eR

B ⇒ A,B
∨L

A ∨B ⇒ A,B
A-cut

⇒ A,B



Proof of sequents in LJ and in LJT

930. [22]

931. Consider LJ with the sole connective →.

932. Rules of LJ:

Ax
Γ, A ⊢ A

Γ, A,A ⊢ B
Cont

Γ, A ⊢ B

Γ ⊢ A Γ, B ⊢ C
IL

Γ, A → B ⊢ C

Γ, A ⊢ B
IR

Γ ⊢ A → B

Γ ⊢ A Γ, A ⊢ B
Cut

Γ ⊢ B

933. Prove the following sequent in LJ

⊢ (A → (B → C)) → ((A → B) → (A → C)).

934. Proof in LJ

Ax
A,A → B ⊢ A

Ax
A ⊢ A

Ax
A,B ⊢ B

IL
A,A → B ⊢ B

Ax
A,A → B,C ⊢ C

IL
A,A → B,B → C ⊢ C

IL
A,A → B,A → (B → C) ⊢ C

IR
A → B,A → (B → C) ⊢ A → C

IR
A → (B → C) ⊢ (A → B) → (A → C)

IR
⊢ (A → (B → C)) → ((A → B) → (A → C))



935. Prove the following sequent in LJT

⊢ (A → (B → C)) → ((A → B) → (A → C)).

936. Rules of LJT (without cut):

Ax
Γ;A ⊢ A

Γ, A;A ⊢ B
Cont

Γ, A;⊢ B

Γ;⊢ A Γ;B ⊢ C
IL

Γ;A → B ⊢ C

Γ, A;⊢ B
IR

Γ;⊢ A → B

937. Proof in LJT

D1

A,A → B;⊢ A

D1

A;⊢ A
Ax

A;B ⊢ B
IL

A;A → B ⊢ B
Der

A,A → B;⊢ B
Ax

A,A → B;C ⊢ C
IL

A,A → B;B → C ⊢ C
IL

A,A → B;A → (B → C) ⊢ C
Der

A,A → B,A → (B → C);⊢ C
IR

A → B,A → (B → C);⊢ A → C
IR

A → (B → C);⊢ (A → B) → (A → C)
IR

⊢ (A → (B → C)) → ((A → B) → (A → C))

938. D1 :=
Ax

A;A ⊢ A
Cont

A;⊢ A

939.
Γ;A ⊢ B

Der
Γ, A;⊢ B

940. Der :=
Γ;A ⊢ B

adding irrelevant formula
Γ, A;A ⊢ B

Cont
Γ, A;⊢ B
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APPENDIX

Quantum Logics: Introduction

941. [11, 12]

942. What logical structures one may hope to find in physical theories which,
like quantum mechanics, do not conform to classical logic? [13]

943. Phase-space is a mathematical concept present in both classical and
quantum theories.

944. S := physical system

945. Σ := phase-space

946. a point in Σ := the “state” of S (ascertainable by “maximal” obser-
vations)

947. pure states := maximal pieces of information about S
(cannot be consistently extended to a richer knowledge)

948. mixtures := non maximal pieces of information

949. P := experimental proposition about S

950. X := all the pure states for which P holds

951. X ⊆ Σ

952. events (physical qualities) := subsets of Σ

953. X := event

954. P := set of all experimental propositions

955. E := set of all events

956. The correspondence between P and E is many-to-one.



957. p := pure state

958.
(S in state p verifies both X and P ) ≡ (p ∈ X)

959. What is the structure of all events?

960. The power-set of any set is a Boolean algebra.

961.
B = 〈F(Σ),⊆,∩,∪,−,1,0〉

962. B := Boolean algebra

963. F(Σ) := set of all measurable events

964. ⊆ := set-theoretic inclusion relation

965. ∩ := intersection of sets (“and”)

966. ∪ := union of sets (“or”)

967. − := relative complement of a set (“not”)

968. 1 := Σ (total space)

969. 0 := ∅ (empty space)

970. Classical semantic behaviour:

(i) (p verifies X ∩ Y ) ↔ (p ∈ X ∩ Y ) ↔ (p verifies both members)

(ii) (p verifies X∪Y ) ↔ (p ∈ X∪Y ) ↔ (p verifies at least one member)

(iii) (p verifies −X) ↔ (p ∕∈ X) ↔ (p does not verify X)

971. points of Σ := wave-functions

972. Σ ≡ function-space (usually the Hibert space)



973. In classical mechanics, the excluded middle principle holds, i.e.,

p ∈ X ⊻ p ∕∈ X.

