Personal Handbook of Logic

Open Mathematics Collaboration* ${ }^{* \dagger}$

February 9, 2023

Abstract

This is a personal collection of definitions and results from first-order logic.

keywords: personal handbook, first-order logic

The most updated version of this white paper is available at https://osf.io/8wck9/download
https://zenodo.org/record/5594984

Preamble

1. Mathematics is the Queen of the Sciences (Gauss).
2. Logic is the Queen of Mathematics.
[^0]
Contents

Metalinguistic Symbols

Symbols and Syntax
List of Symbols
First-order Language
Terms

Formulas

Atomic Formulas

Complexity
Mathematical Induction

Free Variables
Sentences
Structures

Variable Assignment Function
Term Assignment Function
Satisfaction
True Sentences

On the equality of term assignment functions
Satisfaction of a formula with different variable assignment functions

Satisfaction for all variable assignment functions Model (formula)

True Sentences
Satisfaction of formulas with the connective "and"
Satisfaction with the existential quantifier
Substitution into a Term
Substitution into a Formula
A term substitutable for a variable in a formula
Logical Implication (sets of formulas)
Valid Formulas
Universal Closure of a Formula
On the validity of a conditional statement of formulas
"Bottom-up" Deduction
"Top-down" Deduction
Decidable Set of Axioms
(Non)Logical Axioms
Equality Axioms
Quantifier Axioms
Rules of Inference

Propositional Consequence: Definition
Propositional Consequence: Tautology
Propositional Consequence: Extension to First-order Logic
Rule of Inference of type (PC)
Rules of Inference of type (QR)
On the validity and tautology of formulas
List of requirements for axioms and rules of inference
Logical Axioms: Valid
Rule of Inference: Theorem
Soundness Theorem
When a variable is not free in a formula
Variable Assignment Functions and Substitutions
Term substitution in the x-modification of the assignment function

Equality: Equivalence Relation
A set of formulas proves a formula if and only if it proves the formula for all variables

Adding/deleting a universal quantifier
The Deduction Theorem
Proofs by Contradiction

Unary Relation Symbol

Binary Relation Symbol
Two unary relation symbols
Complete Deductive System
(In)Consistent
Completeness Theorem
Soundness + Completeness
Compactness Theorem
(Finitely) Satisfiable
Finite subset of a set of formulas

First-order Sentences: Natural Numbers

Theory of a Structure
Substructure

Elementary Substructure/Extension
Truth in elementary substructure/extension
Condition for an elementary substructure
Hilbert Axiomatic System
Axioms of the Hilbert-style Calculus
Inference Rule of the Hilbert-style Calculus
Sequent Systems: Classical Logic
Proofs and Provability (in LK)
Rules for single formulas (in LK)
Multisets of Formulas
Logical constant 0
Orthologic
Intuitionistic Reasoning
Intuitionistic Propositional Logic: Syntax
Axiom Schema for Intuitionistic Propositional Logic
Modal operators
Decision problem
Undecidable
Word problem
Natural Deduction in Heyting Semantics
Lambda Calculus: Types
Lambda Calculus: Terms
Lambda Calculus: Denotational significance
System of equations in lambda calculus:
Consistent and decidable
Conversion

The Curry-Howard Isomorphism
The Normalization Theorem
The lambda-calculus: Introduction
The lambda-calculus: Formal system
The lambda-calculus: Informal interpretation
Lambda-terms: Length, occurrence, scope, free and bound variables, substitution

Lambda-terms: Change of bound variables, congruence
Lambda-terms: Simultaneous substitution
Lambda-terms: β-reduction
Lambda-terms: β-normal form
Lambda-terms: β-equality
Simple typing, Church-style
Typed λ-calculus
The Sequent Calculus LJ
The Sequent Calculus LJT
Translation of proofs from LJ to LJT
Proofs in Natural Deduction
Proof of sequents in LK
Proof of sequents in LJ and in LJT

Quantum Logics: Introduction

Introduction

3. This handbook is mostly intended for consultation.
4. Each section can be read independently.
5. Due to (3) and (4), there are redundancies in many of the definitions.
6. At the beginning of each section, we present the references used.

Metalinguistic Symbols

7. $[1,2]$
8. A metalinguistic symbol is not part of the language.
9. The symbol $:=$ means that what is on the left side is defined by the right side of it.
10. The symbol $: \equiv$ means that the strings of symbols (within a language) on each side of it are identical.
11. \vdash means deduction, logically implies
12. \models means satisfy, truth (if there is a structure on the left), logical implication (if there is a set of sentences on the left), model
13. $\perp($ read false or eet) $:=$ contradictory sentence
14. The symbol $\sim \succ$ appears for pedagogical purpose for the sake of abbreviating an explanation; it can be read as from, of, with, leads to, in which, etc.

Symbols and Syntax

15. $[1,2]$
16. syntax $:=$ symbols (of a language)
17. string $:=$ string of symbols $:=$ a sequence of symbols

List of Symbols

18. $[1,2]$
19. $\in:=$ membership relation
20. $\notin:=$ negation of the membership relation
21. $\underline{\vee}:=$ exclusive or
$22 . \subseteq:=$ subset, substructure
22. $\prec:=$ elementary substructure/extension
23. $\cup:=$ union of sets
24. $\cap:=$ intersection of sets
25. $\emptyset:=$ empty set
26. $f \upharpoonright_{A}:=$ restriction of the function f to the domain A

First-order Language

28. $[1,2]$
29. first-order language $:=$ infinite collection of distinct symbols (no one of which is properly contained in another) separated into the following:
(a) Parentheses: (,)
(b) Connectives: \vee, \neg
(c) Quantifier: \forall
(d) Variables (one for each positive integer n): $v_{1}, v_{2}, \ldots, v_{n}, \ldots$ Vars $=\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}:=$ set of variable symbols
(e) Equality: $=$
(f) Constant: Some set of zero or more symbols
(g) Function: For each positive integer n, some set of zero or more n-ary function symbols
(h) Relation: For each positive integer n, some set of zero or more n-ary relation symbols

Terms

30. $[1,2]$
31. term of $\mathcal{L}:=$ nonempty finite string t of symbols from \mathcal{L} such that either:
(a) $t:=$ constant symbol (c), or
(b) $t:=$ variable (v), or
(c) $t: \equiv f t_{1} t_{2} \ldots t_{n}$, where
$f:=n$-ary function symbol of \mathcal{L} and
$t_{i}:=$ term of \mathcal{L}.
32.

$$
t:=c \underline{\vee} v \underline{\vee} f
$$

33. $\mathcal{L}:=$ first-order language
34. \mathcal{L}-symbols:= symbols of a language \mathcal{L}
35. Note that (31.c) is a definition by recursion, since t is a term if it contains substrings that are terms.
36. substring := subset of a string

Formulas

37. [1-3]
38. formulas := assertions about the objects of the structure (model)
39. formula of $\mathcal{L}: \equiv$ nonempty finite string ϕ of symbols from \mathcal{L} such that either:
(a) $\phi: \equiv=t_{1} t_{2}$, or
(b) $\phi: \equiv R t_{1} t_{2} \ldots t_{n}$, or
(c) $\phi: \equiv(\neg \alpha)$, or
(d) $\phi: \equiv(\alpha \vee \beta)$, or
(e) $\phi: \equiv(\forall v)(\alpha)$.
40. $\mathcal{L}:=$ first-order language
41. $t_{1}, t_{2}, \ldots, t_{n}:=$ terms of \mathcal{L}
42. $R:=n$-ary relation symbol of \mathcal{L}
43. $\alpha, \beta:=$ formulas of \mathcal{L}
44. $v:=$ variable
45. Note that (39.c, d, e) are definitions by recursion, since ϕ is a $\underline{\text { formula }}$ if it contains other formulas.
46. In (39.e), we say that the scope of the quantifier \forall is α.
47. $p \wedge \neg p$ has two formula occurrences of p

Atomic Formulas

48. $[1,2]$
49. atomic formula of $\mathcal{L}:=$ nonempty finite string ϕ of symbols from \mathcal{L} such that either:
(a) $\phi: \equiv=t_{1} t_{2}$, or
(b) $\phi: \equiv R t_{1} t_{2} \ldots t_{n}$.
50. $\mathcal{L}:=$ first-order language
51. $t_{1}, t_{2}, \ldots, t_{n}:=$ terms of \mathcal{L}
52. $R:=n$-ary relation symbol of \mathcal{L}
53. Atomic formulas are the primitives (not defined under recursion).
54. atom := atomic formula
55. literal $:=$ atom or its negation

Complexity

56. $[1,2]$
57. simpler formula $:=$ fewer number of connectives/quantifiers
58. simpler formula $:=$ subformula of a more complex formula

Mathematical Induction

59. [1,2]
60. proof by induction on the structure (complexity) of the formula

Free Variables

61. [1, 2]
62. $v:=$ free in ϕ if
(a) ϕ is atomic and v occurs in (is a symbol in) ϕ, or
(b) $\phi: \equiv(\neg \alpha)$ and v is free in α, or
(c) $\phi: \equiv(\alpha \vee \beta)$ and v is free in at least α or β, or
$(d) \phi: \equiv(\forall u)(\alpha)$ and v is not u and v is free in α.
63. $u, v:=$ variables
64. $\phi, \alpha, \beta:=$ formulas

Sentences

65. $[1,2]$
66. sentences $:=$ formulas that can be either true or false (with no free variables)
67. There are no free variables in the definition of a sentence so that it can be either true or false.
68. $\mathcal{L}:=$ first-order language

Structures

69. $[1,2]$
70. $\mathfrak{A}:=\operatorname{set} A$ together with
(a) an element $c^{\mathfrak{A}}$ of A, for each constant symbol c of \mathcal{L},
(b) a function $f^{\mathfrak{A}}: A^{n} \rightarrow A$, for each n-ary function f of \mathcal{L}, and
(c) an n-ary relation $R^{\mathfrak{A}}$ on A (i.e., a subset of A^{n}), for each n-ary relation symbol R of \mathcal{L}.
71.

$$
\mathfrak{A}=\left(A, c^{\mathfrak{A}}, f^{\mathfrak{A}}, R^{\mathfrak{A}}\right)
$$

72. $c^{\mathfrak{A}} \in A, \quad f^{\mathfrak{A}}: A^{n} \rightarrow A, \quad R^{\mathfrak{A}} \subseteq A^{n} ; \quad A \neq \emptyset$
73. $\mathcal{L}:=$ first-order language
74. $\mathfrak{A}:=\mathcal{L}$-structure
75. $A:=$ the universe of \mathfrak{A}
76. Note that the variables are not part of the definition (70).

Variable Assignment Function

77. $[1,2]$
78. assignment functions
(i) begin the process of tying together the symbols with the structures)
(ii) formalize the interpretation of a term/formula in a structure
79. variable assignment function into $\mathfrak{A}:=$ function s that assigns to each variable an element of A,

$$
s: \text { Vars } \rightarrow A
$$

80. Vars $:=$ set of variable symbols (domain)
81. $A:=$ universe of \mathfrak{A} (codomain)
82. $s[x \mid a](v)= \begin{cases}s(v), & \text { if } v \text { is a variable other than } x \\ a, & \text { if } v \text { is the variable } x\end{cases}$
83. $s:=$ variable assignment function into \mathfrak{A}
84. $x:=$ variable; $a \in A$
85. $s[x \mid a](v):=x$-modification of the assignment function s
86. In $s[x \mid a](v), x$ is assigned to a.
87. $\mathcal{L}:=$ first-order language
88. $\mathfrak{A}:=\mathcal{L}$-structure

Term Assignment Function

89. $[1,2]$
90. $\bar{s}:=$ term assignment function generated by s
(a) $(t:=$ variable $) \rightarrow(\bar{s}(t)=s(t))$
(b) $(t:=$ constant symbol $c) \rightarrow\left(\bar{s}(t)=c^{\mathfrak{A}}\right)$
(c) $\left(t:=f t_{1} t_{2} \ldots t_{n}\right) \rightarrow\left(\bar{s}(t)=f^{\mathfrak{A}}\left(\bar{s}\left(t_{1}\right), \bar{s}\left(t_{2}\right), \ldots, \bar{s}\left(t_{n}\right)\right)\right)$
91. \bar{s} (term) is the generalization of s (variable).
92. Note that \bar{s} is defined recursively.
93. set of \mathcal{L}-terms $:=$ domain of \bar{s}
94. $A:=$ codomain of \bar{s}
95. $s:=$ variable assignment function into \mathfrak{A}
96. $c^{\mathfrak{A}} \in A$
97. $\mathcal{L}:=$ first-order language
98. $\mathfrak{A}:=\mathcal{L}$-structure

Satisfaction

99. $[1,2]$
100. satisfaction $:=$ truth
101.

$(\mathfrak{A} \models \phi[s]):=\mathfrak{A}$ satisfies ϕ with assignment s if
(i) $\left(\phi: \equiv=t_{1} t_{2}\right) \wedge\left(\bar{s}\left(t_{1}\right)\right.$ is the same element of A as $\left.\bar{s}\left(t_{2}\right)\right)$, or
(ii) $\left(\phi: \equiv R t_{1} t_{2} \ldots t_{n}\right) \wedge\left(\left(\bar{s}\left(t_{1}\right), \bar{s}\left(t_{2}\right), \ldots, \bar{s}\left(t_{n}\right)\right) \in R^{\mathfrak{A}}\right)$, or
(iii) $(\phi: \equiv \neg \alpha) \wedge(\mathfrak{A} \not \vDash \alpha[s])$, or
(iv) $(\phi: \equiv \alpha \vee \beta) \wedge((\mathfrak{A} \models \alpha[s]) \vee(\mathfrak{B} \models \beta[s]))$, or
(v) $(\phi: \equiv \forall x \alpha) \wedge(\forall a \in A: \mathfrak{A} \models \alpha[s(x \mid a)])$.
102. $\mathcal{L}:=$ first-order language
103. $\mathfrak{A}:=\mathcal{L}$-structure
104. $\phi:=\mathcal{L}$-formula
105. $s:$ Vars $\rightarrow A$
106. $s:=$ variable assignment function into \mathfrak{A}
107. Vars := set of variable symbols
108. $A:=$ universe of \mathfrak{A}
109. $(\mathfrak{A} \models \Gamma[s]) \equiv(\forall \gamma \in \Gamma: \mathfrak{A} \models \gamma[s])$
110. $\Gamma:=$ set of \mathcal{L}-formulas

True Sentences

111. $[1,2]$
112.

$$
(\sigma \text { is true in } \mathfrak{A}) \leftrightarrow(\mathfrak{A} \models \sigma[s])
$$

113. $\sigma:=$ sentence
114. $\mathfrak{A}:=$ structure
115. $s:=$ variable assignment function into \mathfrak{A}
116. Note that the definition of satisfaction is relative to an assignment function.

On the equality of term assignment functions
117. $[1,2]$
118.

$$
\left(\forall v \in t: s_{1}(v)=s_{2}(v)\right) \rightarrow\left(\overline{s_{1}}(t)=\overline{s_{2}}(t)\right)
$$

119. $\mathfrak{A}:=$ structure
120. $v:=$ variable
121. $s_{1}, s_{2}:=$ variable assignment functions into \mathfrak{A}
122. $t:=$ term

Satisfaction of a formula with different variable assignment functions

123. $[1,2]$
124.

$$
\left(\forall v \in \phi: s_{1}(v)=s_{2}(v)\right) \rightarrow\left(\mathfrak{A} \models \phi\left[s_{1}\right] \leftrightarrow \mathfrak{A} \models \phi\left[s_{2}\right]\right)
$$

125. $\mathfrak{A}:=$ structure
126. $v:=$ free variable
127. $s_{1}, s_{2}:=$ variable assignment functions into \mathfrak{A}
128. $\phi:=$ formula

Satisfaction for all variable assignment functions

129. $[1,2]$
130.

$$
(\forall s: \mathfrak{A} \models \sigma[s]) \underline{\vee} \quad(\mathfrak{A} \models \sigma[s] \text { for no } s)
$$

131. $\mathcal{L}:=$ first-order language
132. $\mathfrak{A}:=\mathcal{L}$-structure
133. $\sigma:=$ sentence in \mathcal{L}
134. $s:=$ variable assignment function into \mathfrak{A}

Model (formula)

135. $[1,2]$
136. $(\mathfrak{A} \models \phi):=\mathfrak{A}$ is a model of ϕ
137.

$$
\mathfrak{A} \models \phi \leftrightarrow \forall s: \mathfrak{A} \models \phi[s]
$$

138.

$$
\mathfrak{A} \models \Phi \leftrightarrow \forall \phi \in \Phi: \mathfrak{A} \models \phi
$$

139. $\phi:=$ formula in \mathcal{L}
140. $s:=$ variable assignment function into \mathfrak{A}
141. $\Phi:=$ set of \mathcal{L}-formulas
142. $\mathcal{L}:=$ first-order language
143. $\mathfrak{A}:=\mathcal{L}$-structure

True Sentences

144. $[1,2]$
145.

$$
\mathfrak{A} \models \sigma \quad \leftrightarrow \quad \forall s: \mathfrak{A} \models \sigma[s]
$$

146. $(\mathfrak{A} \models \sigma):=\mathfrak{A}$ is a model of σ
147. $\sigma:=$ sentence in \mathcal{L}
148. σ is true in \mathfrak{A}
149. $s:=$ variable assignment function into \mathfrak{A}
150. $\Phi:=$ set of \mathcal{L}-formulas
151. $\mathcal{L}:=$ first-order language
152. $\mathfrak{A}:=\mathcal{L}$-structure

Satisfaction of formulas with the connective "and"

153. $[1,2]$
154.

$$
\mathfrak{A} \models(\alpha \wedge \beta)[s] \leftrightarrow \mathfrak{A} \models \alpha[s] \wedge \mathfrak{A} \models \beta[s]
$$

155. $(\alpha \wedge \beta) \equiv(\neg((\neg \alpha) \vee(\neg \beta)))$
156. (155) is an abbreviation.
157. $s:=$ variable assignment function into \mathfrak{A}
158. $\alpha[s], \beta[s]:=\mathcal{L}$-formulas with assignment function s
159. $\mathcal{L}:=$ first-order language
160. $\mathfrak{A}:=\mathcal{L}$-structure

Satisfaction with the existential quantifier

161. $[1,2]$
162.

$$
\mathfrak{A} \models(\exists x)(\alpha)[s] \leftrightarrow \exists a \in A: \mathfrak{A} \models \alpha[s[x \mid a]]
$$

163. $\mathfrak{A}:=$ structure
164. $A:=$ universe of $\mathfrak{A} ; \quad a \in A$
165. $x:=$ variable
166. $s[x \mid a](v):=x$-modification of the assignment function s
167. $\alpha:=$ formula with the x-modification of the assignment function s

Substitution into a Term

168. $[1,2]$
169.

$$
u_{t}^{x} \text { (} u \text { with } x \text { replaced by } t \text {) if }
$$

(i) $(u$ is a variable not equal to $x) \rightarrow\left(u_{t}^{x}\right.$ is $\left.u\right)$
(ii) $(u$ is $x) \rightarrow\left(u_{t}^{x}\right.$ is $\left.t\right)$
(iii) (u is a constant symbol) $\rightarrow\left(u_{t}^{x}\right.$ is $\left.u\right)$
(iv) $\left(u: \equiv f u_{1} u_{2} \ldots u_{n}\right) \rightarrow\left(u_{t}^{x}\right.$ is $\left.f\left(u_{1}\right)_{t}^{x}\left(u_{2}\right)_{t}^{x} \ldots\left(u_{n}\right)_{t}^{x}\right)$
170. $u, t, u_{t}^{x}, u_{i}:=\mathrm{terms}$
171. $x:=$ variable
172. $f:=n$-ary function
173. Note that in (169.iv), the parentheses have been added for the purpose of readability; so, $\left(u_{1}\right)_{t}^{x}: \equiv u_{1_{t}^{x}}^{x}$.
174. Substitution into a term (169) is a definition by recursion.

