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Abstract

Multiwavelets are a recent generalization of wavelets where one allows the multiresolution
analysis to be generated by a finite number of scaling functions instead of only one so as to
overcome some classical limitations in the design of filter banks preventing us from construct-
ing non trivial orthogonal, compactly supported wavelets with symmetries (for example using
fractal interpolating functions). The new theory of multiwavelets have yielded new possibilities
in the design but also new limitations.

Focusing on the limitations, we showed that some new conditions have to be imposed in the
design of multiwavelets in order to obtain multifilter banks that are easily usable for processing
scalar signals. We defined this way the concept of balanced multiwavelets which is now also
investigated by other research groups. We worked also further in that direction and generalized
what was already done about balanced multiwavelets to the preservation of polynomial signals
of higher degree, calling thus the property high order balancing. A thorough study of the
relations with other discrete-time properties of multifilters has been achieved. In particular,
balancing has been shown to be equivalent to a special case of Plonka factorization of the
refinement mask and some Strang-Fix conditions on a time-varying scalar subdivision operator.
These equivalences turn out to be key results for the construction of balanced multifilter banks.

By giving a special attention to the iteration of multifilter banks, we derived new results
making connections between balancing order and properties of the associated multiresolution
analysis (approximation power, moments of the scaling functions, superfunction theory). These
results strengthen the role of the balancing concept in the theory of multiwavelets. Besides,
it also lead us to generalize the concept of Coiflets and introduce multiCoiflets. A family of
orthogonal, compactly supported, symmetric multiCoiflets has then been constructed. Besides,
we investigated the influence of ergodic properties (zeros at pre-periodic points of invariant
cycles) on the smoothness of multiwavelets. This brought us to introduce the new concept of
balanced smoothness of a multifilter bank. We also proved that the shortest length orthonormal
balanced multifilter banks are in fact constructed from multiplexed Daubechies filters.
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Résumé

Les méthodes ondelettes ont eu un impact important dans la théorie du signal et ses applications.
Introduites récemment comme généralisation des ondelettes, les multiondelettes sont constru-
ites à partir d’une famille finie de fonctions d’échelle au lieu d’une seule. Cette approche permet
de contourner certaines limitations liées aux ondelettes et de construire ansi des analyses mul-
tirésolution orthogonales, non triviales, à partir de fonctions d’échelle symétriques et à support
compact, comme par exemple, en utilisant des fonctions fractales interpolantes. Cependant, de
par l’aspect vectoriel des multiondelettes, de nouveaux problèmes et de nouvelles limitations
surgissent.

Par l’étude précise de la structure vectorielle des bancs de multifiltres, nous avons ainsi
montré qu’il était nécessaire d’introduire de nouvelles conditions dans la conception des mul-
tiondelettes afin d’obtenir des bancs de multifiltres utilisables pour le traitement de signaux
scalaires. Par celà, nous avons défini le concept de multiondelettes balancées, concept qui a été
depuis repris par d’autre groupes de chercheurs. Ensuite, en généralisant cette approche à des
signaux polynomiaux de dégrés supérieurs, nous avons étendu le concept sous le nom de bal-
ancement d’ordre supérieur. Une étude précise des relations avec d’autres propriétés discrètes
des bancs de multifiltres à été accomplie. En particulier, nous avons montré que la propriété
de balancement était équivalente d’une part à une forme spéciale, particulièrement simple, de
factorisation de Plonka du masque associé au multifiltre passe-bas de synthèse, ainsi que d’autre
part à des conditions de type Strang-Fix sur un opérateur de subdivision scalaire variant dans
le temps. Ces différents résultats d’équivalence se sont avérés particulièrement utiles lors de la
construction de familles de multiondelettes balancées.

Des résultats liant l’ordre de balancement à certaines propriétés de l’analyse multirésolution
associée (ordre d’approximation, moments des fonctions d’échelle, superfonction associée) on-
t été démontrés. Ils renforcent l’importance du concept de balancement dans la théorie des
multiondelettes. D’autre part, ceci nous a aussi amené à généraliser le concept de Coiflettes
pour introduire les multiCoiflettes. Il a été possible de construire une famille de multiCoiflettes
symétriques, orthogonales avec support compact. L’analyse de l’aspect ergodiques de la régu-
larité des multifiltres a aussi entraîné l’introduction d’un nouveau concept de régularité bal-
ancée. Enfin, nous avons prouvé la minimalité des filtres de Daubechies multiplexés comme
bancs de multifiltres balancés orthogonaux.
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Introduction

In recent years, similar techniques developed in different fields, namely wavelets in applied
mathematics, subband coding in digital signal processing and multiresolution in computer vi-
sion have converged to form a unified theory.