974. Quantum theory is essentially probabilistic.

975. ψ := pure state (wave function) of a quantum system

976. In a quantum system, the experimental proposition P , for instance,
can be “the spin value in a certain direction is up”.

977. We have the following cases for the assignment of probability-values:

(i) ψ(P ) = 1, P is true,
(ii) ψ(P ) = 0, P is false,

(iii) ψ(P ) ∕= 0, 1, P is semantically indetermined.

978. Which mathematical representative would best describe quantum ex-
perimental propositions?

979. closed subspace := closed linear subspace of Hilbert space := math-
ematical representative of P in a quantum system

980. complete metric := metric in which every Cauchy sequence is con-
vergent

981.

Hilbert space (H) := vector space over a division ring
(h ∈ H → h ∈ R ∨ h ∈ C ∨ h ∈ H) such that

(i) an inner product is defined,
(ii) H is metrically complete.

982. H := set of quaternion numbers

983.
(H := separable) ↔ (H admits a countable basis)



984. Hereafter, let
H := separable Hilbert space

such that its unitary vectors correspond to wave functions of a quan-
tum system.

985. closed subspaces of H := subsets of H (closed under linear combi-
nations and Cauchy sequences)

986. (985) contains the mathematical representatives of experimental propo-
sitions that are closed under finite and infinite linear combinations.

987. quantum events := mathematical representatives of experimental propo-
sitions of a quantum system

988. quantum mechanics ∼≻ linear combinations of p ∼≻ new pure states

989. C(H) := set of all quantum events

990. negation of a quantum event := orthogonal complement of the
event

991. orthogonal complement of a subspace V of the vector space := set
of vectors orthogonal to all elements of V

992. X,X ′, Y := quantum events (closed subspaces)

993. X ′ := orthogonal complement of X

994. X,X ′, Y ⊆ H

995. ψ ∈ X ′ ↔ ψ ⊥ X ↔ ∀φ ∈ X : (ψ,φ) = 0

996. (ψ,φ) := inner product of ψ and φ

997. orthocomplement := orthogonal complement

998.
∀X ∀ψ (pure states) : ψ(X) = 1 ↔ ψ(X ′) = 0



999.
∀X ∀ψ (pure states) : ψ(X) = 0 ↔ ψ(X ′) = 1

1000.
ψ verifies X ∩ Y ↔ ψ verifies both members

1001. union of two closed subspaces ∕≡ closed subspace

1002. supremum ∼≻ connective or

1003. X⊔Y := supremum of X and Y (the smallest closed subspace includ-
ing both closed subspaces X and Y )

1004. X ∪ Y ⊂ X ⊔ Y

1005.
C(H) = 〈C(H),⊑,⊓,⊔,′ ,1,0〉

1006. ⊑,⊓ := set-theoretic inclusion and intersection

1007. ⊔ := supremum

1008. ′ := orthogonal complement

1009. 1 := H (total space)

1010. 0 := null subspace [the singleton of the null vector (smallest subspace)]



1011. projections := idempotent and self-adjoint linear operators

1012. P(H) := set of all projections P of H

1013. ∼= := isomorphism

1014. P(H) ∼= closed subspaces

1015. C(H) is not a Boolean algebra, it simulates a “quasi-Boolean be-
haviour”.

1016. C(H) is a (not distributive) orthocomplemented orthomodular lattice,

X ⊓ (Y ⊔ Z) ∕= (X ⊓ Y ) ⊔ (X ⊓ Z).

1017. X ⊔ Y may be true even if neither member is true.

1018. It is possible for a pure state ψ that

ψ ∕∈ X ∧ ψ ∕∈ Y → ψ ∈ X ⊔ Y.

1019. (1016) is connected with (1018) (the superposition principle).

1020. uncertainty principle ∼≻ incompatible quantities ∼≻ strongly unde-
termined (cannot be simultaneously measured)

1021. standard quantum logic := (complete orthomodular lattice + closed
subspaces in H) ∼≻ particular example of an algebraic structure


