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Abstract

Human decision-making is affected by a diversity of factors including material cost-benefit
considerations, normative and cultural influences, learning, and conformity with peers and ex-
ternal authorities (e.g., cultural, religious, political, organizational). Also important are their
dynamically changing personal perception of the situation and beliefs about actions and expec-
tations of others as well as psychological phenomena such as cognitive dissonance, and social
projection. To better understand these processes, I develop a modeling framework describing
the joint dynamics of actions and attitudes of individuals and their beliefs about actions and
attitudes of their groupmates. I consider which norms get internalized and which factors control
beliefs about others. I predict that the long-term average characteristics of groups are largely
determined by a balance between material payoffs and the values promoted by the external
authority. Variation around these averages largely reflects variation in individual costs and ben-
efits mediated by individual psychological characteristics. The efforts of an external authority to
change the group behavior in a certain direction can, counter-intuitively, have an opposite effect
on individual behavior. I consider how various factors can affect differences between groups and
societies in tightness/looseness of their social norms. I show that the most important factors
are social heterogeneity, societal threat, effects of the authority, cultural variation in the degree
of collectivism/individualism, the population size, and the subsistence style. My results can
be useful for achieving a better understanding of human social behavior, historical and current
social processes, and in developing more efficient policies aiming to modify social behavior.

Introduction

Human groups at various scales of social organization repeatedly face situations when engaging in
an individually costly collective action or refraining from an individually beneficial behavior can
help bring larger benefits or avoid certain disastrous outcomes. Examples range from cooperating
in hunting or agricultural production in small-scale societies to mobilizing against social injustice
to modifying collective behavior of the population to stop a pandemic or decrease global warming.
Such situations commonly lead to social dilemmas when individual and group interests come into
a conflict. In the scientific literature, they come under various names including collective action
problem (I} 2)), the tragedy of the commons (3], 4), social traps (5]), many-person Prisoner’s Dilemma
(6l, [7), and collective risk dilemma (8]).



Human decision-making in social dilemmas is affected by a diversity of factors including genetically-

informed biological instincts, material cost-benefit considerations, normative and cultural influ-
ences, and conformity with peers or external authorities (e.g., cultural, religious, political, organi-
zational). Human actions also depend on their personal perception of the situation and on beliefs
about actions and expectations of their peers. The beliefs and expectations can change as a result
of learning and other psychological processes. For example, cognitive dissonance (i.e. a feeling
of mental discomfort experienced when the person’s attitudes, beliefs, or behaviors conflict) can
cause changes in behaviors but also in attitudes or beliefs (9). To predict the intents and beliefs of
others, people may use the “theory of mind” (10, I1]) and social projection, which is the tendency
to assume that others are similar to oneself (12)). Therefore changing personal attitudes can also
change predictions about others.

Due to this complexity, modeling human behavior is notoriously difficult. Nevertheless several
approaches successfully capturing certain aspects of human decision-making have been developed.
These include classical (13), evolutionary (14)), mean-field (15]), and quantum (16],17)) game theories,
social influence models focusing on the dynamics of consensus formation (or fragmentation) in social
networks as a result of social learning and imitation (I8-24)), models of strategic deliberation (25)),
models of normative behavior (26-28]), and models of foresight (29, [30)). I will build on this earlier
work to develop a novel theoretical approach explicitly integrating multiple material, cognitive and
social forces shaping human behavior.

I posit that individuals are motivated by both material factors and immaterial values and
norms, that their actions are driven by their interpretation of what they observe, and that their
interpretations and beliefs change dynamically as social interactions unfold. My approach allows for
irrationality and captures some emotional and cognitive processes inherent to humans. Moreover I
explicitly allow for and study the effects of differences between individuals in various physical and
psychological characteristics as well as in their attitudes and beliefs. Starting with individual-level
social and psychological processes affecting agents’ intent and beliefs under information uncertainty
I aim to predict group dynamics. I will also consider which norms get internalized and which factors
control beliefs about others.

My starting point is what is known in social psychology as the “Thomas theorem” which states
that “If men define situations as real, they are real in their consequences” (31)). In other words,
our actions often depend on our interpretation of a situation rather than on its objective reality.
In my models, I will capture this “theorem” by postulating that individual decisions in social
situations are based on individual beliefs about the current situation as well as beliefs about others
and their beliefs. Individuals will revise their actions, attitudes, and beliefs according to not only
the information they receive but also according to some psychological processes governing their
thinking and emotions (32} 33)). The general structure of my model is illustrated in Figure

Below after introducing my approach and describing main results, I illustrate them by consid-
ering different types of social interactions including those stylized by Coordination, Public Goods,
Tragedy of the Commons, Common Pool Resource, continuous Prisoner’s Dilemma, Dictator and
“Us vs. nature” games.

Model

I consider a group of people repeatedly engaged in a particular type of social interaction. For
example, individuals can contribute efforts to a joint production or maintenance of a public good
(e.g., an irrigation canal) or harvest from a common pool of resources (e.g., fishing from a pond).
Individuals care about their own material costs and benefits. They do not like to be disapproved
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Figure 1: Model structure. The model integrates material factors, social influences (both by peers and an external
authority), immaterial values, and errors (the blue boxes) into a general utility function (the red shape) which
individuals attempt to maximize when making decisions (the middle violet shape). Individual behavior is a part
of group behavior (the green shape) which together define the actual payoff/utility of the individual (top violet
shape). The latter together with the observed group behavior feed back into individual beliefs and attitudes (bottom
violet shape). In my approach, the strength of various factors, as perceived by individuals, will vary between them
depending on the information available as well as on the individual’s attitudes and beliefs. My approach allows for
attitudes and beliefs to (rapidly) change in time as a consequence of different actions taken by individuals and the
groups they belong to, of the information they receive, and the emotions they experience.

by peers (or an external authority) but they also prefer to do what they personally think is ap-
propriate. Individuals observe (and learn from) the actions of others and make inferences about
others’ attitudes (preferences) and beliefs but they do not know them exactly. How can they find
the right action? What happens to their preferences, beliefs, and behaviors as social interactions
dynamically unfold?

I will treat time as discrete. Let a continuous variable x specify an action chosen by a focal
individual. Each individual is characterized by an attitude y which gives his personal belief about
the most appropriate action in a given social situation. Each individual also has a belief (an
expectation) Z about the average action of peers as well as a second order belief § about the
average attitude of their peers. Experiments show that people represent the preferences and beliefs
of others separately from their own (34} 35). In the social psychology literature, variables y, &, and g
would be called a personal norm (or value), an empirical expectation, and a normative expectation,
respectively (36H38). I will occasionally use this terminology below. Individuals are also subject
to influence by an external authority promoting a particular action G. I assume z,y,z,7y,G are
nonnegative. Individuals form their beliefs about others on the basis of their actions they observe
and some cognitive and psychological processes (which I discuss below).

Utility function. I postulate that each individual chooses (via myopic best response) an action



x in an attempt to maximize the utility function u. I write it as a sum of several terms:
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The first term in equation (/1)) specifies a material payoff to a focal individual performing action x
under the expectation that his peers’ average action is . The second term in equation captures
the psychic costs due to cognitive dissonance (9) incurred when the action  chosen deviates from the
personal norm y. The third term captures the expected psychic costs of disapproval (or material
costs of punishment) by others who are expected to have expectation § regarding the behavior
of the focal individual (39, B6). The fourth term in equation captures the psychic costs of
nonconformity with the expected actions of others (40}, [41). For example, the fact that peers
choose a particular action may indicate that this action is most beneficial. So acting differently
may cause additional psychic costs not related to disapproval or punishment by peers (captured by
the third term). The last term in equation captures the expected costs of material punishment
or psychic costs of disapproval by the external authority promoting an action at a “standard” level
G which T will treat as a constant(42], [40). Some studies show stable variation between people in
following the “rules” (43, 44).

I assume parameters Ai, Ao, A3 and A4 are non-negative individual-specific constants. This
assumption aims to capture the fact that people differ in their personalities, cultural background,
and other characteristics affecting their emotions, feelings, psychology and behavior. Parameters Ao
and A3 may depend on the group size, so that individuals whose actions deviate from the expected
behavior or beliefs of others suffer bigger costs in larger groups. Parameter A4 may depend on the
degree of legitimacy of the external authority and on individual self-identification.

My approach is particularly simple when the function w(z, ) specifying the material payoff is
a linear, quasi-linear, or a quadratic function of x and Z. For such cases, the first derivative of
m(x,Z) (i.e., marginal payoff) with respect to z is a linear function of x and Z, which I will write as

on(z, %)
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where Dy, D1 and D, are constant individual-specific parameters. For example, individuals may
differ in their strengths, valuation (or shares received) of the collectively produced goods, costs,
or availability of information regarding the material consequences of the game. [For simplicity of
notation, for now I do not use explicitly any indices in the equations to specify the individual. This
will change later when I discuss specific social situations and games.]

Below I will use a composite parameter of the material payoff function

Dy
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which can be interpreted as the best response action for a focal individual who believes that the
average action of his social partners will always match his own action (i.e. Z = x). In several games
to be considered below, 6 can also be viewed as a measure of the material benefit-to-cost ratio; in
some games 6 is the Nash equilibrium for the individual effort. As I show below, the distribution



of # in the society strongly affects the long-term dynamics of the model. When I use agent-based
simulations, I will also allow for errors in decision-making.

Best response action. The action z maximizing the utility function u of the focal individual
can be found by computing the derivative %. Since u is a quadratic function, the best response
action given an attitude y and beliefs & and ¢ can be found in a straightforward way. I will write
it as

Tr = maX(O, By + By + Boy + B3t + B4G>, (4)

where By, ..., By are re-scaled individual-specific parameters measuring the effects of material and
immaterial forces on individual actions (see the Supporting Information, SI). I assume that all
individuals in the group take their own best response actions simultaneously.