In the mathematical community, the first kick that would lead much later to the general concept
of wavelet bases was given by Haar [1910] with the construction of an orthogonal basis of

generated by the dyadic translations and dilations: of a single
function defined by

(1)

Occasionally, other bases of this kind were constructed, for example by Stromberg [1982] us-
ing infinitely supported piecewise polynomials. However, it took more than seventy years for
the concept of the wavelet transform to really hatch out. At the beginning of the eighties,
Grossmann and Morlet [1984], motivated by the analysis of seismic signals, were looking for
alternatives to the classical Fourier and Gabor transform methods. They got the idea of replac-
ing the modulation operation in these transforms by a dilation operation. Doing so, they were
able to construct adaptative time-frequency tilings allowing a precise analysis of the transient
parts in their signals. Starting from a normalized function with well-behaved Fourier
transform

(2)

they introduced the family of functions

(3)

They were able to construct a transform (called the wavelet transform) by

(4)

with the following reconstruction formula

(5)
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This new formula soon triggered a great interest among mathematicians: Meyer [1985-1986]
quickly developed the theory of wavelets.

At the same time, motivated by new problems linked to the recent digital revolution, some
members of the signal processing community were investigating efficient ways of decomposing
signals into lowpass and highpass components at half the rate of the input signal (so as to keep
the same amount of data) in such a way that it is possible to exactly reconstruct the input sig-
nal from these components. This new subject of interest called subband coding with multirate
filter banks became a hot topic when Croisier et al. [1976] showed it was possible to construct
filter banks with aliasing cancellation using quadrature mirror filters and simple downsampling
and upsampling operations. However, their design had some limitations: the only quadrature
mirror filter (QMF) with finite impulse response is the Haar filter. Smith and Barnwell [1984]
and Mintzer [1985] were finally able to overcome this limitation by introducing the conjugate
quadrature filters (CQF). It was now possible to construct perfect reconstruction filter banks
with orthogonal FIR filters. The subject was completed by the introduction of the biorthogonal-
ity equations by Vetterli [1986] and the general theory of paraunitary matrices by Vaidyanathan
[1987].

Concurrently, under the impulse of the pyramid algorithm devised by Burt and Adelson [1983],
similar ideas were investigated in the computer vision and computer graphics communities. In
much the same direction, Dubuc [1986]; Deslauriers and Dubuc [1989]; Cavaretta et al. [1991]
were developing a related approach with the concept of subdivision schemes for numerical
analysis purposes.

It is always a difficult task to give credit to someone in particular and it is especially true in a
field like wavelets. However, most people of the wavelet community agree that the success of
wavelets in now so (too?) many fields is mostly due to a small bunch of free thinkers, always
interested in learning what’s going on in other fields and what it could bring to their own and
finally how to convince (almost,...) everybody to rethink the old problems they were working
on for years, usually without much success, in the new framework. One could say that the
wavelet domain was born from this cross-fertilization: Daubechies [1988], from the mathe-
matical physics community used tools from signal processing to design her now omnipresent
wavelets; Mallat [1989] from the computer vision world formalized (with the interaction of
Meyer) the concept of multiresolution analysis from which he derived his famous efficient al-
gorithm; Strang [1989] from numerical analysis made the link with approximation theory by
showing the importance of the well-known Strang and Fix [1973] conditions for wavelets; Vet-
terli and Herley [1990] promoted the wavelet paradigm in filter bank design, convincing most
of the signal processing community to forget about the classical theory of filter and to go in-
stead “continuous-time”. This is just a short list and of course, many others had an almost as
important influence. It would be unfair not to mention them: obviously, Cohen in the math
community, Unser and Vaidyanathan for signal processing, well and so many others... .

Following the signal processing approach, we will give a simple introduction to wavelets. After
presenting a rigorous but simple framework for multirate signal processing, we will introduce
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filter banks based on conjugate quadrature filters. Iteration of the filter bank on the lowpass
analysis generates discrete-time wavelet bases. To the limit, we will end up with wavelet bases
and the concept of multiresolution analysis. It is from this starting point that we will highlight
the need of introducing multiwavelets as a way to overcome some limitation in the design of
CQF. The goal of this part is to develop the intuition on what will be done rigorously in the next
chapter. Readers interested in a more detailed presentation of filter bank and wavelet theory
are referred to the classical books of Daubechies [1992]; Vaidyanathan [1993]; Vetterli and
Kovačević [1995]; Strang and Nguyen [1996]; Mallat [1998].