Substitution into a Formula

175. $[1,2]$
176.

$$
\phi_{t}^{x} \text { (} \phi \text { with } x \text { replaced by } t \text {) if }
$$

(i) $\left(\phi: \equiv=u_{1} u_{2}\right) \rightarrow\left(\phi_{t}^{x}\right.$ is $\left.=\left(u_{1}\right)_{t}^{x}\left(u_{2}\right)_{t}^{x}\right)$
(ii) $\left(\phi: \equiv R u_{1} u_{2} \ldots u_{n}\right) \rightarrow\left(\phi_{t}^{x}\right.$ is $\left.R\left(u_{1}\right)_{t}^{x}\left(u_{2}\right)_{t}^{x} \ldots\left(u_{n}\right)_{t}^{x}\right)$
(iii) $(\phi: \equiv \neg(\alpha)) \rightarrow\left(\phi_{t}^{x}\right.$ is $\left.\neg\left(\alpha_{t}^{x}\right)\right)$
(iv) $(\phi: \equiv(\alpha \vee \beta)) \rightarrow\left(\phi_{t}^{x}\right.$ is $\left.\left(\alpha_{t}^{x} \vee \beta_{t}^{x}\right)\right)$

$$
(v) \phi: \equiv(\forall y)(\alpha) \rightarrow \phi_{t}^{x}= \begin{cases}\phi, & \text { if } x \text { is } y \\ (\forall y)\left(\alpha_{t}^{x}\right), & \text { otherwise }\end{cases}
$$

177. $\mathcal{L}:=$ first-order language
178. $\phi, \phi_{t}^{x}:=\mathcal{L}$-formulas
179. $t:=$ term
180. $x:=$ variable
181. $R:=n$-ary relation
182. Note that in (176), the parentheses have been added for the purpose of readability; so, $\left(\phi_{1}\right)_{t}^{x}: \equiv \phi_{1 t}^{x}$.
183. Substitution into a formula (176) is a definition by recursion.

A term substitutable for a variable in a formula

184. $[1,2]$
185.
```
t is substitutable for x in \phi if
```

(i) ϕ is atomic, or
(ii) $\phi: \equiv \neg(\alpha)$ and t is substitutable for x in α, or
(iii) $\phi: \equiv(\alpha \vee \beta)$ and t is substitutable for x in both α and β, or
$(i v) \phi: \equiv(\forall y)(\alpha)$ and either
(a) x is not free in ϕ, or
(b) y does not occur in t and t is substitutable for x in α.
186. $\mathcal{L}:=$ first-order language
187. $\phi, \alpha, \beta:=\mathcal{L}$-formulas
188. $t:=$ term
189. $x:=$ variable
190. Notice that
(i) certain operations are allowed only if t is substitutable for x in ϕ;
(ii) this restriction is important to preserve the truth of formulas after performing substitutions.

Logical Implication (sets of formulas)

191. $[1,2]$
192.

$$
(\forall \mathfrak{A}: \mathfrak{A} \models \Delta \rightarrow \mathfrak{A} \models \Gamma) \rightarrow(\Delta \models \Gamma)
$$

193. $(\Delta \models \Gamma):=\Delta$ logically implies Γ
194. $\mathcal{L}:=$ first-order language
195. $\mathfrak{A}:=\mathcal{L}$-structure
196. $\Delta, \Gamma:=$ sets of \mathcal{L}-formulas
197. (192) says that if Δ is true in \mathfrak{A}, then Γ is true in \mathfrak{A}.
198. Recall that Δ is true in \mathfrak{A} if $\forall s: \mathfrak{A} \models \Delta[s]$.
199. $s:=$ variable assignment function into \mathfrak{A}

Valid Formulas

200. $[1,2]$
201.

$$
(\models \phi) \rightarrow(\phi \text { is valid })
$$

202. $(\emptyset \models \phi): \equiv(\models \phi):=(\forall s: \phi$ is true $)$
203. $\mathcal{L}:=$ first-order language
204. $\phi:=\mathcal{L}$-formula
205. $s:=$ variable assignment function
206. Notice that
(i) $\mathfrak{A} \models \sigma$ means truth (if there is a structure on the left), whereas
(ii) $\Gamma \models \sigma$ means logical implication (if there is a set of sentences on the left).
207. $\mathfrak{A}:=\mathcal{L}$-structure
208. $\Gamma:=$ set of sentences in \mathcal{L}
209. $\sigma:=$ sentence

Universal Closure of a Formula

210. $[1,2]$
211.

$$
\models \phi \leftrightarrow \quad \models(\forall x)(\phi)
$$

212.

(ϕ has free variables $x, y, z) \rightarrow(\models \phi \leftrightarrow \models \forall x \forall y \forall z \phi)$
213. $\forall x \forall y \forall z \phi:=$ sentence called universal closure of ϕ
214. $\mathcal{L}:=$ first-order language
215. $\phi:=\mathcal{L}$-formula
216. $x, y, z:=$ variables

On the validity of a conditional statement of formulas

217. $[1,2]$
218. $\models(\phi \rightarrow \psi) \rightarrow \phi \models \psi$
219. $\phi, \psi:=$ formulas

"Bottom-up" Deduction

220. $[1,2]$
221.

$$
(D: \equiv \Sigma \vdash \phi) \text { if } \forall i: 1 \leq i \leq n \text {, either }
$$

(i) $\phi_{i} \in \Lambda$, or
(ii) $\phi_{i} \in \Sigma$, or
(iii) $\exists\left(\Gamma, \phi_{i}\right): \Gamma \subseteq\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{i-1}\right\}$.
222. $D: \equiv(\Sigma \vdash \phi):=$ deduction from Σ of ϕ
223. $\mathcal{L}:=$ first-order language
224. $\phi, \phi_{i}:=\mathcal{L}$-formulas
225. $\Lambda:=$ set of \mathcal{L}-formulas (logical axioms)
226. $\Sigma:=$ collection of \mathcal{L}-formulas (nonlogical axioms)
227. $\left(\Gamma, \phi_{i}\right):=$ rule of inference
228. $D:=$ finite sequence $\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)$ of \mathcal{L}-formulas
229. bottom-up := it defines a deduction in terms of its parts

"Top-down" Deduction

230. $[1,2]$
231.

$\operatorname{Thm}_{\Sigma}=\{\phi \mid \Sigma \vdash \phi\}$ is the smallest set C such that
(i) $\Sigma \subseteq C$
(ii) $\Lambda \subseteq C$
(iii) $((\Gamma, \theta):=$ rule of inference $\wedge \Gamma \subseteq C) \rightarrow(\theta \in C)$
232. $\mathcal{L}:=$ first-order language
233. $\Sigma, \Lambda:=$ sets of \mathcal{L}-formulas
234. top-down $:=$ we can think of the collection of deductions from Σ (called Thm_{Σ}) as the closure of axioms under the application of the rules of inference.

Decidable Set of Axioms

235. $[1,2]$
236. decidable set of axioms $:=$ (we will be able to decide whether)

$$
\phi \in \Lambda \underline{\vee} \phi \notin \Lambda
$$

237. $\mathcal{L}:=$ first-order language
238. $\Lambda:=$ collection of logical axioms for \mathcal{L}

(Non)Logical Axioms

239. [1,2]
240.

$\Lambda \cup \Sigma:=$ expanded set of axioms
241. $\mathcal{L}:=$ first-order language
242. $\Lambda:=$ collection of logical axioms for \mathcal{L}
243. $\Sigma:=$ collection of nonlogical axioms for \mathcal{L}
244. Λ is fixed
245. The rules of inference are fixed.
246. Σ must be specified for each deduction.
247. The collection Λ of logical axioms is decidable.
248. nonlogical axioms $:=$ additional axioms, beyond the set of logical axioms
249. formula $:=($ axiom $) \underline{\vee}$ (arise from previous formulas in the deduction via a rule of inference)

Equality Axioms

250. [1, 2]
251. (E1)

$$
x=x \text { for each variable } x
$$

252. (E2)

$$
\begin{aligned}
{\left[\left(x_{1}\right.\right.} & \left.\left.=y_{1}\right) \wedge\left(x_{2}=y_{2}\right) \wedge \ldots \wedge\left(x_{n}=y_{n}\right)\right] \rightarrow \\
& \rightarrow\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
\end{aligned}
$$

253. (E3)

$$
\begin{aligned}
{\left[\left(x_{1}\right.\right.} & \left.\left.=y_{1}\right) \wedge\left(x_{2}=y_{2}\right) \wedge \ldots \wedge\left(x_{n}=y_{n}\right)\right] \rightarrow \\
& \rightarrow\left(R\left(x_{1}, x_{2}, \ldots, x_{n}\right)=R\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)
\end{aligned}
$$

Quantifier Axioms

254. $[1,2]$
255. (Q1): Universal instantiation

$$
(\forall x \phi) \rightarrow \phi_{t}^{x} \text {, if } t \text { is substitutable for } x \text { in } \phi
$$

256. (Q2) : Existential generalization

$$
\phi_{t}^{x} \rightarrow(\exists x \phi), \text { if } t \text { is substitutable for } x \text { in } \phi
$$

Rules of Inference

257. $[1,2]$
258. There are two types of rules of inference: propositional consequence and one dealing with quantifiers.
259. The set of rules of inference is decidable.

Propositional Consequence: Definition

260. $[1,2]$
261. If every truth assignment that makes each propositional formula in Γ_{P} true also makes ϕ_{P} true, then ϕ_{P} is a propositional consequence of Γ_{P}.
262. $\Gamma_{P}:=$ set of propositional formulas
263. $\phi_{P}:=$ propositional formula
264. Note that

$$
\left(\phi_{P}:=\text { tautology }\right) \leftrightarrow\left(\phi_{P} \text { is a propositional consequence of } \emptyset\right) .
$$

Propositional Consequence: Tautology

265. $[1,2]$
266.

(ϕ_{P} is a propositional consequence of Γ_{P}) \leftrightarrow $\leftrightarrow\left(\left[\gamma_{1 P} \wedge \gamma_{2 P} \wedge \ldots \wedge \gamma_{n P}\right] \rightarrow \phi_{P}\right)$ is a tautology
267. $\Gamma_{P}=\left\{\gamma_{1 P}, \gamma_{2 P}, \ldots, \gamma_{n P}\right\}:=$ nonempty finite set of propositional formulas
268. $\phi_{P}:=$ propositional formula

Propositional Consequence: Extension to Firstorder Logic

269. [1,2]
270.

$\left(\phi_{P}\right.$ is a propositional consequence of $\left.\Gamma_{P}\right) \rightarrow$
$\rightarrow(\phi$ is a propositional consequence of $\Gamma)$
271. $\mathcal{L}:=$ first-order language
272. $\Gamma:=$ finite set of \mathcal{L}-formulas
273. $\phi:=\mathcal{L}$-formula

Rule of Inference of type (PC)

274. $[1,2]$
275.

ϕ is a propositional consequence of $\Gamma \rightarrow$
$\rightarrow(\Gamma, \phi)$ is a rule of inference of type (PC)
276. $\mathcal{L}:=$ first-order language
277. $\Gamma:=$ finite set of \mathcal{L}-formulas
278. $\phi:=\mathcal{L}$-formula

Rules of Inference of type (QR)

279. [1,2]
280. Rules of inference of type (QR)
(i) $(\{\psi \rightarrow \phi\},(\forall x \phi))$
(ii) $(\{\phi \rightarrow \psi\},(\exists x \phi) \rightarrow \psi)$
281. $x:=$ variable (not free in ψ)
282. $\psi, \phi:=$ formulas
283. (280) means if x is not free in ψ :
(i) from $\phi \rightarrow \psi$, it may be deduced $\psi \rightarrow(\forall x \phi)$;
(ii) from $\psi \rightarrow \phi$, it may be deduced $(\exists x \phi) \rightarrow \psi$.

On the validity and tautology of formulas

284. [1,2]
285. (θ is not valid) $\rightarrow\left(\theta_{P}\right.$ is not a tautology $)$
286. $\left(\theta_{P}\right.$ is tautology $) \rightarrow(\theta$ is a valid $)$
287. $\theta:=$ formula in first-order logic
288. $\theta_{P}:=$ formula in propositional logic

List of requirements for axioms and rules of inference

289. $[1,2]$
290. The following list is required for our axioms and rules of inference:
(i) There will be an algorithm that will decide, given a formula θ, whether or not θ is a logical axiom.
(ii) There will be an algorithm that will decide, given a finite set of formulas Γ and a formula θ, whether or not (Γ, θ) is a rule of inference.
(iii) For each rule of inference (Γ, θ), Γ will be a finite set of formulas.
(iv) Each logical axiom will be valid.
(v) Our rules of inference will preserve truth. In other words, for each rule of inference $(\Gamma, \theta), \Gamma \models \theta$.
291. The requirements in (290) provide the basis of the Soundness Theorem.

Logical Axioms: Valid

292. $[1,2]$
293. Theorem: The logical axioms are valid.

Rule of Inference: Theorem

294. $[1,2]$
295. Theorem:

$$
(\Gamma, \theta):=\text { rule of inference } \rightarrow \Gamma \models \theta
$$

Soundness Theorem

296. $[1,2]$
297.

$$
\Sigma \vdash \phi \rightarrow \Sigma \models \phi
$$

298. $\mathcal{L}:=$ first-order language
299. $\Sigma:=$ set of \mathcal{L}-formulas
300. In words, the Soundness Theorem (297) tells us that in any structure \mathfrak{A} that makes all of the formulas of Σ true, ϕ is true as well.
301. If there is a deduction from Σ of ϕ, then Σ logically implies ϕ.
302. The purely syntactic notion of deduction is linked to the notions of truth and logical implication.
303. The Soundness Theorem is explicitly trying to relate the syntactical notion of deducibility (\vdash) with the semantical notion of logical implication (\models).
304. If there is a deduction of ϕ from Σ, then ϕ is true in any model of Σ.

When a variable is not free in a formula

305. $[1,2]$
306.

$$
x \text { is not free in } \psi \rightarrow(\phi \rightarrow \psi) \models[(\exists x \phi) \rightarrow \psi]
$$

307. $x:=$ variable
308. $\psi, \phi:=$ formulas

Variable Assignment Functions and Substitutions

309. $[1,2]$
310.

$$
s^{\prime}=s[x \mid \bar{s}(t)] \rightarrow \bar{s}\left(u_{t}^{x}\right)=\overline{s^{\prime}}(u)
$$

311. $u, t:=$ terms
312. $x:=$ variable
313. $s:$ Vars $\rightarrow A$
314. $s:=$ variable assignment function
315. $s[x \mid \bar{s}(t)]:=x$-modification of the assignment function s
316. $u_{t}^{x}:=u$ with x replaced by t

Term substitution in the x-modification of the assignment function

317. $[1,2]$
318.

$$
\mathfrak{A} \models \phi_{t}^{x}[s] \leftrightarrow \mathfrak{A} \models \phi\left[s^{\prime}\right]
$$

319. $\mathcal{L}:=$ first-order language
320. $\phi:=$ formula
321. $x:=$ variable
322. $t:=$ term substitutable for x in ϕ
323. $s:$ Vars $\rightarrow A$
324. $s:=$ variable assignment function
325. $s^{\prime}=s[x \mid \bar{s}(t)]$
326. $s[x \mid \bar{s}(t)]:=x$-modification of the assignment function s

Equality: Equivalence Relation

327. $[1,2]$
328. Equality is an equivalence relation

$$
\begin{aligned}
(i) & \vdash x=x \\
(\text { ii }) & \vdash x=y \rightarrow y=x \\
(\text { iii }) & \vdash(x=y \wedge y=z) \rightarrow x=z
\end{aligned}
$$

A set of formulas proves a formula if and only if it proves the formula for all variables

329. $[1,2]$
330.

$$
\Sigma \vdash \theta \leftrightarrow \Sigma \vdash \forall x \theta
$$

331. For a formula to be true in a structure, it must be satisfied in that structure with every assignment function.

Adding/deleting a universal quantifier

332. $[1,2]$
333.