The dynamics of attitudes and beliefs. After taking their own action and observing the
actions of their groupmates, each individual revises their attitudes and beliefs. To capture these
changes, I adapt an approach standard in social influence models describing the dynamics of publicly
expressed opinions. Specifically I postulate that attitudes and beliefs of a focal individual change
according to a system of linear recurrence equations:

y=y+ Cule—y) + CoX-y + Cu(G-y), (5a)
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where the prime means the next time step, X is the average action of groupmates as observed
by the focal individual (so that different individuals are characterized by different X), and Cj;
are non-negative individual-specific constant coefficients. Here the “cognitive dissonance” term
acts to reduce the mismatch of the ego’s actions and their beliefs about themselves. The “social
projection” term captures the ego’s believe that others are probably similar to themselves (10} 12)).
The “logic constraints” term reduces a mismatch between the ego’s beliefs about actions and beliefs
of others (cf., Ref.(20)). The “conformity w/ peers” and two “learning about others” terms move
the corresponding attitude and beliefs closer to the observed average behavior X among peers(45).
The “conformity w/ authority” terms move the corresponding attitudes and beliefs closer to the
promoted “standard” G. Note that cognitive dissonance makes individuals to choose action x
closer to their attitude y (as implied by equation [1)) and simultaneously changes their attitude y to
justify the action previously chosen (as described by the first term in equation (5h) (cf., Ref.(46).
The authority effectively changes the utility function and simultaneously affects attitudes and
beliefs (equations |5) which then feed back into the utility function and behavior. For a group of n
individuals I thus end up with 3n recurrence equations of type which are coupled via terms X
which are the observed average actions of groupmates. Below in deriving analytical approximations
I will assume that n is sufficiently large so that individual values X are approximately the same
(and equal to the actual average action of the group).

Below I will use normalized parameters o; = %, BGi = 207%”, v = Z?aj , with o+ 68+ =

1 for all i. Parameters a; characterize the relative strengths of cognitive factors (i.e., related to the
cognitive dissonance, the social projection, and the logic constraint, respectively). Parameters 3;
and ~; characterize the relative strengths of two types of social factors: learning from/about peers
and complying with external influences, respectively. All these coefficients are individual-specific;



they may depend on individual psychology, cultural and education background, etc. They may also
depend on social and cultural factors acting in the group. For example, increased efforts to promote
certain ideas by an authority may translate in increased values of parameters ~; while strongly
conformist or collectivistic communities may be characterized by higher values of parameters ;.
Parameters By and ~; can depend on trust in the authority and its legitimacy. Intuitively, cognitive
factors work to align individual actions, attitude and beliefs, learning from/about peers works to
align those between individuals, while external influence works to shift them towards a promoted
standard.

Before proceeding further it is instructive to compare my approach with already existing models.
First, classical, evolutionary, and mean-field game-theoretic models focus exclusively on the material
payoff component 7w(z) of the utility model disregarding all other terms (I3HI5, 47). Note also
that in contrast to standard game-theoretic models where individuals choose best responses to the
previous action of their mates which they know exactly, in my approach they best respond to their
expectation T of the action of their group-mates in this round. Some game-theoretic models add a
normative component to the utility function but treat personal norms y as constant (26-28). Few
existing models consider the joint dynamics of actions (z) and personal norms (y). For example in
Refs. (46, 48], [49), utility functions include material payoffs 7(z) as well cognitive dissonance and
conformity with peers terms. Refs.(48, [49)) describe the dynamics of personal norms y allowing
for the effects of cognitive dissonance and conformity with peers. However these authors assume
that individuals know exactly the personal norms y of their peers which in general is not realistic.
There is also a very large number of social influence models (18422, 24], [50) which consider the
dynamics of personal attitudes and opinions y as a result of the exchange of opinions between
group members (using linear equations related to the second and third terms in equation [5p). The
linear equations describing the changes in attitudes and beliefs are also related to those used in
cognitive neuroscience (51). Focusing on dyadic interactions, Ref. (25) models how individuals
update their values of y and & on the basis of payoffs received. Ref. (52]) considered similar models
but with addition of an external influence (described by a term analogous to the last term in
equation pp). Models of social influence neglect material factors, and explicitly assume that players
know exactly the opinions of their peers. None of all these models consider second order beliefs of
individuals captured by variables ¢ and Z.

I note that the model’s structure reflects the facts that human behavior and beliefs are complex
phenomena and that real people differ in their psychology and behavior. As I show below, in spite
of its apparent complexity, the model’s behavior is quite tractable, its parameters combine into
a small number of effective measures controlling the equilibria, and individual parameters can be
estimated using behavioral economics’ methods or surveys.

Results

Long-term behavior

Equations describe the joint dynamics of actions (x), attitudes (y), and beliefs (7,Z). Nu-
merical iterations of these equations show convergence to a stochastic equilibrium (see Figure
for an example to be considered in detail below). In the SI T find an approximation for this equi-
librium. Here I summarize what happens in several important special cases. For the rest of my
paper, variables x,y, 9, , and X will specify the corresponding equilibrium values (rather than the
dynamically changing values as above).

No external influence; no variation in material payoffs. Assume that the external influence is
absent (i.e., A4 = Cj3 =; = 0 for all 7) and that there is no variation in material payoffs between
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Figure 2: The dynamics of x,y, 4 and Z of individual players in the Coordination Game with no external influence
observed in a single run of agent-based simulations. The thick black lines show the group averages. Group size
n = 100. Parameters are chosen randomly and independently from certain distributions (as described in the SI) so
that the mean value of 0 is equal to 1. Initial values of y,§ and & are chosen randomly and independently from a
uniform distribution on [0, 0.1].

individuals (so that coefficient 6 is the same for all individuals). Then the system evolves to an
equilibrium at which
x=y=9==1=max(0,0) (6)

for all individuals. That is, with no variation in material costs and benefits, the population even-
tually becomes homogeneous in actions, attitudes, and beliefs independently of the differences
between individuals in all other parameters (i.e., 4;, a;, 5;). The value of x at equilibrium is the
one maximizing the material payoff.

Ezternal influence only. If there are no material payoffs in the utility function (i.e., if all D; = 0)
while the external authority promotes action G, then at a long-term equilibrium

r=y=j=3=0C )

for each individual. That is, the population’s actions, attitudes, and beliefs are completely deter-
mined by the external influence and there is no variation between individuals.

No external influence; vartation in material payoffs. With variation in material benefits and
costs between individuals (which is present in any realistic situation), one finds that the system
evolves to an equilibrium state at which the average action

X ~0. (8a)

[Here and below the bar means the average over the whole population.] That is, at equilibrium the
average action is the average of individual #’s which depend only on material payoffs. I also find
that at equilibrium for each individual

r~X+n(0-0), (8b
y~ X +an (0 -0),
7~ X +ajaon (0 —0),
T~ X+ ajazsazn (6 —0). (8e
A composite parameter 7, which depends on B’s and a’s, is defined by equation (S4c) in the SI.
Parameters 0, a1, as, ag and n are individual-specific while X and 6 are the same for all individuals.

With no cognitive dissonance (i.e. if oy = 0), y = § = & = X, so that, the society becomes
homogeneous in attitudes and beliefs while still exhibiting variation in actions xz. Without the



“theory of mind” (i.e. if ag = 0), § = & = X, so that, the society becomes homogeneous in
beliefs while still exhibiting variation in actions x and attitudes y. Without logic constraints (i.e.
if a3 =0), £ = X, so that there will be no variation in second order & beliefs about actions. Note
that if the correlation between 6,7 and the strength of cognitive factors oy, as, ag are low, the mean
values of x,y,7 and & are all approximately equal to §. That is, on average individual preferences
and beliefs align with actions.
One can also approximate the corresponding variances. These approximations show (see the
SI) that at equilibrium
var(z) > var(y) > var(y) > var(z). (9)

That is, the model predicts that the variation in actions will be the largest, followed by the variation
in personal norms, followed by the variation in beliefs about norms of others, followed by the
variation in beliefs about the action of others. Similarly, the correlation with material benefits
(characterized by parameter ) will be the highest for individual actions x, followed by personal
beliefs y, followed by normative expectations ¢, and empirical expectations Z (see the SI). These are
testable predictions. I will illustrate these results below when considering specific social interactions.

Examples

Next I illustrate my results using several games which have been extensively studied using methods
of classical game theory, evolutionary game theory, and behavioral economics. In experimental
studies, the subjects are usually identical in terms of the expected costs and benefits of their
actions. In contrast, in real life there is usually a lot of variation between individuals in these factors.
Consequently, I will consider a group of n individuals who differ in various relevant characteristics
such as their costs, benefits and/or valuation of the resource produced. (See Ref.(53)) for a review
of models of collective action in heterogeneous groups.) I will also allow for differences between
individuals in parameters characterizing the effects of immaterial factors.

In agent-based simulations, I will assign parameters D;, A; of the utility function v and pa-
rameters C;; specifying the dynamics of attitudes and beliefs randomly and independently from
certain distributions. In my graphs, I will use an additional parameter ¢ which will vary from
0 to 1. I will scale parameters Aq,..., A4 by multiplying them by . For example, with ¢ = 0
any normative effect in the utility function will be absent and individuals will behave according
to standard evolutionary game theory assumptions. In contrast with e = 1, the expected weight
of each term in the utility function will be the same. Individuals will revise their actions and
beliefs with probability 50% per individual per time step. I will also introduce small random errors
during the update processes. I will compute the means and standard deviations of my variables at
a long-term equilibrium, the Kendall rank correlation between them and 6, and the half-time 7 of
convergence to an equilibrium (defined as the time to reduce the distance to an equilibrium value
by one half). My main focus will be on games with quadratic payoffs functions. However in the
SI, I also consider several models with linear and quasi-linear payoff functions and a more complex
example of a nonlinear payoff function. Table S1 in the SI summarizes the games I consider.