Discrete-time signal processing

Because it is so easy to deal with convolutions and Fourier transforms in them, the most conve-
nient setting for signal processing are indeed the spaces of distributions. We will not recall here
the theory of distribution, but just the usual notations. Writing for the space
of test function, is the space of distributions (linear forms on ) with its usual topology of
pointwise convergence. Let be the space of rapidly decreasing functions and its dual, the
space of tempered distributions. As usual, is the Dirac distribution, the translation operator,
(defined on functions by ) and . We write for the
time-reversal operator and define the Fourier transform on by duality [Rudin, 1991] from
its definition for ,

(6)

We will call signal any distribution of the form

(7)

where is a sequence of complex numbers and gives the rate of the signal.
Signals are then distributions with discrete shift invariant support. We introduce the canonical
space of signals

(8)

endowed with the topology of pointwise convergence induced from . There is a natural
injection of the space into the space of complex sequences. We will often use this
property. So as to discriminate easily, bona-fide signals will be however noted in script-style
and sequence in sans-serif .

Our working spaces will be subsets of endowed with topologies at least as fine as the
topology induced by . They should contain and be invariant by translations .
Typically, we will consider
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, the space of tempered signals.

, the space of signals. This space is the distributional
version of the classical .

where is
the finite difference operator. This is the space of rapidly decreasing signals.

, the space of signals with finite support, usually called finite impulse
response (FIR) signals. This space is clearly isomorphic to the space of sequences
with finite support.

We clearly have

(9)

In the rest of the text, unless mentioned, signals will be assumed to belong to the space s-
ince the two most important operations of signal processing, convolution and Fourier transform,
are well-defined in this space. Namely, given a rapidly decreasing signal , we define
the filter as the convolution operator

(10)

With , we have and . It is easy to see
that (space of continuous linear operators on ) and that it commutes with
. By abuse, we will also call the filter.

For a signal , we denote its Fourier transform by and usually call it the spectrum of the
signal. In the case is a filter, we call the frequency response of the filter. Since ,

is a well defined -periodic function. We say that is lowpass iff for
around 0 and for around (highpass is the opposite). Since, is a function, we
can write without ambiguity

(11)

For , we have that . The spectrum of a tempered signal usually
exists only as a distribution. Now, for , we introduce the -transform of by

(12)

We clearly have . This formulation emphasizes the -periodicity of .
gives in the -domain . Again, in most cases, these -transforms only exist
as distributions. The multiplication is well-defined because is a function. We can also
easily define convolution (and so filtering) in the following common cases:
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For and , we get (this property is called bounded-input,
bounded-output stability).

For , we have .

A filter is said to have linear phase iff there exist such that for , we can write

(13)

This property implies nice symmetries on the filter that enable a clean processing of finite length
signals [Strang and Nguyen, 1996; Oppenheim et al., 1999]: by symmetric extension of the
signal, we are able to keep the same length for the output of the filter. This is particularly
important in applications like compression.
For more details about the distributional approach of signal processing and distributions in
general, the reader is referred to [Gasquet and Witomski, 1999].

Along with filters, downsampling and upsampling operators are the building blocks of multi-
rate signal processing. Given a sequence , we introduce the operator of
downsampling by

(14)

This gives in -domain,

(15)

By extension, we write . The components
introduce a frequency folding for . It creates aliasing in the spectrum of
the output signal .

Inversely, we introduce upsampling by as an expansion with insertion of zeros in the se-
quence

(16)

This gives in the -domain

(17)

By extension, we write . The operators and are linear and
they satisfy: . Furthermore, and
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. These last properties, called and shift invariance lead to
the introduction of scaled spaces of signals. For , we define for

(18)

where is called the scale of the signal space. It gives us a nested sequence of scaled spaces

(19)

We define in the same way the scaled versions of our working spaces. In this context,
is the canonical downscale projector and the canonical upscale
injection .

We also easily derive the following very useful identities [Vaidyanathan, 1993]:

(20)

Filter banks

For simplicity, we will require all signals and filters to be real valued. Using only downsam-
pling/upsampling operators and delays, one can construct a very simple system performing a
decomposition of a signal into two components from which it is
possible to reconstruct .

This system is called the lazy filter bank. Apart from showing that multirate signal processing
is possible, this filter bank has little interest in applications since the two signals and

share up to a modulation the same spectrum .