$\Sigma \vdash \theta \rightarrow\left(\Sigma^{\prime}\right.$ is formed by taking any $\sigma \in \Sigma$ and adding or deleting a universal quantifier whose scope is the entire formula $\rightarrow \Sigma^{\prime} \vdash \theta$)
334. If we know $\Sigma \vdash \theta$, we can assume that every element of Σ is a sentence: By quoting (333) several times, we can replace each $\sigma \in \Sigma$ with its universal closure.

The Deduction Theorem

335. $[1,2]$
336.

$$
(\Sigma \cup \theta \vdash \phi) \leftrightarrow(\Sigma \vdash(\theta \rightarrow \phi))
$$

337. $\theta:=$ sentence
338. $\Sigma:=$ set of formulas
339. The Deduction Theorem (336) says that there is a deduction of ϕ from the assumption θ if and only if there is a deduction of the implication $\theta \rightarrow \phi$.
340. In (336), we omit the braces of $\Sigma \cup\{\theta\} \vdash \phi$.
341. deduction := formal equivalents of the mathematical proofs

Proofs by Contradiction

342. $[1,2]$
343.

$$
(\Sigma \vdash \eta) \leftrightarrow(\Sigma \cup(\neg \eta) \vdash[(\forall x) x=x] \wedge \neg[(\forall x) x=x])
$$

344. $\eta:=$ sentence

Unary Relation Symbol

345. $[1,2]$
346.

$$
\vdash[(\forall x) P(x)] \rightarrow[(\exists x) P(x)]
$$

347. $P:=$ unary relation symbol

Binary Relation Symbol

348. $[1,2]$
349.

$$
(\forall x)(\forall y) P(x, y) \vdash(\forall y)(\forall z) P(z, y)
$$

350. $P:=$ binary relation symbol

Two unary relation symbols

351. $[1,2]$
352.

$$
\vdash[(\forall x)(P(x)) \wedge(\forall x)(Q(x))] \rightarrow(\forall x)[P(x) \wedge Q(x)]
$$

353. $P, Q:=$ unary relation symbols

Complete Deductive System

354. $[1,2]$
355.

$$
\forall \Sigma \forall \phi(\Sigma \models \phi \rightarrow \Sigma \vdash \phi) \rightarrow\left(\Lambda, \Gamma_{\theta}\right):=\text { complete }
$$

356. $\Lambda:=$ collection of logical axioms
357. $\Gamma_{\theta}:=$ collection of rules of inference
358. $\Sigma:=$ set of nonlogical axioms
359. $\mathcal{L}:=$ first-order language
360. $\phi:=\mathcal{L}$-formula
361. If ϕ is an \mathcal{L}-formula that is true in every model of Σ, then there will be a deduction from Σ to ϕ.
362. Our ability to prove ϕ depends on ϕ being true in every model of Σ.

(In)Consistent

363. $[1,2]$
364.

$$
\exists(\Sigma \vdash[(\forall x) x=x] \wedge \neg[(\forall x) x=x]) \rightarrow \Sigma \text { is inconsistent }
$$

365.

$$
\Sigma \text { is not inconsistent } \rightarrow \Sigma \text { is consistent }
$$

366. $\mathcal{L}:=$ first-order language
367. $\Sigma:=$ set of \mathcal{L}-formulas
Σ proves a contradiction $\rightarrow \Sigma$ is inconsistent
368.

$$
\Sigma \text { is inconsistent } \rightarrow \exists(\Sigma \vdash \phi)
$$

369. $\phi:=\mathcal{L}$-formula
370. $\phi:=[(\forall x) x=x] \wedge \neg[(\forall x) x=x]$
371. ϕ is a contradictory sentence (\perp).
372. \perp is a sentence that is false in every language and is true in no structure.

Completeness Theorem

373. $[1,2]$
374.

$$
(\Sigma \models \phi) \rightarrow(\Sigma \vdash \phi)
$$

375. $\mathcal{L}:=$ first-order language
376. $\Sigma:=$ set of \mathcal{L}-formulas
377. $\phi:=\mathcal{L}$-formula
378. The Completeness Theorem finishes the link between deducibility and logical implication.

Soundness + Completeness

379. $[1,2]$
380.

$$
(\Sigma \models \phi) \leftrightarrow(\Sigma \vdash \phi)
$$

381. $\mathcal{L}:=$ first-order language
382. $\Sigma:=$ set of \mathcal{L}-formulas
383. $\phi:=\mathcal{L}$-formula

Compactness Theorem

384. $[1,2]$
385.

$$
(\exists \mathfrak{A}: \mathfrak{A} \models \Sigma) \leftrightarrow\left(\forall \Sigma_{0} \exists \mathfrak{B}: \mathfrak{B} \models \Sigma_{0}\right)
$$

386. $\Sigma:=$ set of axioms
387. $(\mathfrak{A} \models \Sigma):=\mathfrak{A}$ is a model of Σ
388. $\Sigma_{0} \subseteq \Sigma$
389. $\Sigma_{0}:=$ finite subset of Σ
390. $\mathfrak{B}:=$ model of Σ_{0}
391. The Compactness Theorem
(i) is one use of the link between deducibility and logical implication;
(ii) focus our attention on the finiteness of deductions;
(iii) says that
Σ is satisfiable $\leftrightarrow \Sigma$ is finitely satisfiable.

(Finitely) Satisfiable

392. $[1,2]$
393.

$$
(\exists \mathfrak{A}: \mathfrak{A} \models \Sigma) \rightarrow(\Sigma \text { is satisfiable })
$$

394.

$$
\left(\forall \Sigma_{0} \exists \mathfrak{B}: \mathfrak{B} \models \Sigma_{0}\right) \rightarrow(\Sigma \text { is finitely satisfiable })
$$

395. $\Sigma:=$ set of axioms
396. $(\mathfrak{A} \models \Sigma):=\mathfrak{A}$ is a model of Σ
397. $\Sigma_{0} \subseteq \Sigma$
398. $\Sigma_{0}:=$ finite subset of Σ
399. $\mathfrak{B}:=$ model of Σ_{0}

Finite subset of a set of formulas

400. $[1,2]$
401.

$$
(\Sigma \models \theta) \leftrightarrow\left(\exists \Sigma_{0} \subseteq \Sigma: \Sigma_{0} \models \theta\right)
$$

402. $\mathcal{L}:=$ first-order language
403. $\Sigma:=$ set of \mathcal{L}-formulas
404. $\theta:=\mathcal{L}$-formula
405. $\Sigma_{0}:=$ finite subset of Σ

First-order Sentences: Natural Numbers

406. $[1,2]$
407. No set of first-order sentences can completely characterize the structure of the natural numbers.

Theory of a Structure

408. $[1,2]$
409.

$$
T h(\mathfrak{A})=\{\phi \mid \mathfrak{A} \models \phi\}
$$

410.

$$
\operatorname{Th}(\mathfrak{A})=\operatorname{Th}(\mathfrak{B}) \rightarrow \mathfrak{A} \equiv \mathfrak{B}
$$

411.

$$
(\mathfrak{A} \equiv \mathfrak{N}) \rightarrow(\mathfrak{A} \text { is a model of arithmetic })
$$

412. $\mathcal{L}:=$ first-order language
413. $\mathfrak{A}, \mathfrak{B}:=\mathcal{L}$-structures
414. $\phi:=\mathcal{L}$-formula
415. $(\mathfrak{A} \equiv \mathfrak{B}):=\mathfrak{A}$ and \mathfrak{B} are elementarily equivalent
416. $\mathcal{L}_{N T}=\{0, S,+, \cdot, E,<\}$
417. $\mathcal{L}_{N T}:=$ language of number theory
418. $\mathfrak{N}:=\mathcal{L}_{N T}$-structure

Substructure

419. $[1,2]$
420. $\mathfrak{A} \subseteq \mathfrak{B}$ if

$$
\begin{aligned}
& \text { (i) } A \subseteq B \\
& \text { (ii) } \forall c: c^{\mathfrak{A}}=c^{\mathfrak{B}} \\
& \text { (iii) } \forall R: R^{\mathfrak{A}}=R^{\mathfrak{B}} \cap A^{n} \\
& \text { (iv) } \forall f: f^{\mathfrak{A}}=f^{\mathfrak{B}} \upharpoonright_{A^{n}}
\end{aligned}
$$

421. (420.iv) means

$$
(\forall f)(\forall a \in A): f^{\mathfrak{A}}(a)=f^{\mathfrak{B}}(a) .
$$

422. $\mathcal{L}:=$ first-order language
423. $\mathfrak{A}, \mathfrak{B}:=\mathcal{L}$-structures
424. $(\mathfrak{A} \subseteq \mathfrak{B}):=\mathfrak{A}$ is a substructure of \mathfrak{B}
425. $A:=$ universe of \mathfrak{A}
426. $B:=$ universe of \mathfrak{B}
427. $R:=n$-ary relation symbol
428. $f:=n$-ary function symbol
429. $\left.f^{\mathfrak{B}}\right|_{A^{n}}$:= restriction of the function $f^{\mathfrak{B}}$ to the set A^{n}
430. A substructure of \mathfrak{B} is completely determined by its universe, and this universe can be any nonempty subset of B that contains the constants and is closed under every function f.

Elementary Substructure/Extension

431. $[1,2]$
432.

$(\mathfrak{A} \prec \mathfrak{B}):=\mathfrak{A}$ is an elementary substructure of \mathfrak{B} (equivalently, \mathfrak{B} is an elementary extension of \mathfrak{A}) if $\forall s \forall \phi: \mathfrak{A} \models \phi[s] \leftrightarrow \mathfrak{B} \models \phi[s]$
433. $\mathcal{L}:=$ first-order language
434. $\mathfrak{A}, \mathfrak{B}:=\mathcal{L}$-structures
435. $\mathfrak{A} \subseteq \mathfrak{B}$
436. $\phi:=\mathcal{L}$-formula
437. $s:$ Vars $\rightarrow A$
438. Vars $:=$ set of variables
439. $A:=$ universe of \mathfrak{A}

Truth in elementary substructure/extension

440. $[1,2]$
441.

$$
(\mathfrak{A} \prec \mathfrak{B}) \rightarrow(\sigma \text { is true in } \mathfrak{A} \leftrightarrow \sigma \text { is true in } \mathfrak{B})
$$

442. $\mathfrak{A}, \mathfrak{B}:=$ structures
443. $\sigma:=$ sentence

Condition for an elementary substructure

444. $[1,2]$
445.

$$
(\mathfrak{A} \subseteq \mathfrak{B}) \wedge(\forall \alpha \forall s: \mathfrak{B} \models \exists x \alpha[s], \exists a: \mathfrak{B} \models \alpha[s[x \mid a]]) \rightarrow(\mathfrak{A} \prec \mathfrak{B})
$$

446. $\mathfrak{A}, \mathfrak{B}:=$ structures
447. $\mathfrak{A} \subseteq \mathfrak{B}$
448. $\alpha:=$ formula
449. $s:$ Vars $\rightarrow A$
450. $A:=$ universe of \mathfrak{A}

Hilbert Axiomatic System

451. $[4,5]$
452. Hilbert-style calculus is performed in the Hilbert Axiomatic System, composed by 9 axioms and 1 rule (Modus Ponens).
453. rule $:=$ inference rule of logic

Axioms of the Hilbert-style Calculus

454. $[4,5]$
455. $A, B, C:=$ propositional variables or formulas
456. $\vdash A \rightarrow(B \rightarrow A)$
457. $\vdash(A \rightarrow(B \rightarrow C)) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)$
458. $\vdash(\neg A \rightarrow \neg B) \rightarrow B \rightarrow A$
459. $\vdash A \rightarrow(A \vee B)$
460. $\vdash A \rightarrow(B \vee A)$
461. $\vdash(A \rightarrow B) \rightarrow((C \rightarrow B) \rightarrow(A \vee C \rightarrow B))$
462. $\vdash(A \wedge B) \rightarrow A$
463. $\vdash(A \wedge B) \rightarrow B$
464. $\vdash A \rightarrow(B \rightarrow(A \wedge B))$

Inference Rule of the Hilbert-style Calculus

465. $[4,5]$
466. Modus Ponens

$$
\begin{aligned}
& \vdash P \\
& \vdash P \rightarrow Q \\
& \vdash Q
\end{aligned}
$$

Sequent Systems: Classical Logic

467. $[3,6]$
468. LK $:=$ sequent system for classical logic
469. sequents := basic syntactic units (finite sequence of formulas)
470. $\alpha_{i}, \beta_{i}:=$ formulas
471.

$$
\alpha_{1}, \ldots, \alpha_{m} \Rightarrow \beta_{1}, \ldots, \beta_{n}
$$

472. $m, n \geq 0$
473. (471) is a sequent.
474. \Rightarrow is a sequent arrow.
475. $\alpha_{1}, \ldots, \alpha_{m}:=$ antecedents (conjunctive-like "assumptions")
476. $\beta_{1}, \ldots, \beta_{n}:=$ succedents (disjunctive-like "conclusions")
477. (471) means that $\left(\alpha_{1} \wedge \ldots \wedge \alpha_{m}\right)$ implies $\left(\beta_{1} \vee \ldots \vee \beta_{n}\right)$.
478.

$$
\alpha_{1}, \ldots, \alpha_{m} \Rightarrow
$$

means $\left(\alpha_{1} \wedge \ldots \wedge \alpha_{m}\right)$ leads to a contradiction.
479.

$$
\Rightarrow \beta_{1}, \ldots, \beta_{n}
$$

means ($\beta_{1} \vee \ldots \vee \beta_{n}$) follows from no assumption.
480. The provability of a sequent is a syntactical approach.
481. The validity of a sequent is a semantical approach.
482. A sequent system contains initial sequents (axiom schemes in Hilbertstyle systems) and rules.
483. rule $:=$ one/two upper sequents and one lower sequent
484. The lower sequent can be inferred from the upper sequents.
485.
$\frac{\text { upper sequents }}{\text { lower sequent }}$
486. $\Gamma, \Pi, \Delta, \ldots$ (capital Greek letters) $:=$ finite (possibly empty) sequences of formulas
487. LK has three kinds of rules:
(i) (left/right) rules for $\vee, \wedge, \rightarrow, \neg$,
(ii) cut rule,
(iii) (left/right) structural rules.
488. The initial sequents are of the form $\alpha \Rightarrow \alpha$.
489. Rules for the logical connectives:
490.

$$
\frac{\alpha, \Gamma \Rightarrow \Pi \quad \beta, \Gamma \Rightarrow \Pi}{\alpha \vee \beta, \Gamma \Rightarrow \Pi}(\vee \mathrm{L})
$$

491.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha}{\Gamma \Rightarrow \Lambda, \alpha \vee \beta}(\vee \mathrm{R} 1) \quad \frac{\Gamma \Rightarrow \Lambda, \beta}{\Gamma \Rightarrow \Lambda, \alpha \vee \beta}(\mathrm{VR2})
$$

492.

$$
\frac{\alpha, \Gamma \Rightarrow \Pi}{\alpha \wedge \beta, \Gamma \Rightarrow \Pi}(\wedge \mathrm{L} 1) \quad \frac{\beta, \Gamma \Rightarrow \Pi}{\alpha \wedge \beta, \Gamma \Rightarrow \Pi}(\wedge \mathrm{L} 2)
$$

493.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \Gamma \Rightarrow \Lambda, \beta}{\Gamma \Rightarrow \Lambda, \alpha \wedge \beta}(\wedge \mathrm{R})
$$

494.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \beta, \Delta \Rightarrow \Pi}{\alpha \rightarrow \beta, \Gamma, \Delta \Rightarrow \Lambda, \Pi}(\rightarrow \mathrm{L}) \quad \frac{\alpha, \Gamma \Rightarrow \Lambda, \beta}{\Gamma \Rightarrow \Lambda, \alpha \rightarrow \beta}(\rightarrow \mathrm{R})
$$

495.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha}{\neg \alpha, \Gamma \Rightarrow \Lambda}(\neg \mathrm{L}) \quad \frac{\alpha, \Gamma \Rightarrow \Lambda}{\Gamma \Rightarrow \Lambda, \neg \alpha}(\neg \mathrm{R})
$$

496. Cut rule:

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \alpha, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Lambda, \Pi}
$$

497. Structural rules:
(i) exchange rules

$$
\frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \Pi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \Pi}(\mathrm{eL}) \quad \frac{\Gamma \Rightarrow \Pi, \alpha, \beta, \Lambda}{\Gamma \Rightarrow \Pi, \beta, \alpha, \Lambda}(\mathrm{eR})
$$

(ii) contraction rules

$$
\frac{\alpha, \alpha, \Gamma \Rightarrow \Pi}{\alpha, \Gamma \Rightarrow \Pi}\left(\text { cont L) } \quad \frac{\Gamma \Rightarrow \Pi, \alpha, \alpha}{\Gamma \Rightarrow \Pi, \alpha}(\operatorname{cont} \mathrm{R})\right.
$$

(iii) weakening rules

$$
\frac{\Gamma \Rightarrow \Pi}{\alpha, \Gamma \Rightarrow \Pi}(w \mathrm{~L}) \quad \frac{\Gamma \Rightarrow \Pi}{\Gamma \Rightarrow \Pi, \alpha}(w \mathrm{R})
$$

498. The parenthesis are labels for the rules.
499. Note that

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \beta, \Delta \Rightarrow \Pi}{\alpha \rightarrow \beta, \Gamma, \Delta \Rightarrow \Lambda, \Pi}(\rightarrow \mathrm{L})
$$

in the special case where

$$
\Gamma=\alpha, \quad \Lambda=\Delta=\emptyset, \quad \Pi=\beta
$$

the succedent is the Modus Ponens for the sequent arrow,

$$
\frac{\alpha \Rightarrow \alpha \quad \beta \Rightarrow \beta}{\alpha \rightarrow \beta, \alpha \Rightarrow \beta}(\rightarrow \mathrm{L})
$$

500. active formulas $:=$ formulas in the rules
501. cut formula := active formula of the cut rule
502. principal formula $:=$ formulas in lower sequents of the rules 503. side formulas $:=$ other formulas
503. left rules $:=(\# \Rightarrow)$
504. right rules $:=(\Rightarrow \#)$
505. When the upper sequent is provable, its lower sequent is also provable.
506. The structural rules control the order (exchange), duplication (contraction), and omission (weakening) of formulas in the cedents of a given sequent.
507. The left contraction rule means that each formula occurrence in the antecedents can be used more than once.