Coordination Game. Let individuals interact in randomly formed groups. Adapting the
model in Ref. (48) (see also Ref. (54)), assume that each individual has a preferred action 6; and
pays a cost proportional to the square of the deviation from 6;. Each player also pays a cost if
his action deviates from the average action of the group. The corresponding (subjective) payoff
function for individual 7 is

ﬂ(xi, (i‘l) = bi — 0501(1'1 — 91)2 — O5dz(a:, — i‘i)Q, (10)
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Figure 3: Properties of equilibria in the Coordination Game. (a) No external influence. (b) With external influence
(G = 2). From top to bottom: mean, standard deviation, half-time of convergence to an equilibrium 7, and Kendall
rank correlation with 6 for = (purple), y (green), § (blue) and Z (orange), respectively. Bars with no color mean the
corresponding correlations are statistically insignificant (at 0.05). The thin black lines show the theoretical predictions
for x (given by equation S6 in the SI). Notice the difference between y-axis scales in graphs for 7.

Parameter ¢ measures the weight of each normative factor relative to material payoffs in the utility
function. Group size n = 100. Parameters 0;, c;,d; are drawn from lognormal distributions with
mean 1 and standard deviation 0.1, so that 6 ~ 1. Statistics are calculated over 100 last time steps
over 40 independent runs each of length 1,000 time steps.

where parameter b; is the maximum benefit, and ¢; and d; are parameters measuring the costs of
deviation from the personally preferred action and from the mismatch with the partners’ actions,
respectively. Here parameter 0; defined by equation is exactly 0; of the payoff function .

EGT analysis. In the Evolutionary Game Theory (EGT) version of this game using the best
response strategy revision, the term Z; is replaced by the average action of peers in the previous
time step, (ZJ 4 Tjprev)/(n —1). Let r; = Ci‘f: 7, be the relative strength of conformity pressure
for individual ¢. Assume that parameters ; and r; are chosen randomly and independently from
certain distributions. Then the Nash equilibrium effort for individual 7 can be approximated as
xf = 0; + (0 — 0;), and the average effort of the group z* = 6 (see the SI).

General case. The average action predicted by my approach is the same: 6. However the
predictions for individual values x; will differ between the two approaches (because 7 in equation
is different from r). Obviously, besides T* and z}, my model makes predictions for the expectations
and variances of y;, 7; and ;.

Figure 3] illustrates the equilibria in this model found using agent-based simulations. The EGT
predictions correspond to purple bars for ¢ = 0. The case of no external influence was modeled by
setting all coefficients A4 and Cj3 to zero. Figure [3h shows that with no external influence,

e The mean values of z,y, 7 and Z are close to @ as predicted.

e Although with ¢ = 0 (leftmost set of bars), normative factors are absent from the utility
function, variables y, ¥ and T still evolve towards 6 due to the psychological processes modeled.

e The standard deviations and correlations with 6 are in the order predicted: from the largest
for x to the smallest for z.



e Increasing the strength ¢ of normative factors decreases within-group variation in all traits
and delays convergence to an equilibrium.

Figure shows that with external influence (with G = 2, so that the authority effectively asks
individuals to double their efforts):

e Individuals respond to external influence by increasing their efforts, attitudes, and beliefs
towards GG as ¢ increases with the mean of & getting the closest to G and the mean of z
lagging the most.

e Only z and, for € = 0, y significantly correlate with 6.

e The time to convergence to the equilibrium is shorter than that without an external influence
and does not depend much on .

e Even though with € = 0 normative effects do not affect the utility function, mean actions are
increased relative to the case of no external influence. This happens because the presence of
an external influence increases individual beliefs Z; about the actions of others which in turn
pushes them to increase their action z; in order to coordinate better with groupmates.

o w m mn e Gl

e
Y
ok |

e=1.0

OM

al il
=l I I I

e=0 €=0.25 e=0.

(a) (b)

Figure 4: Properties of equilibria in the Public Goods game with quadratic costs. (a) No external influence.
(b) With external influence promoting increased effort (G = 2). From top to bottom: equilibrium means, standard
deviations, correlation with 6, and half-time of convergence for x,y,§ and Z, respectively. The thin black lines show
the theoretical predictions for = (given by equation S6 in the SI). Parameter ¢ measures the importance of each of
the normative factors relative to material payoffs. Group size n = 40. Parameters: b; = 40 for each i, parameters c;
are drawn from a lognormal distribution with mean 1 and standard deviation 0.1, parameters v; are drawn from a
broken stick distributions, so that 8 ~ 1. Statistics are calculated over 100 last time steps over 40 independent runs
each of length 1,000 time steps.

Public Goods Game with quadratic personal costs. In this game, individuals make
costly contributions to a total group effort Z the value of which is then multiplied by a constant
factor b. The resulting amount P = bZ is then distributed back to the group members with
ith individual getting value v; P, where v; is a constant individual-specific parameter. Following
Refs. (55], 56, 53, [49), assume that the cost to an individual is quadratic in their effort. In my

10



framework, individual ¢ making effort z; predicts that his group effort will be Z; = x; + (n — 1)%;.
Then the estimated material payoff of individual 7 is

7T(.CIZZ', fz) = Uini — 0.5C¢:B12, (11)

where ¢; is an individual cost coefficient. Straightforward calculation then shows that 6; = v;b/¢;
which is just the benefit to cost ratio.

EGT analysis. In the EGT version of this model, the term (n —1)Z in the equation for Z; above
is substituted by the sum of efforts of groupmates at the previous time step, Zj £i Tjprev- Then
the best response and the Nash equilibrium for the individual effort are equal to 6; defined above.

General analysis. Figure [4] illustrates the properties of equilibria in this model which are very
similar to those in the Coordination game.

Common Pool Resource Game. In this game (57, [58)), the production function shows a
diminishing return in the group effort: P = bZ — 0.5dZ?, where b and d are constant parameters,
the individual cost is linear in effort z;, and the share v; is the resource going to individual 7 is
proportional to their effort: v; = z;/Z as in the Tullock contest (59), and Z is the same as defined
above. The individual payoff is

T = UZ‘P — C; 5. (12)

In this model, 6; = ?i((l;:f))

EGT analysis. Proceeding as above, one finds that the best response action is

Zipr = IMax (0, ”T‘H 0; —0.5>" ot xj,prev) while and the corresponding Nash equilibria are x; xg =

0;+n(0; —5). If all individuals have identical coefficients ¢; = ¢ and b > ¢, then the Nash equilibrium
is xyg = 6, while the individual effort maximizing the total group payoff is zopy = (b — ¢)/d, that
is, 2n/(n + 1) times smaller.

General analysis. Figure shows that with no external influence and positive €, the general
equilibrium patterns are similar to those in the two others games except that with e = 0 the
observed values exceed the predictions. This happens because of the non-equilibrium occasionally
observed in this case (see the SI). The time to convergence is very short. With positive ¢, all
individual characteristics strongly correlate with the measure 6 of material benefits.

With an external authority promoting a socially optimal individual effort G = z4pt, group
members actually increase rather than decrease their efforts (Figure ) In this game, the term
D is proportional to the group size n which makes individual estimates of the expected payoff
m(z, &) and, correspondingly, their best response x very sensitive to changes in & (see equations
and . If external authority promotes low efforts, individuals develop decreased expectations for
Z about the effort of others which in turn make them to believe that opportunistically increasing
their own effort will be beneficial.

Other games. In the SI, I consider a number of other games. A Tragedy of the Commons game
with diminishing return, a game of the trade-offs between public and private production (60} 61} 56),
and an “Us vs. nature” game (53], 27) show behavior similar to that of the Public Goods game with
quadratic costs (illustrated in Figure . In particular, in these four games individuals change their
action in the direction promoted by an external authority. A Public Goods game with diminishing
return (62, 58)) and a Tragedy of the Commons game with quadratic costs are similar to the Common
Pool Resource game (illustrated in Figure . In particular, in these three games individuals can
change their actions in the direction opposite to that promoted by an external authority. (In these
games, the term D; is linearly proportional to the group size n.)

I also consider several games with linear payoff functions (in which D; = Dy = 0): the classical
Dictator game and the Linear Public Goods as well as the Give-or-Take game (37) and the Rule
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Figure 5: Properties of equilibria in the Common Pool Resources game. (a) No external influence. (b) With
external influence promoting decreased, socially optimal effort G = 0.5. From top to bottom: equilibrium means,
standard deviations, correlation with 6, and half-time of convergence for x,y, 7 and Z, respectively. The thin black
horizontal lines show the theoretical predictions for x (given by equation S6 in the SI). Parameter ¢ measures the
importance of each of the normative factors relative to material payoffs. Group size n = 20. Parameters: b, = 10
for each i while ¢; and d; are drawn from lognormal distributions with mean 1 and standard deviation 0.1 so that
0 =~ 1. Initial values of y, and & were chosen randomly and independently from a uniform distribution on [0, 0.1].
Statistics are calculated over 100 last time steps over 40 independent runs each of length 1,000 time steps.
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Following game (43)). In the EGT versions of these games, the Nash equilibrium effort is zero but
the presence of an external influence can lead to positive efforts. Similar behavior is exhibited by a
continuous Prisoner’s Dilemma game (63) in which the payoff function is quasi-linear (i.e., Dy =0
but both Dy and Dy are different from zero).

Discussion

Here 1 have developed a theoretical approach for modeling the dynamics of social interactions in
situations where individuals’ personal norms and beliefs about others affect their own actions which
in turn cause subsequent adjustments in norms and beliefs. My approach combines evolutionary
game theory models focusing on material costs and benefits (I3], [14) and an adaptation of social
influence models focusing on the dynamics of publicly expressed opinions (19-21]) with novel mod-
eling components capturing the dynamics of beliefs about others. In my approach, the publicly
observable variables are individual actions while individual attitudes and beliefs are private and
can only be guessed by others. Besides predicting individual and group behavior, my models shed
light on two other types of questions: which norms get internalized and which factors control beliefs
about others.