Obviously, we would like the filter bank to perform a subband decomposition [Crochiere et al.,
1976] of the input signal in the sense that and have more or less disjoint spectrums. By
adding some filtering in the structure of what will be called from now on a filter bank, we get
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Consequently, a two-channel multirate filter bank first convolves the input signal with a
lowpass filter and a highpass filter to minimizing aliasing and then downsamples these
two signals. This step is called the analysis

(21)

An output signal is then reconstructed by upsampling and and filtering again with a
lowpass filter and a highpass filter to reject the out-of-band components in the spectrum.
The synthesis is given by

(22)

We require that this system leaves unchanged: . Vetterli [1986] gave the necessary
and sufficient conditions in the -domain for perfect reconstruction

(23)

We get that and are uniquely determined from and by rewriting the previous equa-
tions

(24)

Introducing , supposed to be non vanishing on , we
get

(25)

Now, if we require further that all filters are FIR, then only two choices are possible for .
Namely,

Quadrature mirror filters: .
This gives and . Croisier et al. [1976] additionally
imposed and to be mirror filters ( ), we then get

(26)

The solutions of this equation are naturally called quadrature mirror filters (QMF). Un-
fortunately, the only FIR QMF is the Haar filter . The interest of these
filters is then limited.
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Conjugated quadrature filters: .
We get and . Smith and Barnwell [1984] and
Mintzer [1985] were able to overcome the major limitation of QMF by imposing and
to be conjugated quadrature filters: . We get

(27)

With this slight change, FIR solutions are now possible. As we will see, these filters are
closely linked to wavelets.

Wavelets

Assuming an FIR CQF filter bank, the decomposition of a signal in this filter bank may be
interpreted as its expansion in an orthonormal basis of . Namely, we have

(28)

and

(29)

From the properties of CQF filter bank, and .
Introducing

(30)

the decomposition can then be rewritten

(31)

The perfect reconstruction and CQF conditions ensure furthermore that is an
orthogonal set of vectors. We thus have an orthogonal basis of . This result can be generalized
to the case of IIR (i.e. non FIR) filter banks [Evangelista, 1989; Herley and Vetterli, 1993]. Also,
if the filters are not imposed to be CQF anymore, we get biorthogonal bases of [Vetterli and
Herley, 1992].

Iterating on the lowpass signal , we get coarser approximations of the input signal.
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The idea of filter bank trees is to cascade this iteration up to a certain level . We then have
signals: the coarse signal and the details signals . And we can exactly

reconstruct from these signals. Now, if we omit some details signals in the reconstruction
(this is the principle of compression), the “quality” of the signal reconstructed will depend a
lot on the “smoothness” of the basis vectors we are reconstructing with. Hence the need of
studying the “smoothness” of the filter bank [Mallat, 1989; Daubechies, 1992; Rioul, 1992,
1993a,b]. Using the noble identities (20) and following Daubechies [1988] ideas, we introduce
the iterated filters:

(32)

Then, introducing

(33)

we get that is an orthogonal basis of . Furthermore, defining
and , we get a nested sequence of subspaces

(34)

with . This structure is called a discrete-time multiresolution analysis
(dMRA) of . Now, in order to study the quality of the multiresolution analysis, we introduce

(35)

Taking the Fourier transforms, we get that

(36)

It is then enough to study the convergence of as . Under the condition ,
converge to a distribution that satisfies

(37)

We derive the convergence of to the distribution given by

(38)

Now, if furthermore [Cohen, 1992], then the convergence is in norm to

bona-fide function. and satisfy the following two-scale equations [Mallat, 1989;
Strang, 1989]

(39)
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In that case, these two functions generate a multiresolution analysis of as defined by Mallat
[1989]. Defining , we get by the two-scale equations, a nested
sequence of subspaces of satisfying

.

and .

.

.

is an orthonormal basis of .

Introducing , we get and so .
We thus prove that is an orthogonal basis of . Starting from a CQF,
we have constructed a basis of from dyadic dilations and translations of a single function.
is called an orthogonal wavelet, is called the associated scaling function. Now, as we will

detail in next section, the “smoothness” of the filter bank when iterated is linked to the number
of zeros at of .

This way of constructing wavelets from iterated filter banks was pioneered by Daubechies
[Daubechies, 1988]. It became since a standard way to derive orthogonal and biorthogonal
wavelet bases. The underlying CQF filter banks are now well-studied, the design procedure is
well-understood. By the structure of the problem, certain solutions are however ruled out: it is
impossible to design FIR linear-phase conjugated quadrature filter with real coefficients other
than the Haar filter. This implies that the only orthogonal wavelet with compact support and
symmetry is the Haar wavelet

Multiwavelets

Generalizing the wavelet case, one can allow a multiresolution analysis of to
be generated by a finite number of scaling functions and their integer
translates (this finitely generated multiresolution analysis is then said to be of multiplicity ).
In this framework, the multiscaling function satisfies a two-scale
equation

(40)

where now is a sequence of matrices of real coefficients. The multiresolution
analysis structure gives where is the orthogonal complement of in . A-
gain, starting from the orthonormal basis, and their integer translates,

18



we can construct an orthonormal basis of generated by and their
integer translates with derived by

(41)

where is a sequence of matrices of real coefficients obtained by completion of
(a detailed exposition of the completion scheme is given in [Lawton et al., 1996]). For

obvious reasons, is called a multiwavelet.
With this approach, one is finally able to overcome some of the limitations of CQF filter

banks. It is now possible to get finitely generated multiresolution analysis with all the scaling
functions and wavelets orthogonal, compactly supported and (anti)symmetric.