Proofs and Provability (in LK)

509. [3]
510.

$$
P:=\operatorname{proof}(\text { in LK }) \text { of }(\Gamma \Rightarrow \Delta),
$$

$:=$ a finite tree-like figure defined inductively as follows
(i) every sequent in P, except the initial sequents, is obtained by an application of any one of the rules,
(ii) $(\Gamma \Rightarrow \Delta):=$ end sequent of P.
511. LK $:=$ sequent system for classical logic
512. $(\Gamma \Rightarrow \Delta):=$ sequent
513. end sequent $:=$ single lowest sequent
514.

$$
(\Gamma \Rightarrow \Delta \text { is provable in } L K) \leftrightarrow(\text { there is a proof of } \Gamma \Rightarrow \Delta)
$$

515.

$$
\text { (} \alpha \text { is provable in } \mathrm{LK}) \leftrightarrow(\Rightarrow \alpha \text { is provable in } \mathrm{LK})
$$

516. $\alpha:=$ formula
517. $(\Rightarrow \alpha):=$ sequent

Rules for single formulas (in LK)

518. [3]
519. We will rewrite the rules of LK considering only single formulas in the sequents, instead of sequences of formulas, assuming that some sequences are empty.
520. LK $:=$ sequent system for classical logic
521. Rules for the logical connectives:
522.

$$
\frac{\alpha \Rightarrow \pi \quad \beta \Rightarrow \pi}{\alpha \vee \beta \Rightarrow \pi}(\mathrm{VL})
$$

523.

$$
\frac{\gamma \Rightarrow \alpha}{\gamma \Rightarrow \alpha \vee \beta}(\mathrm{VR1}) \quad \frac{\gamma \Rightarrow \beta}{\gamma \Rightarrow \alpha \vee \beta}(\mathrm{VR2})
$$

524.

$$
\frac{\alpha \Rightarrow \pi}{\alpha \wedge \beta \Rightarrow \pi}(\wedge \mathrm{L} 1) \quad \frac{\beta \Rightarrow \pi}{\alpha \wedge \beta \Rightarrow \pi} \text { (^L2) }
$$

525.

$$
\frac{\gamma \Rightarrow \alpha \quad \gamma \Rightarrow \beta}{\gamma \Rightarrow \alpha \wedge \beta}(\wedge \mathrm{R})
$$

526.

$$
\frac{\gamma \Rightarrow \alpha \quad \beta \Rightarrow \pi}{\alpha \rightarrow \beta, \gamma \Rightarrow \pi}(\rightarrow \mathrm{L}) \quad \frac{\alpha, \gamma \Rightarrow \beta}{\gamma \Rightarrow \alpha \rightarrow \beta}(\rightarrow \mathrm{R})
$$

527.

$$
\frac{\gamma \Rightarrow \lambda, \alpha}{\neg \alpha, \gamma \Rightarrow \lambda}(\neg \mathrm{L}) \quad \frac{\alpha, \gamma \Rightarrow \lambda}{\gamma \Rightarrow \lambda, \neg \alpha}(\neg \mathrm{R})
$$

528. Cut rule:

$$
\frac{\gamma \Rightarrow \alpha \quad \alpha \Rightarrow \pi}{\gamma \Rightarrow \pi} \text { (cut) }
$$

529. Structural rules:
(i) exchange rules

$$
\frac{\alpha, \beta \Rightarrow \pi}{\beta, \alpha \Rightarrow \pi}(\mathrm{eL}) \quad \frac{\gamma \Rightarrow \alpha, \beta}{\gamma \Rightarrow \beta, \alpha}(\mathrm{eR})
$$

(ii) contraction rules

$$
\frac{\alpha, \alpha \Rightarrow \pi}{\alpha \Rightarrow \pi}\left(\text { cont L) } \quad \frac{\gamma \Rightarrow \alpha, \alpha}{\gamma \Rightarrow \alpha}(\text { cont R) }\right.
$$

(iii) weakening rules

$$
\frac{\gamma \Rightarrow \pi}{\alpha, \gamma \Rightarrow \pi}(w \mathrm{~L}) \quad \frac{\gamma \Rightarrow \pi}{\gamma \Rightarrow \pi, \alpha}(w \mathrm{R})
$$

Multisets of Formulas

530. [3]
531.

two multisets are distinguished from each other \leftrightarrow
\leftrightarrow the multiplicity of any member of them is different
532.

$$
\left(\forall \Phi_{1}, \Phi_{2} \in S^{*}: \Phi_{1} \simeq \Phi_{2}\right) \leftrightarrow
$$

$\leftrightarrow\left(\forall s \in S:\right.$ multiplicity of s in $\Phi_{1}=$ multiplicity of s in $\left.\Phi_{2}\right)$
533. multiplicity $:=$ number of occurrences of any formula
534. $\{\alpha, \beta, \alpha\}=\{\beta, \alpha, \alpha\} \neq\{\alpha, \beta\}$
535. $S:=$ set of formulas; $\quad S^{*}:=$ set of multisets
536. $S^{*}:=$ all finite sequence of $s \in S$
537. $\simeq:=$ equivalence relation on S^{*}
538. $S^{*}=\left\{\Phi_{i} \mid \Phi_{i}:=\right.$ multiset $\}$
539. $\Phi_{1}, \Phi_{2}:=$ multisets
540.

$$
\left(M=S^{*} / \simeq\right) \rightarrow(M:=\text { the set of all finite multisets of } s \in S)
$$

541. $S^{*} / \simeq:=$ quotient set

Logical constant 0

542. [3]
543. $0:=$ falsum (falsehood) $:=$ arbitrary contradiction
544. $(\neg \alpha) \equiv(\alpha \rightarrow 0)$
545. $(0 \Rightarrow):=$ initial sequent meaning the falsum implies anything

Orthologic

546. $[7,8]$
547. orthologic (minimal quantum logic) := logic associated with the order relation of ortholattices
548.

$$
\mathcal{O}:=\text { ortholattice }:=\text { bounded lattice with } p^{\perp}
$$

549.

$$
\forall p \in \mathcal{O}: p \vee p^{\perp}=\top
$$

550. bounded lattice $:=$ lattice with smallest (\perp) and biggest (T) elements
551. lattice $:=$ post such that every two elements have an infimum and a supremum
552. poset := partial ordered set
553. partial order $:=$ reflexive, transitive, and antisymmetric relation
554. $p^{\perp}:=$ orthocomplement (order-reversing involution $p \mapsto \neg p$)
555. In particular, $\forall p, q \in \mathcal{O}$:

$$
\begin{aligned}
p \leq q & \Rightarrow q^{\perp} \leq p^{\perp} \\
\neg p^{\perp} & =p \\
\neg \perp & =\top \\
\neg(p \vee q) & =p^{\perp} \wedge q^{\perp} \\
\neg(p \wedge q) & =p^{\perp} \vee q^{\perp} \\
p \wedge p^{\perp} & =\perp
\end{aligned}
$$

556. The other De Morgan's laws hold.
557. \nexists distributive law between (\wedge, \vee)
558. In the sequent calculus style the axiomatization of orthologic is sound and complete.
559. Axiomatization of Orthologic:
560.

$$
\overline{A \vdash A} a x \quad \frac{A \vdash B \quad B \vdash C}{A \vdash C} c u t
$$

561.

$$
\overline{A \wedge B \vdash A} \wedge_{1} L \quad \overline{A \wedge B \vdash B} \wedge_{2} L \quad \frac{C \vdash A \quad C \vdash B}{C \vdash A \wedge B} \wedge R \quad \overline{C \vdash \top}^{\top} R
$$

562.

$$
\overline{A \vdash A \vee B} \vee_{1} R \quad \overline{\overline{B \vdash A \vee B}} \vee_{2} R \quad \frac{A \vdash C \quad B \vdash C}{A \vee B \vdash C} \vee L \quad \overline{\perp \vdash C} \perp L
$$

563.

$$
\frac{A \vdash B}{\neg B \vdash \neg A} \neg \quad \overline{A \vdash \neg \neg A} \neg \neg R \quad \overline{\neg \neg A \vdash A} \neg \neg L \quad \overline{\top \vdash A \vee \neg A} \text { tnd }
$$

564. (560) $\sim \succ$ (pre) order relation
565. (561) $\sim \succ$ bounded inf semi-lattice
566. (562) $\sim \succ$ bounded sup semi-lattice
567. (563) $\sim \succ$ ingredients related to the orthocomplement $\neg A$
568. (565) $+(566) \sim \succ$ provides the structure of a bounded lattice

Intuitionistic Reasoning

569. [9]
570. $\neg A$ is an abbreviation for $A \rightarrow \perp$, i.e.,

$$
\neg A \equiv(A \rightarrow \perp) .
$$

571. Conjecture: Nothing is a proof of \perp (falsity).
572. Many laws from classical logic are no longer valid due to the constructive meaning of the intuitionistic connectives.
573. The validity of $A \vee \neg A$ means there is a method to solve all mathematical problems.
574. There is a translation from classical formulas to intuitionistic ones.
575. Classical propositional logic can be defined within the intuitionistic logic.
576. $\rightarrow, \wedge, \vee$ are all independent.
577. In intuitionistic propositional logic, an infinite number of non-equivalent formulas can be built from only one atomic formula P [10].
578. Due to the intuitionistic refinement, equivalent formulas in classical propositional logic become no longer equivalent in intuitionistic propositional logic.
579. The intuitionistic logic has a richer language than the classical one.
580. Atomic formulas and connectives have a constructive interpretation.

Intuitionistic Propositional Logic: Syntax

581. [9]
582.

alphabet := consists of the following symbols:
(i) $P_{1}, P_{2}, P_{3}, \ldots:=$ atomic formulas or propositional variables [interpreted as (atomic) propositions]
(ii) $\rightarrow, \wedge, \vee, \neg:=$ connectives
(iii) (,) := brackets
583. Constructive interpretation of the connectives:
(i) $(A \rightarrow B):=$ one has a construction that transforms any proof of A into a proof of B,
(ii) $(A \wedge B):=$ one can construct a proof of A and one can construct a proof of B
(iii) $(A \vee B):=$ one has an algorithm that yields a proof of A or a proof of B
(iv) $(\neg A):=(A \rightarrow \perp)$
(v) \perp := atomic formula (falsity)
584. A proof of \perp implies a proof of any formula.
585. Formulas
(i) $\left(P:=P_{1} \underline{\vee} P_{2} \underline{\vee} P_{3} \underline{\vee} \ldots\right) \rightarrow(P:=$ atomic formula)
(ii) $(A, B:=$ formulas $) \rightarrow((A \rightarrow B),(A \wedge B),(A \vee B),(\neg A):=$ composite formulas)
586. $\underline{\vee}$ is the exclusive or.

Axiom Schema for Intuitionistic Propositional Logic

587. [9]
588. There are ten axioms and one rule in the intuitionistic propositional logic, which is obtained by replacing the axiom $\neg \neg A \rightarrow A$ of classical logic by $\neg A \rightarrow(A \rightarrow B)$.
589. Axioms:
590. $A \rightarrow(B \rightarrow A)$
591. $(A \rightarrow B) \rightarrow((A \rightarrow(B \rightarrow C)) \rightarrow(A \rightarrow C))$
592. $A \rightarrow(B \rightarrow A \wedge B)$
593. $A \wedge B \rightarrow A$
594. $A \wedge B \rightarrow B$
595. $A \rightarrow A \vee B$
596. $B \rightarrow A \vee B$
597. $(A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow(A \vee B \rightarrow C))$
598. $(A \rightarrow B) \rightarrow((A \rightarrow \neg B) \rightarrow \neg A)$
599. $\neg A \rightarrow(A \rightarrow B)$
600. Rule of inference: (Modus Ponens)

$$
A, A \rightarrow B \vdash B .
$$

Modal operators

601. [3]
602. $\square, \diamond:=$ (unary) modal operators
603. $\Delta \varphi \equiv \neg \square \neg \varphi$
604. \square can be interpreted as necessarily.
605. \diamond can be interpreted as possibly.
606. $\varphi:=$ formula

Decision problem

607. [16]
608. In computability theory and computational complexity theory, a decision problem is a problem that can be posed as a yes-no question of the input values.
609. An example of a decision problem is deciding whether a given natural number is prime.
610. A decision problem which can be solved by an algorithm is called decidable.
611.

Undecidable

612. [15]

613. In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer.
614. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run.

Word problem

615. [17]
616. In mathematics and computer science, a word problem for a set S with respect to a system of finite encodings of its elements is the algorithmic problem of deciding whether two given representatives represent the same element of the set.
617. The problem is commonly encountered in abstract algebra, where given a presentation of an algebraic structure by generators and relators, the problem is to determine if two expressions represent the same element; a prototypical example is the word problem for groups.
618. Less formally, the word problem in an algebra is: given a set of identities E, and two expressions x and y, is it possible to transform x into y using the identities in E as rewriting rules in both directions?
619. While answering the question in (618) may not seem hard, the remarkable (and deep) result that emerges, in many important cases, is that the problem is undecidable.
620. Many, if not most all, undecidable problems in mathematics can be posed as word problems.
621. List of undecidable problems
https://en.wikipedia.org/wiki/List_of_undecidable_problems

Natural Deduction in Heyting Semantics

622. [19, 20]
623. rules of natural deduction + Heyting Semantics $\sim \succ$ special way of constructing functions
624. $A, B, B_{i}:=$ formulas
625. formula $A:=$ set of its possible deductions; e.g., if $A=\{\alpha, \beta\}$ then both α and β prove A
626. hypotheses $B_{i} \in A$
627. $\left(B_{1}, \ldots, B_{n} \vdash A\right) \equiv t\left[x_{1}, \ldots, x_{n}\right]: B_{1} \times \ldots \times B_{n} \rightarrow A$
628. $x_{i}:=$ variables
629. Two occurrences of the same formula B_{i} in the same parcel of hypotheses correspond to the same variable.
630. The rules
(i) Hypothesis: A
(ii) Introductions:

$$
\begin{aligned}
& \text { [A] } \\
& \begin{array}{lll}
A \quad B \\
A \wedge B \\
& \vdots & \frac{A}{B} \\
A \rightarrow B
\end{array} \mathcal{I} x \quad \frac{A[a / x]}{\forall x . A} \exists \mathcal{I} \\
& \text { [A] } \\
& \begin{array}{cc}
\frac{A}{A \vee B} \vee 1 \mathcal{I} & \frac{B}{A \vee B} \vee 2 \mathcal{I} \\
& \begin{array}{c}
\perp \\
\neg A \\
\\
\mathcal{I}
\end{array}
\end{array} \\
& {[A] \quad[B]} \\
& \frac{B \quad A}{A \leftrightarrow B} \leftrightarrow \mathcal{I}
\end{aligned}
$$

(iii) Eliminations:

$$
\begin{array}{cc}
\frac{A \wedge B}{A} \wedge 1 \mathcal{E} & \frac{A \wedge B}{B} \wedge 2 \mathcal{E} \\
& \frac{A \rightarrow B \quad A}{B} \rightarrow \mathcal{E} \\
{[A]} & \\
\vdots & \frac{\forall x . A}{A[a / x]} \forall \mathcal{E}
\end{array}
$$

$[A] \quad[B]$

$$
\frac{A \leftrightarrow B \quad A}{B} \leftrightarrow \mathcal{E} 1 \quad \frac{A \leftrightarrow B \quad B}{A} \leftrightarrow \mathcal{E} 2
$$

(iv) Absurdity:

$$
\begin{array}{cl}
{[\neg A]} \\
\vdots & \stackrel{\perp}{B} \perp \mathcal{E} \\
\frac{\perp}{A} \perp &
\end{array}
$$

631. In $\exists \mathcal{E}, x$ cannot be free in B and in any hypothesis that has not being canceled, except in A, in the deduction of B.
632. In $\forall \mathcal{I}, x$ cannot be free in any hypothesis that has not being canceled in the deduction of A.
633. In (630), a is free for x in A.
634. The left deduction of (630.iv) is called reductio ad absurdum.
635. The fingerprint of classical logic is the reductio ad absurdum.
636. Interpretation of the rules
(i) $\exists!B_{1}: B_{1} \vdash A \Rightarrow x \equiv\left(B_{1} \vdash A\right) \Rightarrow x \in B_{1} \in A$
(ii) $\left(u\left[x_{1}, \ldots, x_{n}\right]: A\right) \wedge\left(v\left[x_{1}, \ldots, x_{n}\right]: B\right) \Rightarrow$
$\Rightarrow\left\langle u\left[x_{1}, \ldots, x_{n}\right], v\left[x_{1}, \ldots, x_{n}\right]\right\rangle: A \wedge B$
(note that u and v have been made to depend on the same variables; their choices are correlated)

$$
\frac{\vdots}{u: A} \quad \frac{\vdots}{v: B} \quad \frac{u: A \quad v: B}{\langle u, v\rangle: A \wedge B}
$$