Individual characteristics. My models predict that individual actions in social interactions,
their attitudes (i.e. personal norms), and beliefs about others coevolve in a particular way. Specifi-
cally, the two most important factors in long-term dynamics are material payoffs and the influence
of external authorities. In the absence of the latter, individual behavior tends to evolve towards
actions maximizing their material payoffs while personal norms (attitudes) and beliefs about oth-
ers exhibit coherence with individual actions. On longer time-scales, variation in normative beliefs
between individuals largely reflects variation in their material benefits and costs. My models thus
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predict that people have a tendency to internalize the ideas and beliefs that are most beneficial for
their material well-being. In a sense, these modeling conclusions align with Marx’ postulate that
“...material life determines the social, political and intellectual life process in general” (64)).

At the same time, as stressed already by Aristotle, human nature is deeply social and political.
Culture, social learning, and conformity have played crucial roles since the origin of our species
(65H68). Therefore our actions, attitudes, and beliefs are strongly affected by those of our peers
as well as by external authorities (cultural, religious, political, administrative, etc). While peer
influence largely works towards reducing variation between individuals, an external influence (or
propaganda) can directionally shift actions, attitude and beliefs. This is a fact well known to
politicians, religious leaders, cultural models, educators, marketing professionals, and social media
influencers. The resulting effects can be very positive or extremely negative both from individual
or societal perspectives. My models predict how individual actions are dispersed around or shifted
away from those maximizing their personal material payoffs.

Under some conditions the effort of an authority to promote certain behavior can backfire
and cause an opposite effect. For example, the authority’s messaging about the importance of
participation in a collective action can develop higher expectations about the level of contributions
of peers which then will lead individuals to opportunistically decrease their own costly effort. Or
the authority’s messaging about the need to reduce the consumption of a common resource, can
cause individuals to opportunistically increase their consumption. This is similar to situations
captured by the Volunteer’s Dilemma (69) when individuals fail to perform an action they would
would benefit from because they expect others to volunteer.

In some of the models I considered, an external authority can cause individuals not only to
perform actions detrimental for their material well-being but also to internalize preferences for
such acts. My models can potentially be used to better understand obedience to authority (such as
studied in Milgram’s and Zimbardo’s experiments, (70, [71)) or the effects of expected supernatural
punishment for violating moral norm in moralizing religions (72). My results may also be useful
for better understanding of the causal effects of “institutional signals” in developing better policies
for social change, e.g. those stimulating pro-environment behavior (73)).

Differences with evolutionary game theory (EGT) predictions. Standard EGT models
aim to predict human behavior solely from the expected material payoff. However, the growing
understanding in behavioral economics is that certain normative factors must be considered to
explain observed behavior (38, [54], [74H77)) (which is a fact well appreciated in social psychology).
My approach not only offers a general theoretical way for doing this but also describes explicitly
how normative factors (i.e., attitudes and beliefs) change as social interactions unfold.

My results show that in some cases the EGT predictions about the average behavior at a long-
term equilibrium are robust to inclusion of normative factors (see also Ref.(49)) which gives some
additional confidence in the robustness of the some results/conclusions of the EGT. However on
short time-scales and in the presence of an external authority, the two approaches will give very
different predictions. Moreover even on long-time scales, individual efforts can be smaller or larger
than the EGT predictions and the distribution of individual efforts can be qualitatively different.
For example, while some EGT models of collective action predict that only a single individual
with the largest benefit-to-cost ratio will contribute to the group’s effort (53)), my models predict
there will be a large number of different contributors. The dynamics of attitudes and first- and
second-order beliefs, which are at the core of my approach here, are outside of the scope of the
EGT.

Groups. My models allow for scaling up individual behavior to group characteristics. In par-
ticular, within-group variation is predicted to be the largest for individual actions, followed by
individual attitudes, followed by beliefs about attitude and actions. I also predict that a newly
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formed group (or a group encountering a new social situation) will go through a process of con-
tinuous reduction in these variances towards an equilibrium. This process can be interpreted as
tightening of personal norms and normative and empirical expectations and can be studied experi-
mentally (38). Convergence to an equilibrium can be fast, although, of course, the actual time-scale
depends on parameters.

My variables y, 3y and Z are closely related to the notion of personal, descriptive, and injunctive
(prescriptive) social norms (39} 40, B6]). In particular, variable y gives the personal norm of an indi-
vidual. The average of Z specifying the expected average behavior of others defines the descriptive
norm in the group. The average of § specifying the average belief of individuals about what others
expect from them defines the injunctive norm (28). My models shows how these norms become
dynamically aligned as social interactions unfold. This process is a subject of recent experimental
studies (78-80).

My results show that pinning down theoretically the importance of each individual model com-
ponent is hardly possible. For example, the average individual effort in the group at equilibrium
depends on the weighted average of different types of individual parameters (e.g., see eq. S8 in the
SI). However this is expected given the complexity of social dynamics. Similar problems emerge
and are successfully dealt with in other fields, e.g. statistical physics or genetics. I note that which
forces and phenomena are most important in social behavior is ultimately an empirical question.

Tight and loose cultures. My theoretical results can be applied to cultural differences
between different human groups. Empirical research shows that human cultures vary from very
“tight” to quite “loose” in the degree to which they emphasize social norms and compliance with
them (81)). The tight-loose (TL) differences can exist not only between different countries (82)) but
also within the same country, e.g. between 50 states in the US (83) and between 31 provinces in
China (84)). The variation on the TL scale is also observed in non-industrial societies (85]). Refs.(82,
83, 85, [86) show with data that the TL variation can be explained in terms of the history of threats
(e.g., environmental, internal and external warfare, etc.) faced by societies and the need to better
coordinate collective actions under conditions of threat. Ref.(84) confirm this interpretation but
show that cultural tightness also correlates with tighter government control of areas of urbanization
and economic growth, with the strength of religious practices, and the extent of traditionality
and group collectivism. Ref.(87) provided evidence that historically rice-farming societies have
tighter social norms worldwide. They explained it by the facts that rice’s production was very
labor intensive and required farmers to coordinate water use and developed strong norms for labor
exchange. Using data on small-scale societies, Ref.(85]) showed the importance of two additional
factors: societal complexity (88) and kinship heterogeneity. Less complex societies and patrilocal
societies (in which wives settle near their husband’s parents) are more tight.

All these analyses are correlational and therefore cannot claim that the factors discussed there
cause cultural tightness. However theoretical studies can provide support for causality. Ref.(86])
modeled cooperation in collective actions and showed that increasing the relative benefit of coop-
eration (which they interpreted as related to the level of the threat faced by the society) leads to a
higher frequency of cooperative actions. The latter can be viewed is a measure of the strength of
the (descriptive) cooperative norm.

Extending this work, my general approach allows one to study not only the effects of different
factors on behavior but also on individual attitudes and beliefs, both the average values and their
distributions and correlations in the group. Next I discuss these effects within the context of the
TL culture scale. In my model, the variation on this scale can be measured by the variances and
coefficients of variation of x,y,y and Z.

Social heterogeneity. My results show that in the absence of external influences, the most
important factor in maintaining variation in actions, personal norms and beliefs is the variation in
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parameter § measuring individual material costs and benefits (equation . Variation in 6 is high
if individuals differ in the roles they play in the society, their abilities, compensation/valuation of
the material benefit produced, and in the individual costs paid. This variation is directly related
to social complexity of the society with simpler societies being expected to have less variation and,
thus, more strict norms than more complex societies. My conclusion is thus in line with with
the observations that urbanized areas have looser norms than rural areas (83 [87) and that more
complex and heterogeneous societies have looser norms (85).

Societal threat. Behavioral response to a threat can often be just a rational change in the actions
taken. For example, if cooperation becomes more profitable, its frequency is expected to increase as
modeled in Ref.(86]). Societal threat will however also affect attitudes and beliefs potentially making
them more uniform and tightening culture (38). There are several ways to introduce the effects of
an environmental or social threat in my models. One is via a change in the payoff function 7. In the
Coordination Game, a threat can be modeled as an increase in the individual cost d; of mismatch of
the individual’s action with the average action of peers. This would increase parameters r; making
actions chosen more similar and consequently making all attitudes and beliefs more homogeneous.
In other games with quadratic payoff function and in the Continuous PD game, a societal threat can
be modeled as a change in parameters ¢; measuring individual benefit-to-cost ratio. Although such
a change will change the means and variances of actions, attitudes and beliefs, the corresponding
coefficients of variation will not be affected. Societal threat can also increase the perceived cost of
disapproval by peers Ao, of nonconformity with peers’ action As, and non-conformity with authority
Ay. Increasing these parameters will decrease 1 reducing variation in action, attitudes and beliefs,
so that the society becomes more uniform.

Propaganda effort. Societies also vary in the strength of the effort of political, religious, in-
tellectual, and other leaders and role models to promote certain types of behavior. As discussed
above, increasing the perceived cost A4 of nonconformity with authority will make the society more
homogeneous. Similar effects can be achieved if the action G promoted by authority significantly
deviates from @ which can be viewed as a “natural” optimum behavior for the population. With
sufficiently large values of A4, individual actions can shift towards G “dragging” individual atti-
tudes and beliefs along and making them more uniform. For example, in China the strength of
governmental control of provinces predicts norm tightness (84).

Cultural variation. Data show significant cultural variation in conformity (89)), cognitive dis-
sonance (90} OI)), and certain aspects of the Theory of Mind (92-94). Collectivistic cultures put
special emphasis on conformity. In my model, such cultures would be characterized by increasing
costs of non-conformity Az and A4 and in increasing parameters 5 and v measuring the strength of
social influence on attitudes and beliefs. Such increases will cause the society to become more uni-
form. Similar effects will be achieved by a decrease in the strength of cognitive dissonance («;) and
a reduced perception of logic constraints («3) which would increase the ability to “doublethink”.