The first multiwavelets were designed by Alpert [1993] and Hervé [1994]; Goodman and Lee
[1994]. Their method was completely different from the afore mentioned filter bank approach
for wavelets. Namely, they used techniques similar to the ones used in numerical analysis (finite
elements and splines methods). In Alpert [1993], the scaling functions are polynomials of
degree supported on . The simplest one is given by and
for .

Using similar methods, actually fractal interpolation, Geronimo et al. [1994] built a multireso-
lution analysis having approximation of order 2 (1 and can be reconstructed from the translates
of the scaling functions) using two symmetric, compactly supported, orthogonal scaling func-
tions that are furthermore Lipschitz. Their outstanding achievement triggered many attempts to
construct new multiwavelet bases [Vetterli and Strang, 1994; Strang and Strela, 1995; Donovan
et al., 1996; Chui and Lian, 1996] and motivated a thorough study of the theory of multiwavelets
[Turcajová and Kautsky, 1995; Heil et al., 1996; Cohen et al., 1997; Plonka, 1997; Plonka and
Strela, 1998].

Consider a finitely generated multiresolution analysis with orthonormal multiscaling function
and multiwavelet . For , we have

(42)

then from , we get

(43)

We derive the well-known Mallat [1989] algorithm for multiwavelets. For the analysis step

(44)

(45)
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and for the synthesis, we get

(46)

These relations enable us to construct a multi-input multi-output filter bank (multifilter bank) as
shown below.

Because of their inherent vector nature, in order to process scalar signal, multifilter banks re-
quire a vectorization of the input signal to produce an new -dimensional input signal. Intro-
duced by Evangelista [1993]; Herley and Vetterli [1994]; Vetterli and Strang [1994], a simple
way to do this vectorization is to split scalar signals into their polyphase components. Introduc-
ing

...
...

(47)

and in the same way , the system can then be rewritten as a channel
time-varying filter bank (Fig. 1 for the case ). Intuitively, this is a filter bank with relaxed
requirements on the time invariance. In each filtering block, we periodically alternate between
different filters. In [Lebrun and Vetterli, 1997a, 1998a] we first pointed out that, if the compo-
nents of the lowpass branch have different spectral behavior, e.g.
lowpass behavior for one, highpass for another, this will lead to unbalanced channels that will
mix the coarse resolution signal and details coefficients and will create strong oscillations in the
reconstructed signal.

Clearly, this problem relates to the basic principle of filter banks: one expects a reasonable class
of smooth signals to be preserved by the lowpass branch and canceled by the highpass one. In
the wavelet case, the two important issues of the reproduction of polynomials by the associ-
ated multiresolution analysis (approximation theory issue) and the preservation/cancellation of
discrete-time polynomial signals by the associated filter bank (subband coding and compression
issue) are tightly connected since they have been proved to be equivalent to the same condition:
the number of zeros at in the factorization of the lowpass filter of the filter bank.
In the orthogonal case, the lowpass filter is said to be of regularity iff any of the
following equivalent conditions [Daubechies, 1992] hold:
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Figure 1: Left: general vectorization and folding for a multifilter bank, Right: multifilter bank
seen as a time-varying filter bank.

The lowpass filter has a zero of order at .

The corresponding highpass filter has a zero of order at .

Discrete-time polynomial sequences of degree are perfectly represented by shifts
of the scaling sequence (i.e. the discrete-time polynomial signals are preserved by
the lowpass branch of the filter bank).

The associated wavelet function has vanishing moments.

Continuous-time polynomials of degree are perfectly represented by shifts of the
scaling function (i.e. the associated multiresolution analysis has approximation order
).

Also, the smoothness of the scaling function (and of the wavelet if the filters are FIR)
is governed in a certain sense [Eirola, 1992] by the regularity of the lowpass filter. Of course,
similar relations also hold for the biorthogonal case.

The regularity issue is however different for multiwavelets. In [Lebrun and Vetterli, 1998a,b],
interested in the subband coding issue in general and the problem of processing one dimensional
signals with multiwavelets in particular, we showed that the approximation order property did
not guarantee the preservation of discrete-time polynomial signals by the lowpass branch of the
filter bank. Consequently, we introduced the concept of balanced multiwavelets which is the
main subject of study of this dissertation. Our approach was also further investigated by other
authors in several other papers [Jiang, 1998; Rieder and Nossek, 1997; Selesnick, 1998].
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Outline