(iii) $t\left[x_{1}, \ldots, x_{n}\right]: A \wedge B \Rightarrow \pi^{1} t\left[x_{1}, \ldots, x_{n}\right]: A$
$t:=$ proof of a conjunction
$\pi^{1} t:=$ first projection
$\pi^{2} t: B$
$\pi^{2} t:=$ second projection

$$
\overline{t: A \wedge B} \quad \frac{t: A \wedge B}{\pi^{1} t: A} \quad \frac{t: A \wedge B}{\pi^{2} t: B}
$$

The following equations are the essence of the correspondence between logic and computer science:

$$
\begin{aligned}
& \pi^{1}\langle u, v\rangle=u ; \quad \pi^{2}\langle u, v\rangle=v ; \quad\left\langle\pi^{1} t, \pi^{2} t\right\rangle=t . \\
& \frac{u: A: \quad b}{\langle u, v\rangle: A \wedge B}+u: A \quad \\
& \overline{u: A} \\
& \frac{\frac{u: A \quad v: B}{\langle u, v\rangle: A \wedge B}}{\pi^{2}\langle u, v\rangle: A} \\
& \overline{v: B}
\end{aligned}
$$

(iv) $\lambda x . v$ is a function from A to B with $v\left[a, x_{1}, \ldots, x_{n}\right] \in V, a \in A$ (in $\lambda x . v\left[x, x_{1}, \ldots, x_{n}\right], x$ is bound)
(note that binding corresponds to discharge)

$$
\begin{gathered}
{[x: A]} \\
\vdots \\
v: B \\
\hline \lambda x . v: A \rightarrow B
\end{gathered}
$$

$(v)\left(t\left[x_{1}, \ldots, x_{n}\right]: A \rightarrow B\right) \wedge\left(u\left[x_{1}, \ldots, x_{n}\right]: A\right) \Rightarrow$
$\Rightarrow t\left[x_{1}, \ldots, x_{n}\right] u\left[x_{1}, \ldots, x_{n}\right]: B$
$t: A \rightarrow B$ for fixed values of x_{1}, \ldots, x_{n}
$u \in A ; \quad t(u) \in B$

$$
\frac{t: A \rightarrow B \quad u: A}{t u: B}
$$

We have:

$$
\begin{aligned}
(\lambda x . v) u & =v[u / x] \\
\lambda x . t x & =t \quad(\text { when } x \text { is not free in } t) .
\end{aligned}
$$

$[x: A]$		$[x: A]$
\vdots		
$\frac{v: B}{\lambda x . v: A \rightarrow B}$	$\frac{t: A \rightarrow B}{} \quad u: A$	
$v: B$	\vdots	
$v[u / x]: B$		

637. In natural deduction, a proof is normal if it does not contain any sequence of an introduction and an elimination rule. (menemonic rule: $\mathrm{Nn}_{i e}$)

Lambda Calculus: Types

638.
639. In Heyting's approach, formulas become types.
640. The only types are the following:
(i) $T_{1}, \ldots, T_{n}:=$ atomic types $:=$ types;
(ii) $(U, V:=$ types $) \Rightarrow(U \times V, U \rightarrow V:=$ types $)$.

Lambda Calculus: Terms

641. [19]
642. Proofs become terms.
643. mnemonic rule: $\left(\mathrm{ft}_{y} \cdot \mathrm{pt}_{e}\right) \equiv$ (formulas $\sim \succ$ types, proofs $\sim \succ$ terms)
644. term of type $A:=$ proof of a formula A
645. $x_{0}^{T}, \ldots, x_{n}^{T}, \ldots:=$ terms of type T
646. $(u, v:=$ terms of types U and $V) \rightarrow(\langle u, v\rangle:=$ term of type $U \times V)$
647. ($t:=$ term of type $U \times V) \rightarrow\left(\pi^{1} t, \pi^{2} t:=\right.$ terms of types U and V, respectively)
648. $\left((v:=\right.$ term of type $V) \wedge\left(x_{n}^{U}:=\right.$ variable of type $\left.\left.U\right)\right) \rightarrow$ $\rightarrow\left(\lambda x_{n}^{U} \cdot v:=\right.$ term of type $\left.U \rightarrow V\right)$
649.

$$
\begin{gathered}
{\left[x_{n}^{U} \in U\right]} \\
\vdots \\
v \in V \\
\hline \lambda x_{n}^{U} \cdot v \in U \rightarrow V
\end{gathered}
$$

650. ($t, u:=$ terms of type $U \rightarrow V$ and U, respectively) \rightarrow $\rightarrow(t u:=$ term of type $V)$

Lambda Calculus: Denotational significance

651. [19]
652. (object of type $U \rightarrow V$) \equiv (function $f: U \rightarrow V$)
653. (object of type $U \times V) \equiv$ (ordered pair $\langle u, v\rangle, u \in U$ and $v \in V$)
654. $x^{T}:=$ variable of type T
655. $\langle u, v\rangle:=$ ordered pair
656. $\pi^{1} t:=$ first projection of t
657. $\pi^{2} t:=$ second projection of t
658. $\lambda x^{U} \cdot v: U \rightarrow V$ such that $\lambda x^{U} . v[u]=v[u / x]$ with $x^{U} \equiv u$
659. $u:=$ object of type U
660. $t u:=$ function t applied to the argument u
661. The following are primary equations:

$$
\begin{aligned}
\pi^{1}\langle u, v\rangle & =u \\
\pi^{2}\langle u, v\rangle & =v, \\
\left(\lambda x^{U} \cdot v\right) u & =v[u / x] .
\end{aligned}
$$

662. The following are secondary equations:

$$
\begin{aligned}
\left\langle\pi^{1} t, \pi^{2} t\right\rangle & =t \\
\lambda x^{U} \cdot t x & =t \quad(x \text { not free in } t) .
\end{aligned}
$$

System of equations in lambda calculus: Consistent and decidable

663. [19]
664. Theorem. The system given by (661) and (662) is consistent and decidable.
665. Consistency means that $x=y$, where x and y are distinct variables, cannot be proved.

Conversion

666. [19]
667. $t, t^{\prime}:=$ terms
668. In natural deduction, a proof is normal if it does not contain any sequence of an introduction and an elimination rule.
(menemonic rule: $\mathrm{Nn}_{i e}$)
669. $\left(\lambda x^{U} \cdot v\right) u \sim \succ$ introduction
670. $\left\{\pi^{1}\langle u, v\rangle, \pi^{2}\langle u, v\rangle\right\} \sim \succ$ elimination
671. none subterms are of the form $\left(\lambda x^{U} \cdot v\right) u$ or $\pi^{1}\langle u, v\rangle$ or $\pi^{2}\langle u, v\rangle \Rightarrow$ \Rightarrow term := normal form
672. t converts to t^{\prime} if either:

$$
\begin{aligned}
(i) t & =\pi^{1}\langle u, v\rangle, \quad t^{\prime}=u ; \quad \text { or } \\
\text { (ii) } t & =\pi^{2}\langle u, v\rangle, \quad t^{\prime}=v ; \quad \text { or } \\
\text { (iii) } t & =\left(\lambda x^{U} . v\right) u, \quad t^{\prime}=v[u / x] .
\end{aligned}
$$

$$
\begin{gathered}
{\left[x^{U} \in U\right]} \\
\vdots \\
v \in V \\
\lambda x^{U} . v \in U \rightarrow V
\end{gathered}
$$

673. $t:=$ redex
674. $t^{\prime}:=$ contractum
675. t and t^{\prime} are of the same type
676. \exists sequence $u=t_{0}, t_{1}, \ldots, t_{n-1}, t_{n}=v:$ for $i=0,1, \ldots, n-1$, t_{i+1} is obtained from t_{i} by replacing a redex by its contractum \Rightarrow $\Rightarrow u \rightsquigarrow v$
677. $(u \rightsquigarrow v):=u$ reduces to v
678. \rightsquigarrow is reflexive and transitive.
679. $((t \rightsquigarrow u) \wedge(u:=$ normal $)) \equiv(\exists!u: u:=$ normal form for $t)$
680. $(t:=$ normal $) \leftrightarrow t$ is in head normal form $\left(\lambda x_{1} x_{2} \ldots x_{n} . y u_{1} u_{2} \ldots u_{m}\right)$ (where $y=x_{i} \underline{\vee} y \neq x_{i}, \quad u_{j}$ are normal)
681. A term converts in one step, reduces in many.
682. Conversion can be identified as rewriting, the left member being rewritten to the right one.

The Curry-Howard Isomorphism

683. [18-20]
684. This is an isomorphism between proofs and functional terms.
685. variable $x_{i}^{A} \equiv$ deduction $A(A$ in parcel $i)$
686. Recall the following rules for natural deduction
(i) Hypothesis: $x: A$
(ii) Introductions:

$$
\begin{array}{cc}
x: A \quad y: B \\
x y: A \wedge B
\end{array} \mathcal{I} \quad \begin{gathered}
x: A] \\
\frac{y: B}{\lambda x . x y: A \rightarrow B} \rightarrow \mathcal{I} x
\end{gathered} \quad \frac{x: A}{\forall \xi . A} \forall \mathcal{I} \quad \frac{A[a / \xi]}{\exists \xi . A} \exists \mathcal{I}
$$

$$
\begin{array}{ccc}
& & {[x: A]} \\
\frac{x: A}{A \vee B} \vee 1 \mathcal{I} & \frac{y: B}{A \vee B} \vee 2 \mathcal{I} & \vdots \\
& \stackrel{\perp}{\neg A} \neg \mathcal{I}
\end{array}
$$

$$
\begin{array}{cc}
{[A]} & {[B]} \\
\vdots & \vdots \\
B & A \\
\hline A \leftrightarrow B
\end{array} \leftrightarrow \mathcal{I}
$$

(iii) Eliminations:
(iv) Absurdity:

$$
\begin{gathered}
{[\neg A]} \\
\vdots \\
\frac{\perp}{x: A} \perp
\end{gathered}
$$

687.

$$
\overline{u: A} \quad \frac{\vdots}{v: B} \quad \frac{u: A \quad v: B}{\langle u, v\rangle: A \wedge B} \wedge \mathcal{I}
$$

$$
\begin{aligned}
& \frac{x y: A \wedge B}{x: A} \wedge 1 \mathcal{E} \quad \frac{x y: A \wedge B}{y: B} \wedge 2 \mathcal{E} \quad \frac{\lambda x \cdot x y: A \rightarrow B \quad x: A}{y: B} \rightarrow \mathcal{E} \\
& \text { [} A \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& {[x: A] \quad[y: B]} \\
& \begin{array}{cccc}
& \vdots & \vdots \\
A \vee B & z: C & z: C \\
z: C & & \frac{\neg A \quad A}{\perp} \neg \mathcal{E}
\end{array} \\
& \frac{A \leftrightarrow B \quad A}{B} \leftrightarrow \mathcal{E} 1 \quad \frac{A \leftrightarrow B \quad B}{A} \leftrightarrow \mathcal{E} 2
\end{aligned}
$$

688.

$$
\overline{t: A \wedge B} \quad \frac{t: A \wedge B}{\pi^{1} t: A} \wedge \mathcal{E} \quad \frac{t: A \wedge B}{\pi^{2} t: B} \wedge 2 \mathcal{E}
$$

689. if the deleted hypotheses form parcel i

$$
\begin{gathered}
{\left[x_{i}: A\right]} \\
\vdots \\
\frac{v: B}{\lambda x_{i}^{A} \cdot v: A \rightarrow B} \rightarrow \mathcal{I} x_{i}
\end{gathered}
$$

690. term tu

$$
\frac{t: A \rightarrow B \quad u: A}{t u: B} \rightarrow \mathcal{E}
$$

691. Conversion, normality, and reduction correspond perfectly on both sides of the isomorphism.
(mnemonic: cnr.iso)

The Normalization Theorem

692. [19]
693. typed λ-calculus $\sim \succ$ behaves well computationally
694. Normalization Theorem $\sim \succ$ existence (normal form)
695. Church-Rosser property $\sim \succ$ uniqueness (normal form)
696. mnemonic: NeCRu
697. (694) $\sim \succ$ two forms:
(i) weak $\sim \succ \exists$ terminating strategy (normalization)
(ii) strong $\sim \succ$ all possible strategies (normalization) terminate

The lambda-calculus: Introduction

698. [21]
699. λ-calculus $\sim \succ$ collection of several formal systems
700. Example:
701. $f(x)=x-y ; \quad g(y)=x-y$
702. $f: x \mapsto x-y ; \quad g: y \mapsto x-y$
703. $f=\lambda x \cdot x-y ; \quad g=\lambda y \cdot x-y$
704. $f(0)=0-y ; \quad f(1)=1-y$
705. $(\lambda x \cdot x-y)(0)=0-y ; \quad(\lambda x \cdot x-y)(1)=1-y$

The lambda-calculus: Formal system

706. [21]
707. λ-term $:=$ atom $\underline{\vee}$ application $\underline{\vee}$ abstraction
(a) $v_{i}, c_{i}:=\lambda$-terms (atoms)
(b) $(M, N:=\lambda$-terms) $\rightarrow((M N):=\lambda$-term (application))
(c) $(M:=\lambda$-term $\wedge x:=$ variable $) \rightarrow$ $\rightarrow((\lambda x . M):=\lambda$-term (abstraction))
708. $v_{i}:=$ variables
709. $c_{i}:=$ atomic constants
710. $x, y, z:=$ distinct variables $\Rightarrow M=y z \Rightarrow \quad(\lambda x \cdot M)=(\lambda x \cdot(y z)):=$ vacuous abstraction (x does not occur in M) := constant functions
711. λ and λx are not terms.
712. $M, N, P, Q, \ldots:=\lambda$-terms
713. $x, y, z, u, v, w, \ldots:=$ variables
714. $M \equiv N$ means syntactic identity, i.e., M is exactly the same term as N.
715. Application: $M N P Q \equiv((((M N) P) Q)$ (association from left to right)
716. $\lambda x \cdot P Q \equiv(\lambda x \cdot(P Q))$
717. Abstraction: $\lambda x_{1} x_{2} \ldots x_{n} \cdot M \equiv\left(\lambda x_{1} \cdot\left(\lambda x_{2} \cdot\left(\ldots\left(\lambda x_{n} \cdot M\right)\right)\right)\right)$ (from right to left)
718. menemonic: app.lr, abs.rl
719. $(M N \equiv P Q) \rightarrow(M \equiv P \wedge N \equiv Q)$
720. $(\lambda x \cdot M \equiv \lambda y \cdot P) \rightarrow(x \equiv y \wedge M \equiv P)$
721. $k=0$ in $P \equiv M N_{1} \ldots N_{k}(k \geq 0)$ means $P \equiv M$.
722. $n=0$ in $\lambda x_{1} \ldots x_{n} . P Q$ means $P Q$.
723. $\lambda:=$ (abbreviated as) λ-calculus in general
724. iff $:=$ if and only if

The lambda-calculus: Informal interpretation

725. [21]
726. ($M:=$ function/operator $) \Rightarrow(M N:=$ application of M to $N)$
727. $(\lambda x . M)(N):=$ operator/function substituting N for x in M
728. $x y:=$ application
729. $\lambda x \cdot x(x y):=$ the operation of applying a function twice to y
730. $(\lambda x \cdot x(x y))(N)=N(N y)$ holds for all terms N.
731. $\lambda x . y:=$ constant function (value y for all arguments)
732. $(\lambda x . y) N=y$

Lambda-terms: Length, occurrence, scope, free and bound variables, substitution

733. [21]
734.

$$
\operatorname{lgh}(M):=\text { total number of occurences of } c_{i}, v_{i} \text { in } M
$$

(a) $\operatorname{lgh}(a)=1$
(b) $\operatorname{lgh}(M N)=\operatorname{lgh}(M)+\operatorname{lgh}(N)$
(c) $\operatorname{lgh}(\lambda x . M)=1+\operatorname{lgh}(M)$
735. $\operatorname{lgh}(M):=$ length of M
736. $M, N, P, Q:=\lambda$-terms
737. $c_{i}, v_{i}, a, x:=\lambda$-terms (atoms)
738. $x, y, z, u, v, v_{i}:=$ variables
739. induction on $M \equiv$ induction on $\operatorname{lgh}(M)$
740. e.g., $M \equiv x y z(\lambda x y . u v) \rightarrow \operatorname{lgh}(M)=7$
741.
P occurs in $Q \equiv P$ is a subterm of $Q \equiv Q$ contains P (relation defined by induction on Q)
(a) P occurs in P
(b) $(P$ occurs in $M) \vee(P$ occurs in $N) \rightarrow(P$ occurs in $M N)$
(c) $(P$ occurs in $M) \vee(P \equiv x) \rightarrow(P$ occurs in $\lambda x . M)$
742. In $z(\lambda y .(x y z))$ there are two occurences of z and y, and one occurrence of x.
743. In $\lambda x . M, M$ is the scope of λx.
744. (i) $(x \in M$ in $\lambda x . M) \rightarrow(x$ is bound $)$
(ii) the x in λx is bound and binding (iii) x is free otherwise
745. In $x \lambda x$.x, the left x is a free variable and the right x is a bound variable.
746. $\mathrm{FV}(P):=$ set of all free variables of P
747. closed term := a term with no free variables
748.