Population size. In my models of collective action, I consider a single group the size of which
enters explicitly only via parameter D; and only in some models. Increasing the group size n
increases D1 which will always decrease 6 and the level of cooperation in the model because of
increased free-riding. However the group size also enters implicitly because the perceived costs of
cost of disapproval by peers As and of nonconformity with peers’ action As are expected to increase
with n. Therefore increasing population size is expected to make the culture tighter.

Differences in the subsistence style. Societies may differ in the types of social interactions their
members most often involved. For example, coordination and reciprocal exchange of labor was very
important in rice production which has contributed to tighter cultures in rice-producing regions
of the world relative to wheat-producing regions (87). As discussed above, the higher the cost of
mis-coordination, the tighter the society if predicted to be. Subsistence style also affects the extent
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to which people rely on social learning (95)).

Overall, my analysis provides a theoretical support for a causal relationship between the factors
just discussed and the extent of cultural tightness/looseness.

Possible generalizations. My conclusions have important caveats though. First, they con-
cern the expected average behavior of the population. In any realistic situation one may expect the
presence of individuals who will not be affected by certain factors included in my model. (Math-
ematically for such individuals, some of the corresponding coefficients A;, D;, C;; will be equal to
zero.) Second, my predictions mostly focus on long-term equilibria under the assumption of re-
peated interactions occurring according to a fixed set of rules. Predicting transient dynamics on
short time scales is much more challenging. Third, my derivations assume that social interactions
happen within a single constant group. An important future generalization would be to consider
interactions on a (dynamically changing) social network or in randomly formed groups. Also impor-
tant is to consider the dynamics of beliefs represented by discrete rather than continuous variables
(because it is know that their equilibria can be rather different (96)). Additional potential gen-
eralizations include multidimensional extensions of the model (20, 24] [97), more realistic models
of learning (e.g., Bayesian learning (98))) and strategy revision, equity concerns, and learning from
others’ performance. It would be interesting to use my models for studying political polarization
(99) as well as the processes through which people change their social identity (100]).

Model validation. My models can be validated using data from experiments or surveys. For
example, the methods of experimental economics can be used to elicit beliefs about the actions
and attitudes of others (38, [76, [77, 101}, 102)). For example, Ref. (76) measured subjects’ actions
and beliefs corresponding to my variables z,y,Z and ¢ in a single round of the Dictator game
while Ref. (38) did the same for a group of subjects repeatedly playing a collective risk game
(8). Compliance with authority was studied in a Public Goods game (103) and in the Joy of
Destruction games (104). Importantly, because my main equations (e.g., eq.[5|) are linear, estimating
the distributions of relevant parameters using (e.g., multilevel) regressions should be relatively
straightforward. In experimental economics studies of social dilemmas it is common to classify
subjects into different types such as altruists, free-riders, conditional cooperators, etc (75, [105)).
Similar approaches can be used to study differences between individuals in their tendencies to
change their personal norms and beliefs. In principle, it may be possible to compare quantitatively
the relative strengths of cognitive factors (a’s in my models), of learning from others (5’s), and of
complying with authority (7’s). Existing surveys that correlate different characteristics of societies
with tightness-looseness of their norms (82-K85)) as well as studies of how values and social preferences
change over time (I06H108)) offer additional opportunities to test my models.

People’s attitudes and beliefs are important not only in social dilemmas as considered here but
also in many other aspects of our life. They change dynamically throughout a person’s life as a
result of experiences (both personal and shared) and other psychological processes. They must
be considered when scholars, practitioners, or policymakers try to understand or predict social
processes happening at different levels of our societies. The models developed here offer a way of
doing it from the theoretical point of view. The challenge will be to integrate these models with
empirical work.
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Best response action

The action x maximizing the utility function u can be found by computing the derivative of
the utility function :

0 N _ -
a—z =Dy — D17 — Doz — As(x — y) — As( — §) — A3(x — 7) — Au(z — G),

=(Dg — D17 + A1y + Ao + A3 + AyG) — (Dy + Ay + Ay + Az + Ay,

Solving the above equation for x gives us the best response action given a certain attitude y
and beliefs 7 and g. I will write it as

xpr = max(0, By + By + Boy + BsT + B4G), (Sla)
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where

D() Al A2 A3 - Dl A4

0 S , P21 S y 22 S S S

are re-scaled individual-specific parameters measuring the effects of material and immaterial
forces on individual actions (i = 0,1,2 and 3), and

, B , By (S1b)

4

=1

The above equation for zz; naturally assumes that S # 0. In analogous evolutionary game
theory models (in which all coefficients A; are zero), S will be zero if Dy = 0. In this case,
the best response xg; will be equal to a maximum (if Dy — D12 > 0) or 0 (if Dy — D1& < 0)
possible value of x.

As an example, if one disregards all other forces involved in decision-making and focus
only on material cost-benefit considerations (i.e. if all A; = 0), the best response action will
be Dy — Dy

D2 '

If the individual believes that the average action of their social partners will always match
their own action (i.e., T = z),

(S2a)

Tpr =

Dy
Tpp = ————.
BR Dy + D,
which is the definition of parameter  (equation [3| of the main text).
Note that in standard evolutionary game theory (EGT) models using myopic best re-

sponse, variable Z is replaced by the average action » i Tiprev /(n—1) of their social partners
which individuals know exactly.

(S2b)

A single individual joining a large and stable social system

Assume that an individual joins a society where the actions, attitudes and beliefs have
already evolved to a certain stable distribution. Let the society be large enough so that
the impact of a single additional individual on it is negligible. This will allow us to treat
the average action of social partners X as constant. I am interested in how the individual’s
characteristics will change after joining the society. [Note that this model can be used for
describing the subject’s behavior when embedded in a group with bots acting according to
a certain pre-programmed pattern. |

The attitude and beliefs of the focal individual will change according to recurrence equa-
tions (S3)). Assume that they converge to an equilibrium (z*,y*,§*, 2*) at which z* > 0.
From equations and using the fact that 5; = 1 — a; — 7; for all 4, at this equilibrium:

v =X+ a(z* = X)+71(G-X) (S3a)
T =X+ ay —X)+7(G—-X)=X+aa(z" — X) + (21 +72)(G — X), (S3b)
=X+l —X)+53(G—-X)=X+ajaaz(z" — X) + (az(azy + %) +73) (G — X),

(S3c)
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Substituting these into the best response equation (Slal) and solving for z,

- _BO + B4G -+ (Bl -+ BQ + Bg — BlOél — BQOélOéQ — BgC(lOégOég)X Ce
1 — (Biay + Baayag + Bsajasas)
o+ (G = X) [Bim + Ba(miaa +72) + Bs(vicwas + 903 + 73)]

B By + B4sG
C1- (Biay + Baajag + Bsoasas)
B +By+Bs—1
+ 1+ B2t B +1)X...
1-— (BlOél + BQOClO[Q + Bga1a2a3)
Biyi + Ba(miae + 72) + Bs(ni0oas + vea3 + 73)

+ 1 — (Biag + Baayag + Bsajanas) (G- X).
I can rewrite the last equation as
=0+ (1-nX+EG - X), (S4a)
where
Tis (Bron jg;ﬁﬁ Bsojanas) (S4b)
=1z (B10141 +BBl’2a1§z + g2a1a2a3)’ (S4c)
¢ LBt Ba(nas t ) + By(masas £ 7003 + 7) (S4d)

1 — (Biog + Beaqag + Bsaasas)

Note that £ = 0, if propaganda by the external authority does not affect individual attitude
and beliefs (i.e. all 7; = 0). Correspondingly, the deviation of the equilibrium value of x for
a focal individual from X* can be written as

T X* =8 —nX* 4G — XY (S5)

From here it is straightforward to find equilibrium values of y, § and Z using equations (S3]).
Note that only non-negative values of z*, y*, =¥, * and X* make sense within my framework.

Equilibrium in a general case

In the general case, all n individuals will be updating their attitudes and beliefs and the
average efforts of peers X will be changing in time. However one still can use equation ([S4al)
to approximate the equilibrium. Specifically, summing up across all individuals and equating
the average values of x and X, one finds that at equilibrium

0+ GE
N+&’
where the bar means the average over the group.
In some of the models I consider in the main text, only a subset of individuals, typically

X* (S6a)

S3



with the largest benefit-to-cost ratios and/or most affected by external influences, make
contribution at equilibrium, while others free-ride. In such situations, to predict the average
group effort one needs to sum up equations (S4al) only over a subset L of individuals making
positive efforts. Equation (S6a) then takes a form

* n—l+ZL77+ZL£’ (36b)

where [ is the number of contributing individuals. In principle, one can find the individuals
who make positive contributions at equilibrium using an iterative procedure similar to that
in ref.(I)). I leave this for future work.

Knowing X* allows us to find the equilibrium values of z, vy, , T for each individual. Next
I consider some special cases.

Quadratic payoff function with no external influence

Assume that external influence is absent so that By = 7, = 75 = 73 = 0. Then £ = 0. Note
that in this case, the numerator in the equation for ¢ is Dy/S while that in the equation for
nis 1 — (By + By + Bs) = (D1 + D,)/S. Both equations have the same denominator. This
implies that 6(D; + Dy) = nDo.

No variation in material costs and benefits

Assume that there is no variation in coefficients Dy, D; and Dy between individuals. Then
I find that
D
__ 70 _9p
Dy + D,

That is, the average action is the action predicted if immaterial forces are neglected (see
equation . Therefore, 6 — nX* = 0, so that z* = X*. From equations , one
concludes that y* = y = & = X* for all individuals. That is, with no variation in material
costs and benefits, the group will converge to a state with identical actions, attitudes, and
beliefs.