We will give here a short outline of the dissertation.
In Chapter 1, we generalize the usual scalar filter banks in order to overcome some of the

limitations in the design that were mentioned above. To do so, we first recall and analyze the
fundamental properties of the operators involved in scalar filter banks. Generalizing these prop-
erties for vector-valued signals, we develop a theory of vector filter banks. The fundamentals of
multifilter banks theory are developed with a special highlight on the connection to time-varying
scalar filter banks. Later on, a very special attention is given to the processing of scalar signals
within this structure. This leads us to one of the major concepts developed in this dissertation:
the property of balanced multifilter banks. We then link balancing to other discrete-time prop-
erties of multifilter banks. In particular, balancing is shown to be equivalent to a special case of
Plonka factorization of the refinement mask and various versions of the Strang-Fix conditions.
These equivalences are key results in the construction of balanced multifilter banks.

In chapter 2, we give special attention to the process of iterating the multifilter bank. We
look at the cascading of the multifilter bank on the lowpass branch and show that under some
natural conditions, it leads to a function of (called the multiscaling function) that generates
a multiresolution analysis (MRA) of by the functional equation it satisfies. By looking
closely at the multiscaling function and the MRA, a lot can then be said about some other
properties of the multifilter bank: regularity, smoothness and interpolating properties are the
most important ones. These different continuous-time properties are related to the balancing
order of the multifilter bank. This forces us to reconsider some of these notions in the framework
of multiwavelets. A new concept of discrete-time smoothness is thus introduced for multifilter
bank. We conclude this chapter by introducing multiCoiflets as a special case of balanced
multiwavelets.

In chapter 3, we get practical and show how to construct high order balanced multifilters
with different useful properties. We first emphasize the limitations of straight design (modifying
existing unbalanced multifilters, adapting complex filters) and show some surprising result on
the shortest length refinement masks leading to orthonormal multiwavelets of multiplicity
and balancing order which happen to be multiplexed Daubechies filters. We then give a digest
of the hardcore algebra we need to analyze and solve the systems of polynomial equations
that we face in the design of families of high order balanced multifilters. Given these tools,
we design several families of balanced orthonormal compactly supported multiwavelets with
nice symmetries. In this framework, a special attention is also given on the conditions leading
to higher smoothness. We also construct a family of orthonormal symmetric multiCoiflets.
Finally, we detail an application of high order balanced multifilters to image coding.
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Chapter 1

A Toeplitz approach to multifilter banks

In this chapter, we will generalize the usual scalar filter banks in order to overcome some of the
limitations in the design that were mentioned in the introduction chapter. To do so, we will first
recall and analyze the fundamental properties of the operators involved in scalar filter banks.
Generalizing these properties for vector-valued signals, we will develop a theory of vector filter
banks (multifilter banks) inspired by the works of Strang [1989]; Shensa [1992]; Rioul [1993a];
Aldroubi et al. [1994]; Turcajová and Kautsky [1995]. Later on, a very special attention will
be given to the processing of scalar signals within this structure. This will lead us to one of the
major concepts developed in this dissertation: the property of balanced multifilter banks.

The basic idea of the system called filter bank is to decompose an input signal (usually )
into several signals of smaller size. Here, we will decompose into two signals, each of these
signals being roughly half the size and amount of information of the input signal. The first will
represent a coarser version of the input signal. The second signal will be the details. It will also
be roughly half the size of the input signal so as to maintain the same total number of samples.
This first part is called the analysis bank. The second part of the filter banks, called the synthesis
bank, reconstructs the signal from the coarse version and the details.

A natural way to formalize the filter bank structure and to generalize it to vector-valued signals
is then to define a multifilter bank by the two operators:

The analysis bank: , where , i.e. . Further-
more, we will require that is invariant by and (i.e. finite length signals remain
finite length). Finally, we also require that shifts are downscaled by i.e. (i.e.

for ). This last condition says that is shift invariant.

The synthesis bank: . We also require to be invariant and
that is shift invariant (i.e. it upscales shifts): .

We then require that:

We can reconstruct the input signal from the analysis signals: .
This condition is called perfect reconstruction (usually abbreviated PR).
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We also impose and to be one-to-one operators and that the two branches
, for are bona-fide projectors of : for . This con-

dition will enable us to construct a multiresolution analysis of . Namely, assuming PR
condition, taking and defining recursively for , the spaces
and , we construct a multiresolution of . This condition (abbreviated
dMRA for discrete multiresolution analysis) together with the PR condition imply, as we
will see later, the biorthogonality of the multifilter bank: .

Now, since is invariant by all the operators, and is dense in , the analysis and synthesis
operators can also be restricted to . We then define the adjoint banks and . It is then easily
seen that is a synthesis bank and is an analysis bank, and thus that analysis and synthesis
are adjoint operators. Consequently, it is equivalent to study either analysis or synthesis banks.
Here, we will take the usual approach of studying synthesis operators since it is more intuitive.
A multifilter bank with analysis bank and synthesis bank will be written .