$$
[N / x] M:=\text { substitution of } N, \forall x^{f} \in M
$$

749. $x^{f}:=$ free occurrence of x
750. The definition of substitution is by induction on M :
(let $x \not \equiv y$ and $z \notin \mathrm{FV}(N P)$)
(a) $[N / x] x \equiv N$
(b) $[N / x] a \equiv a, \forall a \not \equiv x$
(c) $[N / x](P Q) \equiv([N / x] P[N / x] Q)$
(d) $[N / x](\lambda x . P) \equiv \lambda x . P$
(e) $x \notin \mathrm{FV}(P) \rightarrow[N / x](\lambda y . P) \equiv \lambda y . P$
(f) $(x \in \mathrm{FV}(P) \wedge y \notin \mathrm{FV}(N)) \rightarrow[N / x](\lambda y . P) \equiv \lambda y .[N / x] P$
$(g)(x \in \mathrm{FV}(P) \wedge y \in \mathrm{FV}(N)) \rightarrow[N / x](\lambda y \cdot P) \equiv \lambda z \cdot[N / x][z / y] P$
751. (a) $[x / x] M \equiv M$
(b) $x \notin \mathrm{FV}(M) \rightarrow[N / x] M \equiv M$
(c) $x \in \mathrm{FV}(M) \rightarrow \mathrm{FV}([N / x] M)=\mathrm{FV}(N) \cup(\mathrm{FV}(M)-\{x\})$
(d) $\operatorname{lgh}([y / x] M)=\operatorname{lgh}(M)$
752. Let x, y, v be distinct, let no variable bound in M be free in $v P Q$
(a) $v \notin \mathrm{FV}(M) \rightarrow[P / v][v / x] M \equiv[P / x] M$
(b) $v \notin \mathrm{FV}(M) \rightarrow[x / v][v / x] M \equiv M$
(c) $y \notin \mathrm{FV}(P) \rightarrow[P / x][Q / y] M \equiv[([P / x] Q) / y][P / x] M$
(d) $y \notin \mathrm{FV}(P) \wedge x \notin \mathrm{FV}(Q) \rightarrow[P / x][Q / y] M \equiv[Q / y][P / x] M$
(e) $[P / x][Q / x] M \equiv[([P / x] Q) / x] M$

Lambda-terms: Change of bound variables, congruence

753. [21]
754. P contains an occurrence of λx.M.
755. $y \notin \mathrm{FV}(M)$
756.

$$
\begin{array}{r}
(\lambda x . M \equiv \lambda y \cdot[y / x] M):=\text { change of bound variable } \\
(\alpha \text {-conversion in } P)
\end{array}
$$

757. $\left(P \equiv_{\alpha} Q\right) \leftrightarrow P$ can be converted to Q by a finite (or empty) number of changes (756)
758. $\left(P \equiv{ }_{\alpha} Q\right):=P$ is congruent to $Q:=P \alpha$-converts to Q 759.

$$
P \equiv_{\alpha} Q \rightarrow \mathrm{FV}(P)=\mathrm{FV}(Q)
$$

760. \equiv_{α} is an equivalence relation.
761. Removing the condition on bounded variables in M, (752) also holds for \equiv_{α}.
762.

$$
\left(M \equiv_{\alpha} M^{\prime}\right) \wedge\left(N \equiv_{\alpha} N^{\prime}\right) \rightarrow[N / x] M \equiv_{\alpha}\left[N^{\prime} / x\right] M^{\prime}
$$

763. (762) shows that substitution is well-behaved regarding \equiv_{α}.
764. We can think of \equiv and \equiv_{α} as being identical.

Lambda-terms: Simultaneous substitution

765. [21]
766. See (750).
767.

$\left[N_{1} / x_{1}, \ldots, N_{n} / x_{n}\right] M:=$ simultaneous substitution for $n \geq 2$
768. $\left[N_{1} / x_{1}, \ldots, N_{n} / x_{n}\right] M$ can be different from $\left[N_{1} / x_{1}\right] \ldots\left[N_{n} / x_{n}\right] M$.

Lambda-terms: β-reduction

769. [21]
770.

$$
(\lambda x . M) N:=\beta \text {-redex of }[N / x] M
$$

771.

$$
[N / x] M:=\text { contractum of }(\lambda x \cdot M) N
$$

772. In this context \supseteq means contains an occurrence of a λ-term.
773.

$$
\left.(P \supseteq(\lambda x . M) N) \wedge P^{\prime} \equiv[[N / x] M] P /(\lambda x . M) N\right) \leftrightarrow P \triangleright_{1 \beta} P^{\prime}
$$

774. $\left(P \triangleright_{1 \beta} P^{\prime}\right):=P \beta$-contracts to P^{\prime} (contraction of the redex-occurrence in P)
775. $\left(P \triangleright_{\beta} P^{\prime}\right):=P \beta$-reduces to Q
iff P can be changed to Q by a finite number of β-contractions and changes of bound variables
776. β-reduction not necessarily simplifies a term; it terminates when there are no redexes.

Lambda-terms: β-normal form

777. [21]
778. β-normal form $(\beta-n f):=$ a term with no β-redexes
779. β-nf (or $\lambda \beta$-nf) : class of all β-normal forms
780. $P \triangleright_{1 \beta}(Q$ in β-nf $) \rightarrow Q:=\beta$-normal form of P
781. $P, Q:=\mathrm{terms}$
782. A term can have a normal form and also an infinite reduction.
783. $\Omega \equiv(\lambda x . x x)(\lambda x . x x)$
784. Ω is not a normal form (it always reduces to itself)
785. $\Omega:=$ minimal (it cannot be reduced to any different term)
786. The α-steps (756) are allowed in β-reductions in order to change bound variables at the beginning of the reduction and therefore avoid having to change variables while substituting.
787. lambda-calculus \sim programming language $\sim \succ$ two β-reductions reach the same normal form $\sim \succ$ the end-result is independent of the path $\sim \succ$ Church-Rosser theorem: the normal form of a term is unique
788. $\triangleright_{\beta}, \mathrm{FV}$, and \supseteq : (nothing new can be introduced during a reduction)

$$
P \triangleright_{\beta} Q \rightarrow \mathrm{FV}(P) \supseteq \mathrm{FV}(Q)
$$

789. Substitution and $\triangleright_{\beta}:\left(\triangleright_{\beta}\right.$ is preserved by substitution $)$

$$
\left(P \triangleright_{\beta} P^{\prime}\right) \wedge\left(Q \triangleright_{\beta} Q^{\prime}\right) \rightarrow[P / x] Q \triangleright_{\beta}\left[P^{\prime} / x\right] Q^{\prime}
$$

790. Church-Rosser theorem for \triangleright_{β}

$$
\left(P \triangleright_{\beta} M\right) \wedge\left(P \triangleright_{\beta} N\right) \rightarrow \exists T: M\left(\triangleright_{\beta} T\right) \wedge\left(N \triangleright_{\beta} T\right)
$$

791. The property in (790) is called confluence.
792. The theorem (790) states that β-reduction is confluent.
793. If P has a β-normal form, it is unique modulo \equiv_{α}

$$
\left(P \triangleright_{\beta} M\right) \wedge\left(P \triangleright_{\beta} N\right) \rightarrow M \equiv_{\alpha} N
$$

794. β-nf is the smallest class such that:
(a) $\forall a(a \in \beta-\mathrm{nf})$
(b) $M_{1}, \ldots, M_{n} \in \beta$-nf $\rightarrow \forall a: a M_{1} \ldots M_{n} \in \beta$-nf
(c) $M \in \beta$-nf $\rightarrow \lambda x . M \in \beta$-nf
795. $a:=$ atoms
796.

$$
\begin{aligned}
& \left(M \equiv a M_{1} \ldots M_{n}\right) \wedge\left(M \triangleright_{\beta} N\right) \wedge\left(M_{i} \triangleright_{\beta} N_{i} \text { for } i=1, \ldots n\right) \rightarrow \\
& \rightarrow N \equiv a N_{1} \ldots N_{n}
\end{aligned}
$$

Lambda-terms: β-equality

797. [21]
798.

$$
\begin{array}{r}
P={ }_{\beta} Q \leftrightarrow \quad \exists P_{0}, \ldots, P_{n}(n \geq 0): \\
(\forall i \leq n-1)\left(P_{i} \triangleright_{1 \beta} P_{i+1} \vee P_{i+1} \triangleright_{1 \beta} P_{i} \vee P_{i} \equiv_{\alpha} P_{i+1}\right), \\
P_{0} \equiv P, \quad P_{n} \equiv Q
\end{array}
$$

799. $\left(P={ }_{\beta} Q\right):=P$ is β-equal $(\beta$-convertible)
800. $\left(P={ }_{\beta} Q\right)$ means Q can be obtained from P by a finite (or empty) (reversed) β-contractions and changes of variables.
801.

$$
\left(P={ }_{\beta} Q\right) \wedge\left(P \equiv_{\alpha} P^{\prime}\right) \wedge\left(Q \equiv_{\alpha} Q^{\prime}\right) \rightarrow P^{\prime}={ }_{\beta} Q^{\prime}
$$

802. Substitution lemma for β-equality

$$
\left(M={ }_{\beta} M^{\prime}\right) \wedge\left(N={ }_{\beta} N^{\prime}\right) \rightarrow[N / x] M={ }_{\beta}\left[N^{\prime} / x\right] M^{\prime}
$$

803. Church-Rosser theorem for $=_{\beta}$

$$
P={ }_{\beta} Q \rightarrow \exists T:\left(M \triangleright_{\beta} T\right) \wedge\left(N \triangleright_{\beta} T\right)
$$

Two β-convertible terms can both be reduced to the same term.
804. β-convertibility is called $=$.
805.

$$
\left(P={ }_{\beta} Q\right) \wedge(Q:=\beta \text {-normal form }) \rightarrow P \triangleright_{\beta} Q
$$

806.

$$
\left(P={ }_{\beta} Q\right) \rightarrow(P, Q:=\text { same } \beta \text {-nf }) \underline{\vee}(P, Q:=\text { no } \beta \text {-nf })
$$

807.

$$
(P, Q \in \beta \text {-nf }) \wedge\left(P={ }_{\beta} Q\right) \rightarrow P \equiv_{\alpha} Q
$$

808. the relation β-nf is non-trivial $\sim \succ$ not all terms are β-convertible to each other
809. e.g., since $\lambda x y . x y \not \equiv_{\alpha} \lambda x y . y x$ then $\lambda x y . x y \neq{ }_{\beta} \lambda x y . y x$
810. Uniqueness of normal form: A term is β-equal to at most one β normal form, modulo changes of bound variables.
811.

$$
\begin{aligned}
& (a, b:=\text { atoms }) \wedge\left(a M_{1} \ldots M_{m}={ }_{\beta} b N_{1} \ldots N_{n}\right) \rightarrow \\
& \quad \rightarrow(a \equiv b) \wedge(m=n) \wedge\left(M_{i}={ }_{\beta} N_{i}, \forall i \leq m\right)
\end{aligned}
$$

812. terms without normal forms $\sim \succ$ computed for ever (without reaching a result)
813. λ I-terms
(a) $v_{i}, c_{i}:=\lambda$ I-terms (atoms)
(b) $(M, N:=\lambda$ I-terms $) \rightarrow((M N):=\lambda$-term (application) $)$
(c) $(M:=\lambda$ I-term $\wedge x:=$ free variable in $M) \rightarrow$ $\rightarrow((\lambda x . M):=\lambda$ I-term (abstraction) $)$
814. (λI-term $:=$ has a normal form $) \rightarrow$ (all its subterms have a normal form)

Simple typing, Church-style

815. [21]
816. mathematics $\sim \succ$ definition + function $\sim \succ$ statement of the kind (inputs + outputs)
817. λ-calculus $\sim \succ$ modify $\lambda \sim \succ$ attach expressions to terms (called types) $\sim \succ$ like labels (to denote input/output sets)
818. two approaches
(i) Church-style (explicit or rigid)
(ii) Curry-style (implicit)
819. Church-style $\sim \succ$ term's type is a built-in part of the term
820. atomic types $:=$ finite/infinite sequence of symbols
821. Simple types
(a) $(\forall a: a:=$ atomic type $) \rightarrow(a:=$ type $)$
(b) $(\sigma, \tau:=$ types $) \rightarrow((\sigma \rightarrow \tau):=$ function type $)$
822. atomic type $\sim \succ$ denotes a set
823. $\mathrm{N}:=$ atomic type for the set of natural numbers
824. $(\sigma \rightarrow \tau):=$ set of functions from σ (domain) to τ (range)
825. $(\mathrm{N} \rightarrow(\mathrm{N} \rightarrow \mathrm{N})):=$ set of functions from numbers to functions
826. $(\rho \rightarrow \sigma \rightarrow \tau) \equiv(\rho \rightarrow(\sigma \rightarrow \tau))$
(association from right to left)

Typed λ-calculus

827. [21]
828. $x:=$ untyped variable
829. $\tau, \sigma:=$ types
830. $\exists_{\infty}:=$ there is an infinite number
831. Typed variables

$$
x^{\tau}:=\text { variable of type } \tau
$$

(a) (consistency condition) $\nexists x:\left(\exists x^{\tau} \exists x^{\sigma}\right) \wedge(\tau \not \equiv \sigma)$
(b) $\forall \tau \exists \exists_{\infty} x_{i}$
832. $x^{\tau} \in \tau$
833. $x^{\mathrm{N}}:=$ arbitrary number
834. $x^{\mathrm{N} \rightarrow \mathrm{N}}:=$ function
835. $x^{\tau}:=$ typed variables
836. $c^{\tau}:=$ typed atomic constants
837. Simply typed λ-terms

$$
\text { (a) } x^{\tau}, c^{\tau}:=\text { typed } \lambda \text {-terms }
$$

(b) $\left(M^{\sigma \rightarrow \tau}, N^{\sigma}:=\right.$ typed λ-terms $) \rightarrow\left(M^{\sigma \rightarrow \tau} N^{\sigma}\right)^{\tau}:=$ typed λ-term of type τ
(c) $\left(x^{\sigma}:=\right.$ typed variable $) \wedge\left(M^{\tau}:=\right.$ typed λ-term $) \Rightarrow$ $\Rightarrow\left(\lambda x^{\sigma} \cdot M^{\tau}\right)^{\sigma \rightarrow \tau}:=$ typed λ-term of type $\sigma \rightarrow \tau$
838. $M^{\tau}:=$ typed term
839. $M^{\tau} \in \tau$
840. $\left(M^{\sigma \rightarrow \tau}:=\right.$ function ϕ from σ to $\left.\tau\right) \wedge\left(N^{\sigma}:=\right.$ member a of $\left.\sigma\right) \Rightarrow$ $\Rightarrow\left(M^{\sigma \rightarrow \tau} N^{\sigma}\right)^{\tau}:=\phi(a) \in \tau$
841. e.g., $\quad \overline{0}^{\mathrm{N}}$ (atom $):=$ zero; $\quad \bar{\sigma}^{\mathrm{N} \rightarrow \mathrm{N}}:=$ successor function

The Sequent Calculus LJ

842. [22]
843. LJ $:=$ intuitionistic logic
844. The following notation is an abbreviation for an inductive definition

$$
A::=X \mid A \rightarrow A
$$

845. $::=$ is a definition by induction.
846. Note that in (844), at the same time that the inductive definition is given, it is also said that the propositional variable X and the formula A will be used to denote elements of the set being defined.
847. (844) $:=$ grammar for a version of LJ (the implication is the sole connective)
848. $X \in \mathcal{V}_{\mathcal{F}}:=$ infinite set of propositional variable names
849. $A, B, C:=$ formulas
850. named formula := pair (formula, name)
851. $\Gamma:=$ set of named formulas
852. $(\Gamma \vdash A):=$ sequent of LJ
853. $(A, \mathrm{~A}$'s name $) \notin \Gamma \rightarrow((\Gamma, A) \equiv(\Gamma \cup\{A\}))$
854. Irrelevant formulas in axioms are admitted.
855. Rules of LJ:

$$
\begin{gathered}
\overline{\Gamma, A \vdash A}^{A x} \quad \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \mathrm{Cont} \\
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \rightarrow B \vdash C} I_{L} \\
\frac{\Gamma \vdash A \quad \Gamma, A \vdash B}{\Gamma \vdash B} C u t
\end{gathered}
$$

The Sequent Calculus LJT

856. $[22,23]$
857. $(\Gamma ; \vdash A),(\Gamma ; A \vdash A):=$ sequents of LJT
858. $\Gamma:=$ set of named formulas
859. stoup $:=$ the special place between ; and \vdash
860. $\exists \leq 1$ formula in the stoup.
861. Rules of LJT:

$$
\begin{array}{cc}
\overline{\Gamma ; A \vdash A}^{A x} & \frac{\Gamma, A ; A \vdash B}{\Gamma, A ; \vdash B} \text { Cont } \\
\frac{\Gamma ; \vdash A \quad \Gamma ; B \vdash C}{\Gamma ; A \rightarrow B \vdash C} I_{L} & \frac{\Gamma, A ; \vdash B}{\Gamma ; \vdash A \rightarrow B} I_{R}
\end{array}
$$

862. Head-cut rule: (in the stoup)

$$
\frac{\Gamma ; \Pi \vdash A \quad \Gamma ; A \vdash B}{\Gamma ; \Pi \vdash B} C_{H}
$$

863. Mid-cut rule: (not in the stoup)

$$
\frac{\Gamma ; \vdash A \quad \Gamma, A ; \Pi \vdash B}{\Gamma ; \Pi \vdash B} C_{M}
$$

864. $X:=$ formula
865. $(\Pi=\emptyset) \underline{\vee}(\exists!X \in \Pi)$

Translation of proofs from LJ to LJT

866. $[22,23]$
867. Irrelevant formulas in axioms are admitted.
868. In the following, \rightsquigarrow means translation from LJ to LJT. 869.

$$
\overline{\Gamma, A \vdash A}^{\Gamma, A x} \quad \rightsquigarrow \quad{\frac{\overline{\Gamma, A ; A \vdash A}^{A x}}{\Gamma, A ; \vdash A}}^{C o n t}
$$

870. $(A \rightarrow B) \in \Gamma$
871.

$$
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} I_{R} \quad \rightsquigarrow \quad \frac{\Gamma, A ; \vdash B}{\Gamma ; \vdash A \rightarrow B} I_{R}
$$

872.

$$
\frac{\Gamma \vdash A \quad \Gamma, A \vdash B}{\Gamma \vdash B} C u t \quad \rightsquigarrow \quad \frac{\Gamma ; \vdash A \quad \Gamma, A ; \vdash B}{\Gamma ; \vdash B} C_{M}
$$