X" =

| >l

(S7)

Variation in material costs and benefits parameters

Allowing for variation in Dy, D; and D, and approximating the ratio of expectations % by
the expectation of ratio §/n I find that
5 Dy -
X'=-=j/n=——"—=0. S8a
SN = (88

That is, the average action is approximately the average of actions predicted if immaterial
forces are neglected (see equation [S2al).
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Using equations and , I find that at equilibrium for each individual

ot~ X*+n (0 -0), (S8b)
Yt X* 4 agm (0 —0), (S8c)
7~ X* 4+ ajaon (0 —0), (S8d)
T~ X* + apasasn (0 —0). (S8e)

With no cognitive dissonance (i.e. if a; = 0), y* = ¢* = #* = X*. Without the “theory of
mind” (i.e. if ap = 0), §* = * = X*. Without beliefs dissonance (i.e. if ag = 0), T* = X*.
Note that mean values of z*, y*, " and Z* are all approximately equal to X* if the correlation
between r,n and the strength of cognitive factors aq, as, ag is low. Assuming independence
of € and n, the corresponding variances are approximately

var(z) = var(f) n? (S9a)
var(y) = var(0) (ozm) (S9b)
var(g) = var() (ayaqn)2, (S9c)
var(z) = var(0) (aqasasn)?, (S9d)

where var(6) is the variance of 6’s in the group. Because oy, g, a3 < 1, all this implies that
var(z) > var(y) > var(g) > var(Z). (S510)

That is, my model predicts that the variation in actions (and deviation from the mean)
will be the largest, followed by the variation in personal norms, followed by the variation
in beliefs about norms of others, followed by the variation in beliefs about the action of
others. Similarly, the correlation with material benefits (characterized by parameter #) will
be the highest for personal beliefs y, followed by normative expectations g, and empirical
expectations . These are testable predictions.

External influence only

If there are no material payoffs in the utility function, i.e. if Dy = Dy = Dy = 0, straightfor-
ward calculation shows that > B; = 1 and that n — 0/G = 0 for each 1nd1v1dual. Therefore,
using equations ((S3| - ) for each individual,

*

rr=y"=g=1=0G. (S11)

That is, the population’s actions, attitudes, and beliefs at long-term equilibrium are com-
pletely determined by the the external influence. There will be no variation between indi-
viduals.

Linear payoff function with an exogenous influence

Here I assume that D; = Dy = 0 for all individuals while there is variation between individ-
uals in Dy. The corresponding game-theoretic models neglecting immaterial factors predict
a simple behavior: individuals will make the maximum possible effort (if Dy > 0) or no effort

S5



(if Dy < 0). I will assume that Dy < 0 which is the case in several games I consider below.
With immaterial factors added but still with no external influence (i.e. A4 = 0), individuals’
actions, attitudes and beliefs will converge to 0.

Assume there is an external authority promotes a positive effort GG. In this case, using

equations 1} and 1) I find that S = Zle Ai,Z?zl B; = 1, and that § = (k + G)n,

where

k = Do/ Ay (S12)

is a measure of the strength of material forces relative to that of external influence. Then
the average effort at equilibrium can be approximated as

X=g--"1_ (S13)

where k = |Dy|/A, is a measure of the strength of material forces relative to that of external
influences and the composite parameters £ (defined in the SI) is non-negative. If the effect
Ay of an external authority is large enough, x is small and the average group effort will be
close to G.

One can now find the equilibrium values of y,  and § from equations .

Games

Numerical procedure

In numerical simulations used to illustrate my results, I used the following procedure for
generating parameter values. I start by assigning parameters Dy, D1, Dy by drawing numbers
randomly and independently from certain distributions (specified below). Then I assign
parameters Ay, ..., Ay of the utility function using a two-step procedure. At the first
step, I choose them randomly and independently from a “broken stick distribution” on a
unit interval (2)). Then I multiply these numbers by a parameter ¢ which will vary from 0
to 1. With € = 0, any normative effect in the utility function will be absent and individuals
will behave according to standard evolutionary game theory assumptions. In contrast with
e = 1, the expected values of each of parameters A; will be the same as that of Dy (in
models with Dy # 0) or Dy (in models with Dy = 0). That is, with € = 1, the expected
weight of each term in the utility function (1)) will be the same. Finally I draw parameters
C;; randomly and independently from a broken stick distribution on interval [0,0.1]]. Initial
values of z,y,y and T are drawn randomly and independently form a uniform distribution
on [0,0.1]. At each round, each individual revises its effort with probability 0.5. [In some
simulations, after each update I have perturbed the dynamic variables by small random
errors drawn from a uniform distribution on [—o,c]. The effects of such random noise are
intuitive. Therefore for clarity, I removed it from the simulations illustrated in all figures.|
Table 1 summarizes the games I will consider. For each game, I will: a) define the payoff
function 7(z, ) and identify the corresponding 6 value, b) identify the Nash equilibrium in
the corresponding evolutionary game theory (EGT) model, and c¢) show results of agent-
based simulations illustrating individual and group characteristics and compare them with
my approximations and EGT predictions. In the EGT versions of these games, individuals
will use best response to maximize their payoff. The corresponding payoff functions will be
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Table S1: Production function P (or p;) and expected payoffs 7(z;,Z;) in different games. Games with quadratic
payoff functions: Coordination, Public Goods Game (PGG) with quadratic costs, PGG with diminishing return,
Common Pool Resource (CPR), Tragedy of the Commons (TC) with quadratic costs, and TC with diminishing return.
Games with linear payoff functions: Dictator, Give-or-Take, Rule Following, and Linear PGG. Game with quasi-linear
payoff function: continuous Prisoner’s Dilemma. Nonlinear game: “us vs. nature” game. In all collective action
games, the expected group effort is Z = x + (n — 1)Z;. An empty entry in the table means that in the corresponding
game the corresponding function or parameter is not defined. Parameters with subscript i (e.g., bs, ¢i, ds, 73, v;) are
specific for individuals. Parameters without subscripts (e.g.., b,d, R) are the same for all individuals. R and r; are
the endowments. Note that variable P in collective action games is the production function while in the Prisoner’s
Dilemma game, P; is the punishment payoff.

Game Production P/p; Expected payoff m;

Coordination b; — 0.5¢;(x; — 6;)% — 0.5d;(z; — ;)2
PGG w/ quadratic costs P=b7 v; P — O.E)c,-acl2

PGG w/ diminishing return P =0bZ - 0.5d7> v; P — c;z;

CPR P =0bZ—0.5dZ? % P —cim;

TC w/ quadratic costs p; = bjx; pi — 0.5¢; 22

TC w/ diminishing return p; = bjx; — 0.5dia:? P — G4

Public vs. private production || P = bZ — 0.5dZ?
pi = bjz; — O.Sdizg v; P + p;, where z; + x; = r;

Dictator R—x;
Give-or-Take R —x;
Rule Following R—x;
Linear PGG P=b7 v; P — ¢c;z;
Continuous PD iRy + xi(1 — ;)S; . ..
+(1— )21 + (1 — ) (1 — 3;) P,
’ “Us vs. nature” H P = b#zo ‘ v P — ¢z ‘

the same as specified in Table 1 except that the term Z; (empirical expectation of peers’
action) will be replaced by the average action T; p.., of groupmates at the previous time step
as is usually done in best-response modeling.

Coordination Game

I assume that individuals interact randomly in groups. Each individual has a preferred action
but each player also pays a cost if his action deviates from the average action of the group
(3, ). The corresponding (subjective) expected payoff function can be written as

where 6; > 0 is the preferred action of individual ¢, Z; is the expected average action, b; is
the maximum benefit, and ¢; and d; are parameters measuring the costs of deviation from
the personally preferred action and from the mismatch with the partners’ actions. For this
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game, dw/dxz = —Ci(l’i — 91> — dz(.’Ez — .i'l) Therefore Do = cz’gi,Dl = —di,DQ = c; + dl
Parameter 6; defined in equation is exactly 6; of the payoff function 7.

EGT analysis. In the EGT version of this game, individuals will aim to maximizes the
payoff function in which the term z; is substituted by the average action ; e, of
groupmates at the previous time step. I will simplify my analysis by assuming that the
groups size is large enough so that the effect of any single individual on the average is
negligible. In this case, all T; p,., values will approximately be the same, so that I can drop
the subscript .

Computing the derivative Om/0x;, I find that the best response action for individual i is

Lipr = (1 - 7’2)91 + Tifpre'uy (Sl5a)
where
N c + dz

is the relative strength of conformity pressure.
| iD r-
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Figure S1: Examples of coevolutionary dynamics in the Coordination Game corresponding to Figure [3|of the main
text. (a) Five runs with no external influence. (b) Five runs with external influence with G = 2. Different colors
show different individuals. The thick black lines show the group averages. Group size n = 100,e = 1. The numbers
on top show the number of contributing individuals at the last time step. Other parameters: individual values of
0i,ci,d; are drawn randomly and independently from lognormal distributions with mean 1 and standard deviation
0.1. Initial values of y,§ and & were chosen randomly and independently from a uniform distribution on [0, 0.1].

Assume that parameters 0; and r; are distributed in the group independently. Then the
average individual effort at (Nash) equilibrium is

T =0, (S15b)
while the equilibrium effort for individual ¢ can be written as

x; =6; +1r,(60 —0,). (S15c¢)

Here and below bars mean the average over the group.
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General analysis. Figure [3]in the main text summarizes my results for this model. Fig-
ure shows sample trajectories corresponding to ¢ = 1 (i.e. when all components of the
utility function (|1)) are of similar order).

