[microresearch]
Diamond Open Access

Vacuously true sentences: Are they non-Boolean and undecidable?

Open Mathematics Collaboration*†

April 19, 2020

Abstract

We propose a discussion on the non-Boolean mathematical object embedded in vacuously true sentences.

keywords: logic, mathematics, vacuously true, Boolean, non-Boolean

Introduction

1. In [1], you will find a very pedagogical approach to vacuously true sentences.

Definitions

- 2. A **Boolean** sentence is *either* True **or** False.
- 3. A **non-Boolean** sentence is True **and** False *simultaneously*.

^{*}All authors with their affiliations appear at the end of this paper.

[†]Corresponding author: mplobo@uft.edu.br | Join the Open Mathematics Collaboration

A non-Boolean object embedded in a Boolean sentence

- 4. Let $A = \emptyset$ be the empty set.
- 5. $\forall x \in A.P(x)$ is true, where P(x) is any predicate about x.
- 6. (5) is vacuously true.
- 7. Suppose $Q(x) = \neg P(x)$.
- 8. $\forall x \in A.Q(x)$ is true.
- 9. (8) is vacuously true.
- 10. So, for each $x \in A$, P(x) and $\neg P(x)$ are both true.
- 11. (10) means that for each $x \in A$, P(x) is both true and false.
- 12. Therefore, due to (11), for each $x \in A$, P(x) is non-Boolean.

Decidability

13. Since there are no elements in the empty set, can vacuously true sentences be proved?

In Summary

- 14. $A = \emptyset$
- 15. $B \equiv (\forall x \in A.P(x) \land \neg P(x))$
- 16. B is vacuosly true.
- 17. A vacuously true sentence has a non-Boolean object embedded in it since for each $x \in A$, P(x) is **both true and false**.

Final Remarks

- 18. Vacuously true sentences are Boolean.
- 19. However, there are non-Boolean objects in vacuously true sentences.
- 20. (19) means that a non-Boolean object is inside the Boolean logic.
- 21. There are mathematical proofs that rely on vacuously true sentences.
- 22. Are vacuously true sentences undecidable?

Note

23. There is an analogy between the **empty set** and the **quantum vacuum** in physics; while in the former, everything is possible, in the quantum vacuum there are **superposition** of different physical states.

Open Invitation

Review, add content, and **co-author** this paper [2,3]. Join the **Open Mathematics Collaboration**. Send your contribution to mplobo@uft.edu.br.

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [4], please cite it accordingly [5]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

References

- [1] Velleman, Daniel J. How to prove it: A structured approach. Cambridge University Press, 2006.
- [2] Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [3] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." *OSF Preprints*, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [4] COS. Open Science Framework. https://osf.io
- [5] Lobo, Matheus P. "Vacuously True Sentences: Are They Non-boolean and Undecidable?." *OSF Preprints*, 26 July 2019. https://doi.org/10.31219/osf.io/8r3j2

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br), José Carlos de Oliveira Junior

Federal University of Tocantins (Brazil)