Proofs in Natural Deduction

873. [19, 20]
874. Recall the following rules for natural deduction
(i) Hypothesis: A
(ii) Introductions:
(iii) Eliminations:

$$
\begin{array}{cc}
\frac{A \wedge B}{A} \wedge 1 \mathcal{E} & \frac{A \wedge B}{B} \wedge 2 \mathcal{E} \\
{[A]} & \frac{A \rightarrow B \quad A}{B} \rightarrow \mathcal{E} \\
\vdots & \\
\frac{\forall x \cdot A}{B} \quad B & \frac{\forall x \cdot A}{A[a / x]} \forall \mathcal{E}
\end{array}
$$

$$
[A] \quad[B]
$$

$$
\begin{aligned}
& \text { [A] } \\
& \begin{array}{lll}
A \quad B \\
A \wedge B
\end{array} \frac{\vdots}{\vdots} \quad \frac{A}{\forall x . A} \forall \mathcal{I} \quad \frac{A[a / x]}{\exists x . A} \exists \mathcal{I} \\
& \text { [} A \text {] } \\
& \begin{array}{cc}
\frac{A}{A \vee B} \vee 1 \mathcal{I} \quad \frac{B}{A \vee B} \vee 2 \mathcal{I} & \vdots \\
\frac{\perp}{\neg A} \neg \mathcal{I}
\end{array} \\
& {[A] \quad[B]} \\
& \frac{B \quad A}{A \leftrightarrow B} \leftrightarrow \mathcal{I}
\end{aligned}
$$

$$
\frac{A \leftrightarrow B \quad A}{B} \leftrightarrow \mathcal{E} 1 \quad \frac{A \leftrightarrow B \quad B}{A} \leftrightarrow \mathcal{E} 2
$$

(iv) Absurdity:

$$
\begin{gathered}
{[\neg A]} \\
\vdots \\
\frac{\perp}{A} \perp
\end{gathered}
$$

875. Show that $A \rightarrow(B \rightarrow C) \vdash B \rightarrow(A \rightarrow C)$.
876. Proof in natural deduction

$$
\frac{A \rightarrow(B \rightarrow C) \quad[A]_{x}}{\frac{B \rightarrow C}{} \quad[B]_{y}} \rightarrow \mathcal{E}
$$

877. Proof in simply typed λ-calculus

$$
\begin{gathered}
z: \alpha \rightarrow(\beta \rightarrow \gamma), x: \alpha, y: \beta \vdash z: \alpha \rightarrow(\beta \rightarrow \gamma) \quad z: \alpha \rightarrow(\beta \rightarrow \gamma), x: \alpha, y: \beta \vdash x: \alpha \\
\left.\qquad \begin{array}{c}
z: \alpha \rightarrow(\beta \rightarrow \gamma), x: \alpha, y: \beta \vdash z x: \beta \rightarrow \gamma \\
\frac{z: \alpha \rightarrow(\beta \rightarrow \gamma), x: \alpha, y: \beta \vdash(z x) y: \gamma}{z: \alpha \rightarrow(\beta \rightarrow \gamma), y: \beta \vdash \lambda x \cdot(z x) y: \alpha \rightarrow \gamma} \rightarrow \mathcal{E} x \\
z: \alpha \rightarrow(\beta \rightarrow \gamma) \vdash \lambda y \cdot \lambda x \cdot(z x) y: \beta \rightarrow(\alpha \rightarrow \gamma)
\end{array}\right)
\end{gathered}
$$

878. Proof in the natural deduction with λ-terms

$$
\left.\begin{array}{l}
\frac{z: A \rightarrow(B \rightarrow C) \quad[x: A]}{\frac{z x: B \rightarrow C}{} \quad[y: B]} \rightarrow \mathcal{E} \\
\frac{(z x) y: C}{\lambda x \cdot(z x) y: A \rightarrow C} \rightarrow \mathcal{I} x \\
\lambda y \cdot \lambda x \cdot(z x) y: B \rightarrow(A \rightarrow C)
\end{array} \mathcal{I}_{y}\right)
$$

879.

$$
t=\lambda y \cdot \lambda x \cdot(z x) y=\lambda y x . z x y
$$

880. Derive Pierce's law: $((A \rightarrow B) \rightarrow A) \rightarrow A$.
881. Proof in natural deduction
882.

$$
\begin{aligned}
& \frac{[\neg A]_{v} \quad[A]_{u}}{\frac{\perp}{B} \perp E} \neg E \\
& \frac{[\neg A]_{v} \frac{[(A \rightarrow B) \rightarrow A]_{w}}{A} \quad \frac{B}{A \rightarrow B} \rightarrow I u}{\frac{\frac{\perp}{A} \text { red. abs. } v}{((A \rightarrow B) \rightarrow A) \rightarrow A} \rightarrow I w} \\
& \begin{array}{c}
\frac{[\neg A]_{v} \quad \frac{[(A \rightarrow B) \rightarrow A]_{w}}{A}}{\frac{\perp}{A}_{\text {red. abs. } v}^{A \rightarrow B}} \rightarrow I u \\
\frac{((A \rightarrow B) \rightarrow A) \rightarrow A}{} \rightarrow I w \\
\end{array}
\end{aligned}
$$

883. Show that $\forall x(A \rightarrow B) \rightarrow(\exists x A \rightarrow \exists x B)$.
884. Proof in natural deduction
885.

$$
\begin{gathered}
\frac{[\forall x(A \rightarrow B)]_{u}}{A \rightarrow B} \forall E \\
\frac{[\exists x A]_{v}}{\exists \frac{B}{\exists x B}} \exists \mathrm{\exists I} \\
\frac{\exists x B}{\exists x A \rightarrow \exists x B} \rightarrow I v \\
\forall x(A \rightarrow B) \rightarrow(\exists x A \rightarrow \exists x B)
\end{gathered} I u \mathrm{Iu} .
$$

886. Show that $\vdash(A \rightarrow(B \rightarrow C)) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)$.
887. Proof in natural deduction
888.

$$
\begin{gathered}
\frac{[A \rightarrow(B \rightarrow C)]_{z} \quad[A]_{x}}{\frac{B \rightarrow E}{C} \quad \frac{[A \rightarrow B]_{y} \quad[A]_{x}}{B} \rightarrow E} \rightarrow \frac{C}{A \rightarrow C} \rightarrow I_{x} \\
\frac{(A \rightarrow B) \rightarrow(A \rightarrow C)}{\left(A \rightarrow I_{y}\right.} \\
\frac{B \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))}{\left(A \rightarrow I_{z}\right.}
\end{gathered}
$$

Proof of sequents in LK

889. $[3,28]$
890. Rules for the logical connectives:
891.

$$
\frac{\alpha, \Gamma \Rightarrow \Pi \quad \beta, \Gamma \Rightarrow \Pi}{\alpha \vee \beta, \Gamma \Rightarrow \Pi}(\mathrm{VL})
$$

892.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha}{\Gamma \Rightarrow \Lambda, \alpha \vee \beta}(\mathrm{VR1} 1) \quad \frac{\Gamma \Rightarrow \Lambda, \beta}{\Gamma \Rightarrow \Lambda, \alpha \vee \beta}(\mathrm{VR2} 2)
$$

893.

$$
\frac{\alpha, \Gamma \Rightarrow \Pi}{\alpha \wedge \beta, \Gamma \Rightarrow \Pi}(\wedge \mathrm{L} 1) \quad \frac{\beta, \Gamma \Rightarrow \Pi}{\alpha \wedge \beta, \Gamma \Rightarrow \Pi}(\wedge \mathrm{L} 2)
$$

894.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \Gamma \Rightarrow \Lambda, \beta}{\Gamma \Rightarrow \Lambda, \alpha \wedge \beta}(\wedge \mathrm{R})
$$

895.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \beta, \Delta \Rightarrow \Pi}{\alpha \rightarrow \beta, \Gamma, \Delta \Rightarrow \Lambda, \Pi}(\rightarrow \mathrm{L}) \quad \frac{\alpha, \Gamma \Rightarrow \Lambda, \beta}{\Gamma \Rightarrow \Lambda, \alpha \rightarrow \beta}(\rightarrow \mathrm{R})
$$

896.

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha}{\neg \alpha, \Gamma \Rightarrow \Lambda}(\neg \mathrm{L}) \quad \frac{\alpha, \Gamma \Rightarrow \Lambda}{\Gamma \Rightarrow \Lambda, \neg \alpha}(\neg \mathrm{R})
$$

897. Cut rule:

$$
\frac{\Gamma \Rightarrow \Lambda, \alpha \quad \alpha, \Delta \Rightarrow \Pi}{\Gamma, \Delta \Rightarrow \Lambda, \Pi} \text { (cut) }
$$

898. Structural rules:
(i) exchange rules

$$
\frac{\Gamma, \alpha, \beta, \Delta \Rightarrow \Pi}{\Gamma, \beta, \alpha, \Delta \Rightarrow \Pi}(\mathrm{eL}) \quad \frac{\Gamma \Rightarrow \Pi, \alpha, \beta, \Lambda}{\Gamma \Rightarrow \Pi, \beta, \alpha, \Lambda}(\mathrm{eR})
$$

(ii) contraction rules

$$
\frac{\alpha, \alpha, \Gamma \Rightarrow \Pi}{\alpha, \Gamma \Rightarrow \Pi}(\text { cont } \mathrm{L}) \quad \frac{\Gamma \Rightarrow \Pi, \alpha, \alpha}{\Gamma \Rightarrow \Pi, \alpha}(\text { cont } \mathrm{R})
$$

(iii) weakening rules

$$
\frac{\Gamma \Rightarrow \Pi}{\alpha, \Gamma \Rightarrow \Pi}(w \mathrm{~L}) \quad \frac{\Gamma \Rightarrow \Pi}{\Gamma \Rightarrow \Pi, \alpha}(w \mathrm{R})
$$

899. Prove the following sequent in LK

$$
\Rightarrow A \rightarrow(B \rightarrow A)
$$

900. Proof

$$
\begin{gathered}
\frac{A \Rightarrow A}{B, A \Rightarrow A}^{(w \mathrm{~L})} \\
{ }^{A \Rightarrow B \rightarrow A} \\
\Rightarrow A \rightarrow(B \rightarrow A)
\end{gathered}{ }^{(\rightarrow \mathrm{R})}
$$

901. Prove the following sequent in LK

$$
A \rightarrow(B \rightarrow C) \Rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)
$$

902. Proof

$$
\begin{aligned}
& \begin{array}{l}
A \rightarrow(B \rightarrow C), A \rightarrow B, A, A \rightarrow B, A \Rightarrow C \\
A \rightarrow(B \rightarrow C), A \rightarrow B, A \rightarrow B, A, A \Rightarrow C
\end{array}(\mathrm{eL}) \\
& A \rightarrow(B \rightarrow C), A \rightarrow B, A \Rightarrow C \\
& A \rightarrow(B \rightarrow C), A \rightarrow B \Rightarrow A \rightarrow C(\rightarrow \mathrm{R}) \\
& \overline{A \rightarrow(B \rightarrow C) \Rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)}(\rightarrow \mathrm{R})
\end{aligned}
$$

903. Prove the following sequent in LK

$$
\Rightarrow A \vee \neg A
$$

904. Proof

$$
\begin{gathered}
\frac{A \Rightarrow A}{A \Rightarrow A \vee \neg A}(\vee \mathrm{R}) \\
\Rightarrow A \vee \neg \mathrm{R}) \\
\Rightarrow A \vee \neg A, A \vee \neg A \\
\Rightarrow A \vee \neg A
\end{gathered}(\text { (cont } \mathrm{R})
$$

905. Proof

$$
\begin{aligned}
& A \Rightarrow A \\
& \Rightarrow A, \neg A \\
&\Rightarrow A \mathrm{R}) \\
& \Rightarrow A \vee \neg A, A \vee \neg A \\
&\Rightarrow A \vee \neg \mathrm{~V}) \\
&(\text { cont } \mathrm{R})
\end{aligned}
$$

906. Prove the following sequent in LK

$$
\neg(A \wedge B) \Rightarrow \neg A \vee \neg B
$$

907. Proof

$$
\begin{aligned}
& \frac{\frac{A \Rightarrow A}{\overline{A, B \Rightarrow A}}(w \mathrm{~L}, \mathrm{eL}) \quad \frac{B \Rightarrow B}{A, B \Rightarrow B}}{(w \mathrm{~L})}(\wedge \mathrm{R}) \\
& \begin{array}{l}
\xlongequal[\overline{\neg(A \wedge B) \Rightarrow \neg A, \neg B}]{ }(\neg \mathrm{L}, \neg \mathrm{R}, \neg \mathrm{R}, \mathrm{e} \mathrm{R}) \\
\neg(A \wedge B) \Rightarrow \neg A \vee \neg B
\end{array}(\vee \mathrm{R}, \vee \mathrm{R}, \text { cont } \mathrm{R})
\end{aligned}
$$

908. Prove the following sequent in LK

$$
(A \rightarrow B) \rightarrow A \Rightarrow A
$$

909. Proof

$$
\begin{aligned}
& \frac{A \Rightarrow A}{A \Rightarrow A, B}{ }_{(w \mathrm{R})}^{(\rightarrow \mathrm{R})} \quad A \Rightarrow A \\
\Rightarrow A, A \rightarrow B & (\rightarrow \mathrm{~L}) \\
& \frac{(A \rightarrow B) \rightarrow A \Rightarrow A, A}{(A \rightarrow B) \rightarrow A \Rightarrow A}
\end{aligned}
$$

910. Prove the following sequent in LK

$$
A \rightarrow(B \rightarrow C) \Rightarrow B \rightarrow(A \rightarrow C)
$$

911. Proof

$$
\begin{gathered}
\frac{B \Rightarrow B \quad C \Rightarrow C}{B \rightarrow C, B \Rightarrow C} \\
(\rightarrow \mathrm{~L}) \\
(\rightarrow \mathrm{L}) \\
\overline{\overline{A \rightarrow(B \rightarrow C), B \rightarrow A \rightarrow C}}(\mathrm{eL}, \rightarrow \mathrm{R}) \\
A \rightarrow(B \rightarrow C) \Rightarrow B \rightarrow(A \rightarrow C)
\end{gathered}(\mathrm{eL}, \rightarrow \mathrm{R})
$$

912. Let $\mathcal{D}_{i}[S]$ be a proof tree of the sequent S.
913. $\mathcal{D}_{1}[A \Rightarrow B \rightarrow A]$

$$
\frac{A \Rightarrow A}{\frac{B, A \Rightarrow A}{A \Rightarrow B \rightarrow A} \rightarrow \mathrm{R}}
$$

914. $\mathcal{D}_{2}[A \rightarrow B, A \Rightarrow A]$

$$
\frac{A \Rightarrow A \quad \frac{A \Rightarrow A}{B, A \Rightarrow A} w \mathrm{~L}}{A \rightarrow B, A \Rightarrow A} \rightarrow \mathrm{~L}, \mathrm{cL}
$$

915. $\mathcal{D}_{3}[A \rightarrow B, A \Rightarrow B]$

$$
\frac{A \Rightarrow A \quad B \Rightarrow B}{A \rightarrow B, A \Rightarrow B} \rightarrow \mathrm{~L}
$$

916. $\mathcal{D}_{4}[A \rightarrow(B \rightarrow C), A \rightarrow B, A \Rightarrow C]$

$$
\begin{array}{cc}
\vdots & \vdots \mathcal{D}_{3} \\
\vdots \mathcal{D}_{2} & A \rightarrow B, A \Rightarrow B \quad C \Rightarrow C \\
A \rightarrow B, A \Rightarrow A & \frac{B \rightarrow C, A \rightarrow B, A \Rightarrow C}{B \rightarrow(B \rightarrow C), A \rightarrow B, A \Rightarrow C} \rightarrow \mathrm{~L}, \mathrm{cL}
\end{array}
$$

917. $\mathcal{D}_{5}[A \rightarrow(B \rightarrow C) \Rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)]$

$$
\begin{gathered}
\vdots \mathcal{D}_{4} \\
A \rightarrow(B \rightarrow C), A \rightarrow B, A \Rightarrow C \\
A \rightarrow(B \rightarrow C) \Rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)
\end{gathered} \mathrm{R}
$$

918. $\mathcal{D}_{6}[\Rightarrow A \vee \neg A]$

$$
\begin{aligned}
& \frac{A \Rightarrow A}{A \Rightarrow A \vee \neg A} \vee \mathrm{R} \\
& \xlongequal{\Rightarrow A \vee \neg A, \neg A} \neg \mathrm{R} \\
& \Rightarrow A \vee \neg A \\
& \Rightarrow \mathrm{R}, \mathrm{cR}
\end{aligned}
$$

919. $\mathcal{D}_{7}[A, B \Rightarrow A \wedge B]$

$$
\frac{\xlongequal[\overline{A, B \Rightarrow A}]{\frac{A \mathrm{~L}, \mathrm{eL}}{} \quad \frac{B \Rightarrow B}{A, B \Rightarrow B} w \mathrm{~L}}}{A, B \Rightarrow A \wedge B} \wedge \mathrm{R}
$$

920. $\mathcal{D}_{8}[\neg(A \wedge B) \Rightarrow \neg A \vee \neg B]$

$$
\begin{gathered}
\vdots \mathcal{D}_{7} \\
\frac{A, B \Rightarrow A \wedge B}{\xlongequal[\neg(A \wedge B) \Rightarrow \neg A, \neg B]{\neg(A \wedge B) \Rightarrow \neg A \vee \neg B}} \neg \mathrm{~L}, \neg \mathrm{R}, \neg \mathrm{R}, \mathrm{eR} \\
\vee \mathrm{R}, \mathrm{VR}, \mathrm{cR}
\end{gathered}
$$