Public Goods Game with quadratic personal costs

In this game, individuals make costly contributions z; to a common group effort Z the value
of which is then multiplied by a constant factor b. The resulting amount P = bZ is then
distributed back to the group members with ith individual getting value v; P. Following
(5-8), assume that the cost to an individual is quadratic in their effort. Then the expected
material payoff of individual ¢ making effort x; given the expectation that the groupmates
will make an average effort z; is

m(x, %) = v;bZ — 0.5¢;27, (S16)

where ¢; is the individual cost coefficient and the expected total group effort Z = x;+(n—1)z.
One finds that dm;/dz; = bv; — ¢;x; so that Dy, = bv;, Dy; = 0, Dy; = ¢;, and

C;

is just the benefit to cost ratio.
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)

Figure S2: Examples of coevolutionary dynamics in the Public Goods Game with quadratic costs. (a) Five runs
with no external influence. (b) Five runs with external influence with G = 10. Different colors show different
individuals. The thick black lines show the group averages. Group size n = 20, = 1. The numbers on top show
the number of contributing individuals at the last time step. Other parameters: b = n, individual values of ¢; are
drawn randomly and independently from lognormal distributions with mean 1 and standard deviation 0.1, values of
v; are drawn from a broken stick distribution on interval [0, 1]. Initial values of y, § and & were chosen randomly and
independently from a uniform distribution on [0, 0.1].

EGT analysis. In the EGT version of this model, the term (n — 1)z in the expression
for Z will be substituted by the sum of efforts of groupmates at the previous time step,
) i Tjprev- Then, the best response and the Nash equilibrium for individual effort

1,prev
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is
Zipr = TiNE — 0;.

If all individuals have identical coefficients v; = 1/n and ¢; = ¢, then the Nash equilibrium is

b

nc

IxE =

while the effort maximizing the total group payoff is

b

Topt = E?
that is, n times bigger.
General analysis. Figure |4]in the main text illustrates the general patters in this model.
Figure shows sample trajectories of the general model corresponding to Figure 4| with
e=1

Public Goods Game with diminishing returns

In this game (9, [10)), the production function shows a diminishing return in the group effort
X:
P =b7 —0.5dZ*. (S18a)

and the individual payoff is
Here, dm;/dx; = v;(b—d(x;+(n—1)%)—c;. Therefore Dy,; = v;b—c;, Dy = v;d(n—1), Dy = v;d,

and
B b— Ci/Ui

dn

EGT analysis. In the EGT version of this game, the term (n — 1)Z in the expression for
dm;/dx; will be substituted by the previous total effort Z , ; of ith individual’s peers. The
best response effort is

0; (S18c¢)

Tpn,i = max (0,nb; — Zp_rem) :

In the symmetric version of this game when all coefficients are the same (i.e. ¢; = ¢ and
v; = 1/n so that all §; are the same), the Nash equilibrium for the total group effort is

b—cn
ZNE,sym =nt = d

In contrast, the total group effort maximizing the total group payoff is

b—rc
T

Zopt =

Individual contributions can take any values as long as they sum up to Zyg gym. Numerical
agent-based simulations using myopic best response show that the system converges to this
equilibrium, sometimes in a non-monotonic way; at this equilibrium the effort Zyg sym is

supplied by one or few individuals (see Figure [S3h).
In the asymmetric case, when values of v; and ¢; differ between individuals, the system
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Figure S3: Examples of best response dynamics in the Public Goods Game with quadratic costs. (a) Five runs
in the symmetric model. (b) Five runs in the asymmetric model. n = 20. The numbers on top show the number of
contributing individuals at the last time step. The appearance of nonlinear dynamics in a linear system may appear
strange. However because of the truncation used to avoid negative values of my variables, the system effectively

becomes nonlinear.

evolves to an equilibrium at which only a single individual with the smallest value of ¢;/v;
will make an effort (see Figure ) This effort, which is also the total group effort, is

Znp,asym = max(6;).

General analysis. Figure [S4] summarizes the properties of this model. The dynamics
observed in agent-based simulations are often non-equilibrium (see Fig. . What happens
is that a small number of individuals with sufficiently large values of #; are making large
efforts while the rest of the population free-ride. For some individuals, contributions change
in a cyclical or chaotic manner. The appearance of nonlinear dynamics in a linear system
may appear strange. However because of the truncation used to avoid negative values of my
variables, the system effectively becomes nonlinear.
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with 0, and half-time of convergence for x,y,y and Z, respectively. Bars with no color mean the corresponding
correlations are statistically insignificant (at 0.05). The thin black horizontal lines show the theoretical predictions
for z (given by equation S6 in the SM). Parameter € measures the importance of each of the normative factors relative
to material payoffs. Group size n = 20. Other parameters b; = 2n,c; = d; = 1 for all ¢ while parameters v; are drawn
from a broken stick distribution. Initial values of y, ¥ and & were chosen randomly and independently from a uniform
distribution on [0, 0.1]. The stars on top of the bars for ¢ = 0 mean that the actual values of standard deviations are
5 times larger than shown. Statistics are calculated over 100 last time steps over 40 independent runs each of length
1,000 time steps.
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Figure S5: Examples of coevolutionary dynamics in the Public Goods Game with diminishing returns corresponding
to Figure (a) Five runs with no external influence. (b) Five runs with external influence with G = 3. ¢ = 1.
Different colors show different individuals. The thick black lines show the group averages. The numbers on top show
the number of contributing individuals at the last time step.

S12



Common Pool Resources Game

In this game (111 [10), the production function shows a diminishing return in the group effort
Z=x;+ (n—1);:
P =b7 —0.5dZ*. (S19a)

the individual cost is linear in effort x;, and the individual payoff is
T = ’UZ'P — C;T; (Slgb)

as in the Public Goods Game with diminishing returns considered above. However here
valuation v; is not a constant but rather depends on the individual’s effort:

(S19c¢)

— :L‘Z
Vi = E
as in the Tullock contest (12] [13).
One finds that dm;/dx; = b — 0.5d[(n — 1)@ + 2x] — ¢;. Therefore Dy, = b — ¢;, Dy =
(n—1)d/2, Dy = d, and
T dn+1)

EGT analysis. Replacing, as before, the term (n — 1)7 in the payoff function by X; .,
I find that the best response action and the corresponding Nash equilibria are

|
Tipn = MAxX (0, % 6, — 0.5Xgprev> , (S20a)
g =1 57 (S2Ob)

Note that for z} to be non-negative, it is required that the minimum min(¢;) > #15, ie.
variation in #; should quickly decrease with n. Once negative values of x; appear, the best
response dynamics can become non-equilibrium.

If all individuals have identical coefficients ¢; = ¢, then the Nash equilibrium for the total

group effort is
Xy = max (0,n6) ,

while the group effort X, maximizing the total group payoft is

b—rc
Xopt = max (0, 7 >,

that is, 2n/(n + 1) times smaller.
General analysis. Figure [SO| of the main text summarizes the properties of this model.
Figure |[S7| gives examples of the coevolutionary dynamics.
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Figure S6: Properties of equilibria in the Common Pool Resources game. (a) No external influence. (b) With
external influence with G = 0.5. From top to bottom: equilibrium means, standard deviations, correlation with
0, and half-time of convergence for z,y, 7 and Z, respectively. The thin black horizontal lines show the theoretical
predictions for z (given by equation . Parameter € measures the importance of each of the normative factors
relative to material payoffs. Group size n = 20. Parameters: b; = 10 for each i while ¢; and d; are drawn from
lognormal distributions with mean 1 and standard deviation 0.1. Initial values of y, % and & were chosen randomly
and independently from a uniform distribution on [0,0.1]. Statistics are calculated over 100 last time steps over 40
independent runs each of length 1,000 time steps.
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Figure S7: Examples of coevolutionary dynamics in the Common Pool Resource game corresponding to Figure
(a) Five runs with no external influence. (b) Five runs with external influence with G = 0.5. ¢ = 1. Different colors
show different individuals. The thick black lines show the group averages. The numbers on top show the number of
contributing individuals at the last time step.
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Tragedy of the Commons Game with quadratic costs

In the Tragedy of the Commons games, individuals exploit a resource getting a benefit which
increases with individual effort z; but sharing a cost of its exploitation which increases with
the total group effort X (I4)).
Assume that individual benefit is linear in individual effort x; but the cost is quadratic
in group effort X:
™= bll‘l - 056122

In this model, dr/dz; = b; — ¢;[(n — 1) + x;] so that Dy = b;, D1 = ¢;(n — 1), Dy = ¢; and

EGT analysis. Here the best response action is wpp; = max(0,n8; — Z; .,). In the
symmetric version of this model when all ; values are the same, the Nash equilibrium for
the total group effort is

Zwe =nl =b/c.
The total group effort maximizing the total group payoftf is
Zope = b/ (cn),

that is, n times smaller. Individual contributions can take any values as long as they sum
up to ZNE,sym-

In the asymmetric case, when benefit-to-cost ratios b;/c; are different, only an individual
with the largest value of §; will make an effort #; so that the group effort is

Z* = max(6;).