1.1 Discrete-time operators

In the following, we will show that the simple requirements introduced above completely char-
acterize the analysis and synthesis banks of .

1.1.1 Toeplitz operators

An operator is said to be a Toeplitz operator iff it commutes with the shift operator
, i.e. . Such operators are naturally associated with bounded-input, bounded-output
time-invariant linear systems [Oppenheim et al., 1999].

Lemma 1.1 is a Toeplitz operator iff .

Proof. By induction: , and assuming , then
, hence the result for . Now, for , we repeat the induction

using: .

Proposition 1.2 If is a Toeplitz operator and leaves invariant , then there exists
such that .

Proof. We will prove this result for and then prove it induces the matrix case ( ).
Let (this is well defined since is invariant by and a subspace of ).
Clearly, . We get that . Namely,

. Now, for , let , then
.

Now, since is dense in , the result holds for any .
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Now for , we get the result by introducing and using the
same approach as before.

Remark 1.3

1. The Proposition 1.2 is easily specialized to the case and (no
assumption on the invariance of ). We get that there exists such that

.

2. Toeplitz operators are also called convolutional operators in the scalar case ( ). In
the following text, we will write to emphasize the associated matrix sequence, and we
will often see as an infinite size matrix with matrix coefficients ,
i.e.

(1.1)

3. The space of Toeplitz operators with has a natural structure of non commu-
tative -algebra (since ). The involution is given by . The
associated norm satisfies .

Inspired by the -domain formalism of scalar signals, we introduce the refinement mask
associated to the sequence

(1.2)

By convention (and reasons that will be clear in next chapter), the -transform of matrix se-
quences (excluding scalar) is normalized by . Vector sequences are still normalized by 1.
When , can also be seen as a matrix polynomial ( ) and so

is well defined for any . We also introduce
and for ( is the Hermitian

transpose of ). induces a multiplication operator on : for with ,
we have in -domain

(1.3)

Writing with , it gets clear that is a renormalized version of the Fourier
transform of (we sometimes use, for normalization reasons, the notation ). There
is an isomorphism

For more details on Toeplitz operators, the reader is referred to the classical book of Böttcher
and Silbermann [1990].
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1.1.2 Approximation and subdivision operators

Now, we introduce the approximation and subdivision operators: is said to be an
approximation operator iff ; conversely, is said to be a subdivision
operator iff . These operators will be the basic tools to construct multifilter banks:
approximation operators for analyzing the input signal by decomposing it into an approximated
signal (coarse version) and some details; subdivision operators for re-synthesizing the signal
from the approximated signal and the details. We easily prove again that: and

( the proof is just a rewriting of the Toeplitz case). Now, by naturally
extending the downsampling and upsampling operators to vector signals, we have

Proposition 1.4 If (resp. ) is an approximation (resp. subdivision) operator that leaves
invariant, then there exists (resp. ) such that (resp.

).

Proof. This proof is an adaptation of the proof of Proposition 1.2. Namely,
for , if we define and , we get that

and . Thus, for , we deduce that
and that .

Now, for , introducing and ,
we get the result.

Remark 1.5

1. and .

2. Approximation and subdivision operators are conveniently seen as infinite size matrices
and with matrix coefficients and , i.e.

(1.4)

.. .

. . .

(1.5)
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3. Approximation and subdivision are adjoint operators:

(1.6)

(1.7)

In -domain, and . Letting
and for , we get in -domain

(1.8)

(1.9)

The noble identities are easily extended to the matrix case:

(1.10)

1.1.3 Multifilter banks

Again, we will assume we are working with signals in . Now, let a multifilter bank:
with and where . Suppose satisfies
the PR condition: and the dMRA condition: and to are one-to-one operators and
the operators , for are bona-fide projectors of

First, we notice that being one-to-one implies that are onto : since
. So, are onto . We also easily prove that this implies that

and cannot be for . Namely, assuming either or , we necessarily
get . This implies that is onto , since it is already one-to-one, it is then bijective,
and so is which is clearly impossible.
Now, we will prove that under these conditions, the analysis and synthesis banks are invertible.
We already know that . We will also prove that the dMRA condition implies that
which is known as the biorthogonality condition.

27



Proposition 1.6 Under PR condition, dMRA and biorthogonality are equivalent.

Proof.
implies . But, since is one-to-one, then ,

i.e. and since is onto, then . We get in the same way .
Now, , then , so and since is onto,
then . Similarly, we have , and then .

From , , same thing for . Hence
the result.

Translating the biorthogonality conditions in the -domain, we get

(1.11)

Besides, we already know that analysis and synthesis are adjoint. We say that a multifilter bank
is orthogonal if and are not only inverse of one another but also transpose, i.e.