921. $\mathcal{D}_{9}[\Rightarrow A, A \rightarrow B]$

$$
\begin{gathered}
\frac{A \Rightarrow A}{A \Rightarrow A, B} w \mathrm{R} \\
\Rightarrow A, A \rightarrow B
\end{gathered} \rightarrow \mathrm{R}
$$

922. $\mathcal{D}_{10}[(A \rightarrow B) \rightarrow A \Rightarrow A]$

$$
\begin{gathered}
\vdots \mathcal{D}_{9} \\
\Rightarrow A, A \rightarrow B \quad A \Rightarrow A \\
\Rightarrow(A \rightarrow B) \rightarrow A \Rightarrow A
\end{gathered} \mathrm{~L}, \mathrm{cR}
$$

923. $\mathcal{D}_{11}[A \rightarrow(B \rightarrow C), A, B \Rightarrow C]$

$$
\frac{A \Rightarrow A}{A \rightarrow(B \rightarrow C), A, B \Rightarrow C} \rightarrow \mathrm{~L}
$$

924. $\mathcal{D}_{12}[A \rightarrow(B \rightarrow C) \Rightarrow B \rightarrow(A \rightarrow C)]$

$$
\begin{gathered}
\vdots \mathcal{D}_{11} \\
\frac{\overline{\mid A \rightarrow(B \rightarrow C), A, B \Rightarrow C}_{A \rightarrow(B \rightarrow C), B \Rightarrow A \rightarrow C}}{} \mathrm{eL}, \rightarrow \mathrm{R} \\
\mathrm{~A}, \rightarrow \mathrm{R}, \mathrm{R}
\end{gathered}
$$

925. Suppose $\Rightarrow B, A$ and $A \Rightarrow B$.

$$
\begin{gathered}
\Rightarrow B, A \quad A \Rightarrow B \\
\frac{\Rightarrow B, B}{\Rightarrow B} \mathrm{cR}
\end{gathered}
$$

926. A-cut is not contraction-free in LK.

$$
\frac{\Rightarrow B, A \quad A \Rightarrow B}{\Rightarrow B} \mathrm{~A}-\mathrm{cut}
$$

927. $\mathcal{D}_{13}[\Rightarrow A \vee \neg A]:=$ contraction-free proof of LEM in LK with A-cut if A-cut is an atomic (primitive) rule.

$$
\begin{gathered}
\frac{A \Rightarrow A}{\frac{A \Rightarrow A \vee \neg A}{A} \vee \mathrm{R}} \stackrel{A \Rightarrow A}{\overline{\neg A \Rightarrow \neg A} \neg \mathrm{~L}, \mathrm{e}, \neg \mathrm{R}} \\
\frac{\Rightarrow A \vee \neg A, \neg A}{\mathrm{R}} \quad \frac{\neg A \Rightarrow A \vee \neg A}{\neg \mathrm{R}} \\
\Rightarrow A \vee \neg A
\end{gathered}
$$

928. Suppose $\Rightarrow A, B$.

$$
\begin{aligned}
& \Rightarrow A, B \\
& \Rightarrow A \vee B, A \\
& \Rightarrow A \vee B, A \vee B \\
& \Rightarrow A \vee B \operatorname{cont} \mathrm{R}
\end{aligned}
$$

929. Suppose $\Rightarrow A \vee B$.

$$
\begin{aligned}
& \Rightarrow A \vee B \frac{\frac{A \Rightarrow A}{A \Rightarrow A, B} w \mathrm{R} \quad \frac{B \Rightarrow B}{B \Rightarrow A, B}}{\frac{A \mathrm{R}, \mathrm{eR}}{}} \mathrm{~A} \mathrm{\vee B} \mathrm{\Rightarrow A,B} \mathrm{~A} \\
& \Rightarrow A, B
\end{aligned}
$$

Proof of sequents in LJ and in LJT

930. [22]
931. Consider LJ with the sole connective \rightarrow.
932. Rules of LJ:

$$
\begin{gathered}
\overline{\Gamma, A \vdash A} A x \quad \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \text { Cont } \\
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \rightarrow B \vdash C} I_{L} \\
\frac{\Gamma \vdash A}{\Gamma \vdash, A \vdash B} \\
\Gamma \vdash B
\end{gathered}
$$

933. Prove the following sequent in LJ

$$
\vdash(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C)) .
$$

934. Proof in LJ

$$
\begin{gathered}
{\overline{A, A \rightarrow B \vdash A}{ }^{A x} \quad \frac{\overline{A \vdash A}^{A x} \quad \overline{A, B \vdash B}^{A x}}{I_{L}} \quad \overline{A, A \rightarrow B, C \vdash C}^{A x}{ }_{I_{L}}^{A x}}_{A, A \rightarrow B, B \rightarrow C \vdash C}^{I_{L}} \\
\frac{A, A \rightarrow B, A \rightarrow(B \rightarrow C) \vdash C}{A \rightarrow B, A \rightarrow(B \rightarrow C) \vdash A \rightarrow C} I_{R} \\
\frac{I_{R}}{A \rightarrow(B \rightarrow C) \vdash(A \rightarrow B) \rightarrow(A \rightarrow C)} \\
I_{R}
\end{gathered}
$$

935. Prove the following sequent in LJT

$$
\vdash(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))
$$

936. Rules of LJT (without cut):

$$
\begin{array}{cc}
\overline{\Gamma ; A \vdash A}^{A x} & \frac{\Gamma, A ; A \vdash B}{\Gamma, A ; \vdash B} \text { Cont } \\
\frac{\Gamma ; \vdash A \quad \Gamma ; B \vdash C}{\Gamma ; A \rightarrow B \vdash C} I_{L} & \frac{\Gamma, A ; \vdash B}{\Gamma ; \vdash A \rightarrow B} I_{R}
\end{array}
$$

937. Proof in LJT
938. $D_{1}:=$
939.

$$
\frac{\Gamma ; A \vdash B}{\Gamma, A ; \vdash B} \operatorname{Der}
$$

940. $\operatorname{Der}:=$

$$
\frac{\frac{\Gamma ; A \vdash B}{\Gamma, A ; A \vdash B}}{\Gamma, A ; \vdash B} \text { Cont } \text { adding irrelevant formula }
$$

Open Invitation

Review, add content, and co-author this white paper $[24,25]$.
Join the Open Mathematics Collaboration.
Send your contribution to mplobo@uft.edu.br.

Open Science

The latex file for this white paper together with other supplementary files are available in $[26,27]$.

How to cite this paper?

https://doi.org/10.31219/osf.io/8wck9
https://zenodo.org/record/5594984

Acknowledgements

+ Center for Open Science https://cos.io
+ Open Science Framework https://osf.io
+ Zenodo
https://zenodo.org

Agreement

The author agrees with [25].

License

CC-By Attribution 4.0 International [2]

References

[1] Leary, Christopher C., and Lars Kristiansen. A friendly introduction to mathematical logic, 2nd edition, 2015.
https://knightscholar.geneseo.edu/geneseo-authors/6/
[2] CC. Creative Commons. CC-By Attribution 4.0 International. https://creativecommons.org/licenses/by/4.0
[3] Ono, Hiroakira. Proof Theory and Algebra in Logic. Singapore: Springer, 2019.
[4] Gabbay, Dov M., and Franz Guenthner, eds. Handbook of Philosophical Logic. Vol. 1. Dordrecht: Kluwer Academic Publishers, 2001.
[5] Lobo, Matheus P. "Hilbert-style Proof Calculus for Propositional Logic in ABC Notation." OSF Preprints, 25 Nov. 2019. https://doi.org/10.31219/osf.io/jd3gp
[6] Buss, Samuel R. "An introduction to proof theory." Handbook of Proof Theory 137 (1998): 1-78. https://bit.ly/3BnmMrk
[7] Laurent, Olivier. "Focusing in orthologic." Logical Methods in Computer Science 13 (2017). https://lmcs.episciences.org/3808/pdf
[8] Warner, Steve. Real Analysis for Beginners. GET 800, 2020.
[9] De Swart, Harrie. Philosophical and Mathematical Logic. Springer International Publishing, 2018.
[10] Nishimura, Iwao. "On formulas of one variable in intuitionistic propositional calculus." The Journal of Symbolic Logic 25.4 (1960): 327-331. https://doi.org/10.2307/2963526
[11] Dalla Chiara, Maria Luisa, and Roberto Giuntini. "Quantum logics." Handbook of Philosophical Logic. Springer, Dordrecht, 2002. 129-228. https://arxiv.org/pdf/quant-ph/0101028.pdf
[12] WolframAlpha. https://www.wolframalpha.com
[13] Birkhoff, Garrett, and John Von Neumann. "The logic of quantum mechanics." Annals of Mathematics (1936): 823-843.
[14] Rasga, João, and Cristina Sernadas. Decidability of Logical Theories and Their Combination. Springer International Publishing, 2020.
[15] Wikipedia. "Undecidable problem."
https://en.wikipedia.org/wiki/Undecidable_problem
[16] Wikipedia. "Decision problem."
https://en.wikipedia.org/wiki/Decision_problem
[17] Wikipedia. "Word problem."
https://en.wikipedia.org/wiki/Word_problem_(mathematics)
[18] Sørensen, Morten Heine, and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
[19] Girard, Jean-Yves, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge: Cambridge university press, 1989.
[20] Wikipedia. Dedução Natural.
https://pt.wikipedia.org/wiki/Deducao_natural
[21] Hindley, J. Roger, and Jonathan P. Seldin. Lambda-calculus and Combinators, an Introduction. Cambridge: Cambridge University Press, 2008.
[22] Herbelin, Hugo. "A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure." International Workshop on Computer Science Logic. Springer, Berlin, Heidelberg, 1994.
[23] Girard, Jean-Yves. "A new constructive logic: classic logic." Mathematical structures in computer science 1.3 (1991): 255-296.
[24] Lobo, Matheus P. "Microarticles." OSF Preprints, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
[25] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019.
https://doi.org/10.31219/osf.io/fk836
[26] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://osf.io/6hzyp/files
[27] https://zenodo.org/record/5594984
[28] Indrzejczak, Andrzej. Sequents and Trees. Springer International Publishing, 2021.https://doi.org/10.1007/978-3-030-57145-0

The Open Mathematics Collaboration

Matheus Pereira Lobo ${ }^{1,2,3}$ (lead author, mplobo@uft.edu.br) https://orcid.org/0000-0003-4554-1372
${ }^{1}$ Federal University of Tocantins (Brazil)
${ }^{2}$ Federal University of Northern Tocantins (Brazil)
${ }^{3}$ Universidade Aberta (UAb, Portugal)

APPENDIX

Quantum Logics: Introduction

941. [11, 12]
942. What logical structures one may hope to find in physical theories which, like quantum mechanics, do not conform to classical logic? [13]
943. Phase-space is a mathematical concept present in both classical and quantum theories.
944. $\mathcal{S}:=$ physical system
945. $\Sigma:=$ phase-space
946. a point in $\Sigma:=$ the "state" of \mathcal{S} (ascertainable by "maximal" observations)
947. pure states := maximal pieces of information about \mathcal{S} (cannot be consistently extended to a richer knowledge)
948. mixtures := non maximal pieces of information
949. $P:=$ experimental proposition about \mathcal{S}
950. $X:=$ all the pure states for which P holds
951. $X \subseteq \Sigma$
952. events (physical qualities) $:=$ subsets of Σ
953. $X:=$ event
954. $\mathcal{P}:=$ set of all experimental propositions
955. $\mathcal{E}:=$ set of all events
956. The correspondence between \mathcal{P} and \mathcal{E} is many-to-one.
957. $p:=$ pure state
958.

$(\mathcal{S}$ in state p verifies both X and $P) \equiv(p \in X)$
959. What is the structure of all events?
960. The power-set of any set is a Boolean algebra.
961.

$$
\mathcal{B}=\langle\mathcal{F}(\Sigma), \subseteq, \cap, \cup,-, \mathbf{1}, \mathbf{0}\rangle
$$

962. $\mathcal{B}:=$ Boolean algebra
963. $\mathcal{F}(\Sigma):=$ set of all measurable events
964. $\subseteq:=$ set-theoretic inclusion relation
965. $\cap:=$ intersection of sets ("and")
966. $\cup:=$ union of sets ("or")
967. - := relative complement of a set ("not")
968. $1:=\Sigma$ (total space)
969. $\mathbf{0}:=\emptyset$ (empty space)
970. Classical semantic behaviour:
(i) (p verifies $X \cap Y) \leftrightarrow(p \in X \cap Y) \leftrightarrow(p$ verifies both members)
(ii) (p verifies $X \cup Y) \leftrightarrow(p \in X \cup Y) \leftrightarrow(p$ verifies at least one member) (iii) (p verifies $-X) \leftrightarrow(p \notin X) \leftrightarrow(p$ does not verify $X)$
971. points of $\Sigma:=$ wave-functions
972. $\Sigma \equiv$ function-space (usually the Hibert space)
973. In classical mechanics, the excluded middle principle holds, i.e.,

$$
p \in X \vee p \notin X .
$$

974. Quantum theory is essentially probabilistic.
975. $\psi:=$ pure state (wave function) of a quantum system
976. In a quantum system, the experimental proposition P, for instance, can be "the spin value in a certain direction is up".
977. We have the following cases for the assignment of probability-values:
(i) $\psi(P)=1, P$ is true,
(ii) $\psi(P)=0, P$ is false,
(iii) $\psi(P) \neq 0,1, P$ is semantically indetermined.
978. Which mathematical representative would best describe quantum experimental propositions?
979. closed subspace := closed linear subspace of Hilbert space $:=$ mathematical representative of P in a quantum system
980. complete metric $:=$ metric in which every Cauchy sequence is convergent
981.

Hilbert space $(\mathcal{H}):=$ vector space over a division ring $(h \in \mathcal{H} \rightarrow h \in \mathbb{R} \vee h \in \mathbb{C} \vee h \in \mathbb{H})$ such that
(i) an inner product is defined,
(ii) \mathcal{H} is metrically complete.
982. $\mathbb{H}:=$ set of quaternion numbers
983.

$$
(\mathcal{H}:=\text { separable }) \leftrightarrow(\mathcal{H} \text { admits a countable basis })
$$

984. Hereafter, let
$\mathcal{H}:=$ separable Hilbert space
such that its unitary vectors correspond to wave functions of a quantum system.
985. closed subspaces of $\mathcal{H}:=$ subsets of \mathcal{H} (closed under linear combinations and Cauchy sequences)
986. (985) contains the mathematical representatives of experimental propositions that are closed under finite and infinite linear combinations.
987. quantum events := mathematical representatives of experimental propositions of a quantum system
988. quantum mechanics $\sim \succ$ linear combinations of $p \sim \succ$ new pure states
989. $C(\mathcal{H}):=$ set of all quantum events
990. negation of a quantum event $:=$ orthogonal complement of the event
991. orthogonal complement of a subspace V of the vector space $:=$ set of vectors orthogonal to all elements of V
992. $X, X^{\prime}, Y:=$ quantum events (closed subspaces)
993. $X^{\prime}:=$ orthogonal complement of X
994. $X, X^{\prime}, Y \subseteq \mathcal{H}$
995. $\psi \in X^{\prime} \leftrightarrow \psi \perp X \leftrightarrow \forall \phi \in X:(\psi, \phi)=0$
996. $(\psi, \phi):=$ inner product of ψ and ϕ
997. orthocomplement := orthogonal complement
998.

$$
\forall X \forall \psi \text { (pure states) : } \psi(X)=1 \leftrightarrow \psi\left(X^{\prime}\right)=0
$$

999.

$$
\forall X \forall \psi \text { (pure states) : } \psi(X)=0 \leftrightarrow \psi\left(X^{\prime}\right)=1
$$

1000.

$$
\psi \text { verifies } X \cap Y \leftrightarrow \psi \text { verifies both members }
$$

1001. union of two closed subspaces $\not \equiv$ closed subspace
1002. supremum $\sim \succ$ connective or
1003. $X \sqcup Y:=$ supremum of X and Y (the smallest closed subspace including both closed subspaces X and Y)
1004. $X \cup Y \subset X \sqcup Y$

1005.

$$
\mathcal{C}(\mathcal{H})=\left\langle C(\mathcal{H}), \sqsubseteq, \sqcap, \sqcup,^{\prime}, \mathbf{1}, \mathbf{0}\right\rangle
$$

1006. $\sqsubseteq, \sqcap:=$ set-theoretic inclusion and intersection
1007. $\sqcup:=$ supremum
1008. ' $:=$ orthogonal complement
1009. $\mathbf{1}:=\mathcal{H}$ (total space)
1010. $\mathbf{0}:=$ null subspace [the singleton of the null vector (smallest subspace)]
1011. projections $:=$ idempotent and self-adjoint linear operators
1012. $\mathfrak{P}(\mathcal{H}):=$ set of all projections P of \mathcal{H}
1013. $\cong:=$ isomorphism
1014. $\mathfrak{P}(\mathcal{H}) \cong$ closed subspaces
1015. $\mathcal{C}(\mathcal{H})$ is not a Boolean algebra, it simulates a "quasi-Boolean behaviour".
1016. $\mathcal{C}(\mathcal{H})$ is a (not distributive) orthocomplemented orthomodular lattice,

$$
X \sqcap(Y \sqcup Z) \neq(X \sqcap Y) \sqcup(X \sqcap Z) .
$$

1017. $X \sqcup Y$ may be true even if neither member is true.
1018. It is possible for a pure state ψ that

$$
\psi \notin X \wedge \psi \notin Y \rightarrow \psi \in X \sqcup Y .
$$

1019. (1016) is connected with (1018) (the superposition principle).
1020. uncertainty principle $\sim \succ$ incompatible quantities $\sim \succ$ strongly undetermined (cannot be simultaneously measured)
1021. standard quantum logic := (complete orthomodular lattice + closed subspaces in $\mathcal{H}) \sim \succ$ particular example of an algebraic structure

[^0]: *All authors with their affiliations appear at the end of this white paper.
 ${ }^{\dagger}$ Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