General analysis. Figure |58 summarizes the properties of this model.
Figure [S9 show sample trajectories corresponding to Figure [S§ with ¢ = 1.
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Figure S9: Examples of coevolutionary dynamics in the Tragedy of the Commons game with quadratic costs
corresponding to Figure ??7. (a) Five runs with no external influence. (b) Five runs with external influence promoting
decreased effort at G = 1/n. € = 1. Different colors show different individuals. The thick black lines show the group
averages. The numbers on top show the number of contributing individuals at the last time step.
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Tragedy of the Commons game with diminishing returns

Alternatively assume that individual benefit shows a diminishing return while the cost term
is linear in group effort Z. Then the payoff function is

where b;, d; and ¢; are individual benefit and cost parameters.
In this game, dTi’/dl’Z = bz — C; — dZZL'l Therefore D() = bz — Gy, D1 = 07 DQ = dz and

bi—Ci

d;

EGT analysis. Here the best response action is
T, = max(0, 6;),

which is also the Nash equilibrium.
In the symmetric version of this game when all coefficients are the same (i.e. ¢; = ¢, b; =
b,d; = d, the Nash equilibrium for the individuals effort is

b—rc

TNE,sym — d

The individual effort maximizing the total group payoff is

b—ocn
Topt = d

General analysis. Figure summarizes the behavior of this model. With no external
authority, parameter ¢ has not effect on average behavior. In contrast to the previous case,
individuals respond to the authority and decrease their efforts. The larger €, the bigger
the response. Figure show sample trajectories of the general model corresponding to

Figure with ¢ = 1.
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Figure S10: Properties of equilibria in the Tragedy of the Commons game with diminishing returns. (a) No external
influence. (b) With external influence promoting decreased effort at G = 1/n. From top to bottom: equilibrium
means, standard deviations, correlation with 6, and half-time of convergence for z,y,y and Z, respectively. The
thin black horizontal lines show the theoretical predictions for = (given by equation . Parameter € measures the
importance of each of the normative factors relative to material payoffs. Parameters: group size n = 20, parameters
b; are drawn from a lognormal distribution with mean n + 1 and standard deviation 0.1 X vn+1, ¢; = 1,d; = n.
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Figure S11: Examples of coevolutionary dynamics in the Tragedy of the Commons game with diminishing returns.
(a) No external influence. (b) Five runs with external influence promoting decreased effort at G = 1/n. ¢ = 1.
Different colors show different individuals. The thick black lines show the group averages. The numbers on top show
the number of contributing individuals at the last time step.
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Trade-offs between public and private production

In this game (I5HI7, [6) the payoff function is a sum of two components coming from public
and private production efforts:

2 2
TV TV
collective production private payoff

where Z = > x;, x; is the contribution to collective production and v; is the share/valuation
of this production for individuals ¢ . The effort not invested in public production, y; = R;—x;,
where R; is a constant endowment of individual ¢, is invested in private production; b; and
d; are the corresponding benefit and cost coefficients.

Following (6]), assume egalitarian division of pubic goods (i.e. v; = 1/n) and that b;/d; is
a constant.

Then
ZZ =B bt iRy~ uD(n— 1) 7~ (di+vD) @
Do D D
In this model,
g _ B bt dRi _ Ri+u0= )
! d; + v;Dn 1+n% T 14k

with the obvious meaning of \; and k;.
EGT analysis. The best response action for individual 7 is

)\i — I{iXZ-_

T r, (S21a)

Tpri =

From its meaning, = must stay between 0 and R. Generalizing (6) approach under the
assumption that all zzz; > 0, I find that the total group effort at the Nash equilibrium can
be written as

g — 2N (S21b)
1+ Z K;

while the individual effort is
TiNE = Ni — KiZyg. (SQlC)

General analysis. Figure summarizes the properties of this model. Figure shows
sample trajectories of the general model corresponding to Figure with ¢ = 1.
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Figure S12: Properties of equilibria in the Trade-offs game. (a) No external influence. (b) With external influence
promoting decreased contribution to private production at G = 1/n. From top to bottom: equilibrium means,
standard deviations, correlation with 6, and half-time of convergence for x,y,§ and Z, respectively. The thin black
horizontal lines show the theoretical predictions for x (given by equation . Parameter € measures the importance
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Figure S13: Examples of coevolutionary dynamics in the Trade-offs Game corresponding to Figure (a) No
external influence. (b) Five runs with external influence promoting decreased contribution to private production at
G =1/n. n =20,e = 1. Different colors show different individuals. The thick black lines show the group averages.
The numbers on top show the number of contributing individuals at the last time step.
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Games with linear payoff functions: Dictator, Take-or-Give, Rule Obedience,
and Public Goods

Linear payoff functions emerge in a number of simple games commonly used in experimental
economics research. Some examples are given next.

Dictator game. Here an individual with an endowment R decides on how much to give
to another individual. If x; is the donation, then the payoff function is n(z;, ;) = R — x;,
so that d’ﬂ'z/dl’z = —1 and DO,Z’ =—1.

Take-or-Give game. In this game (18), each individual decided on whether to contribute
to a pool of money marked to be given to a charity (z; > 0) or take the money from this
pool for personal use (z; > 0). One can write the payoff as n(z;,%;) = R — z;, so that
dm;/dx; = —1 and Dy; = —1.

Rule Obedience game. In this game designed and studied by (19, 20]) individuals can follow
verbal instructions (such as “wait for a crosswalk light to turn green”) and earn a certain
reward or ignore instructions and get a higher reward. Let x; be the waiting time. Then the
payoff function in this game can be written as m(x;, Z;) = R — x;, so that dm;/dz; = —1 and
DO,Z’ = —1.

Linear Public Goods game. In this classical game, the payoff function is

W(xi, i’z) = ’UZbZ — C;Xy, <822)

where b, v; and ¢; are constant parameters. Then drm;/dx; = bv; — ¢;. A standard assumption
in behavioral studies is that Dy; = bv; — ¢; < 0.

In all these games, I predict that in the absence of additional forces, contributions x; and
attitudes y; and beliefs g;, Z; will evolve to the minimum values, i.e. zero. However in the
presence of an external influence, the equilibrium contribution can be positive.

Figure illustrates the properties of this model when G = 2. Figure gives
examples of corresponding trajectories.
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Figure S14: (a) Linear Public Goods game with external influence with G = 2. Parameters: group size n =
100, D1 = Dy = 0 for all ¢ while Dy are drawn from a uniform distribution on [—2,0]. (b) Continuous Prisoner’s
Dilemma game with external influence with G = 2. Parameters: group size n = 50, D2 for all ¢ while parameters
Do, D1 are drawn from lognormal distributions with mean —1 and 1, respectively, and standard deviation 0.1. These
expectations arise if the expectations of S, P, R and T and 0, 1, 3 and 5, respectively. From top to bottom: equilibrium
means, standard deviations, correlations with Dp, and the half-time of convergence for z,y, 7 and Z, respectively.
The thin black horizontal lines show the theoretical predictions for x (given by equation. Parameter € measures
the importance of each of the normative factors relative to material payoffs. Statistics are calculated over 100 last
time steps over 40 independent runs each of length 1,000 time steps.
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Figure S15: Examples of coevolutionary dynamics in the Linear Public Goods Game with external influence at
G = 2 corresponding to Figure [SIdh. n = 100, = 1. Different colors show different individuals. The thick black
lines show the group averages. The numbers on top show the number of contributing individuals at the last time
step. Parameters Do are chosen from a uniform distribution on [—2,0]. D1 = Dy = 0 for all 4.
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Continuous Prisoner’s Dilemma game

Ref.(21)) introduced a continuous variant of the Prisoner’s Dilemma which he called the
Trader’s Dilemma. In this game, each of the two players chooses an effort x within a unit
interval [0, 1]. The payoff to the player A who makes effort x4 against player B who makes
effort xp can be written as

m(xa,xp) = vaxpR+xa(1 —25)S+ (1 —za)zpT + (1 —x4)(1 — 25)P.

Parameters R, S, T, P correspond to the reward, sucker’s pay, temptation and punishment
payoffs in the standard Prisoner’s Dilemma (with 77> R > P > S). One interpretation
of this game is that the players are trade partners. One of them bring a box of rice, the
other a box of beans. An action consists of exchanging boxes filled with a certain amount
of merchandise. Complete cooperation corresponds to bringing a box completely filled with
the promised merchandise. Complete defection corresponds to bringing an empty box.

Adopting this model to my framework, player ¢ will expect a payoff which can be written
as

where I allow for heterogeneity in players payoffs. In this model,
Dy=5—-F<0,D, =T, — R, — P, +5;,Dy = 0.

In this game, Dy — D12; < 0 for all 7;. Therefore the players will evolve to a state with
zero efforts in the standard game theoretic approach. The same outcome is predicted in my
model if there is no external influence. [Note that in games of partial cooperation studied by
(22), D; > 0. In these games, defection dominates cooperation, but an intermediate fraction
of cooperators would maximize the group payoft.]

Figure of the main text illustrates the properties of this model with external influ-
ence with G = 2. Figure gives examples of corresponding trajectories.
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Figure S16: Examples of coevolutionary dynamics in the continuous Prisoner’s Dilemma game with external
influence at G = 2 corresponding to Figure [SI4db. n = 50, = 1. Different colors show different individuals. The
thick black lines show the group averages. The numbers on top show the number of contributing individuals at the
last time step.
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“Us v. nature” game

This game (7, 23)) is similar to the linear public goods game, except that the production
function saturates at a constant level as the group efforts increase:

po_Z_
Z+ Zy

where Zj is a constant half-effort parameter (at Z = Zj, the group produces half of the
maximum amount of resource). Because of the non-linearity of this game, my analytical
results do not apply and there is no analogue of parameter 6 here.

EGT analysis. The best response effort in this game is

Ir; — mMmax [0, Zo (\/ Rz - 1) - Zijprev:| )

where R; = b;/(c;Zy) is the ratio of the individual benefit and the group’s cost at half-effort.
In the symmetric case, the group effort at the Nash equilibrium is

Zt = Zy(VR—1).

sym

In the asymmetric case, only the individual with the largest value of R; will make an effort
while all other individuals will free-ride:

z" = Z()( max (Rz) - 1)

asym

General case. With additional normative forces, finding the normalized best response
effort requires one to solve the cubic:

bZO — (C— Sl —|—SQ£IZ'>(ZU +.Z'+X7)2 = 0,

where S = Ay + Ay + AT + ALG, S, = 2?21 Aj. This can be done numerically. Note
that all coefficients here except for Z, are individual-specific.

Figure illustrates the properties of this model. Figure gives examples of corre-
sponding trajectories.
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Figure S18: Examples of coevolutionary dynamics in the
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