. We get in that case and . The multifilter bank reduces to the case
shown below.

1.2 Signal processing with multifilter banks

Assuming the conditions of PR and biorthogonality, let’s consider the multifilter bank

with and , where . We will call

the lowpass projector and the highpass projector. This arbitrary denomination will
be justified later in the text by the introduction of the concept of balancing in the next section
(the lowpass projector preserves the constant signals) and in the process of iteration in the next
chapter (we iterate on the lowpass branch so as to get coarser and coarser approximations).
Our main concern here is that multifilter banks are intrinsically designed to process vector-
valued signals. The input signal is decomposed into a coarse version and
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a detail version , that will form through the synthesis bank a decomposition of
. By iterating on the coarse version, we get a vector

version of the Mallat algorithm [Mallat, 1989]:
For the analysis, ,

(1.12)

(1.13)

and for the synthesis, we get

(1.14)

Similarly to the scalar case, these formula can be interpreted as the expansion of in a biorthog-
onal basis of . Vector signals are expanded in where

and ( is the canonical vector). The dual

basis is given by and . Now, by iterating the
multifilter bank on the lowpass branch, we get a biorthogonal multiresolution analysis of (cf.
[Aldroubi et al., 1994] for the scalar case).

1.2.1 Processing scalar signals

Now if we have to process a scalar ("1D") signal using a multifilter bank, we have first
to vectorize the signal, i.e. to produce a vector version of this signal. We are then able
to process this signal by the multifilter bank . The output is again a vector valued signal that
we will fold to get back a scalar signal.

The canonical way of doing vectorization and folding is by introducing the polyphase decom-
position of a signal. Given a scalar signal , we introduce the signals . In
the time domain, we get the polyphase vectorization operator defined by

...
(1.15)

Conversely, we introduce the polyphase folding . For , we let in
the -domain,

(1.16)
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It is then clear that and are adjoint operators.

We now introduce the general definition of vectorization and folding operators:
is said to be a vectorization operator iff and , similarly
is said to be a folding operator iff and . These conditions impose the
structure of the vectorization and folding operators.

Proposition 1.7 If (resp. ) is a vectorization (resp. folding) operator, then there exists
(resp. ) such that for , we have (resp. for
, we have ).

Proof. The proof is very similar again to the proofs of the propositions characterizing Toeplitz,
approximation and subdivision operators.

Extending naturally the definition of for (vector), we get that and
. Introducing , we have that and .

Also, using the polyphase decomposition and imposing vectorization and folding to be adjoint,
we can easily rewrite any vectorization operator (resp. folding operator) as (resp.

) with .

Now, to maintain the perfect reconstruction of the multifilter bank when dealing with scalar
signals, it is natural to impose that for belonging to some set of signals that we want
to be preserved. If we require , since and are bijective from
to , then it is equivalent to require i.e. . A matrix
satisfying this condition is called paraunitary. Paraunitary matrices have a very nice structure
since they factorize [Vaidyanathan, 1993] as

(1.17)

where are orthogonal matrices and . Such vectorization and folding
operators are usually called orthogonal pre/post filters. For more details on the design of such
operators for multifilters, the reader is referred to the papers of Xia et al. [1996]; Hardin and
Roach [1997]; Strela et al. [1999]; Attakitmongcol et al. [1999].

Another idea would be to restrict the set of signals that have to be preserved by the vectoriza-
tion/folding operators. This enables a greater freedom in the design. A natural set of signals
that one usually wants to be preserved are the polynomial signals, i.e. the signals of the form

where is a polynomial. For convenience, we will denote such a
signal. We also say that a signal is polynomial if there exists such that .
Then, there is an obvious isomorphism between the space of polynomials and the
space of the associated polynomial signals . We will denote the subspace of polynomial
sequences of degree less or equal to (the continuous counterpart being ).
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Figure 1.1: Left: general vectorization and folding for a multifilter bank, Right: multifilter bank
seen as a time-varying filter bank.

We then look at vectorization/folding operators such that , we have .
Since is finite dimensional and , this implies to be bijective from to
and so . In this framework, we define

Definition 1.8 A multifilter bank is said to be polynomial preserving of order iff there exists
and , vectorization and folding operators, such that keeps invariant.

Let and (and similarly and ). Polynomial preservation of order
does not imply that exactly preserves polynomial signals. However, since has finite

dimension and is one-to-one, we get that i.e. the is globally preserved.
We also get from the PR and biorthonormality conditions that

Furthermore, this also gives that , for every i.e. the polynomial structure (up
to degree ) of the input signal is canceled by the highpass branch and exactly preserved by
the lowpass branch (hence the lowpass term).

1.2.2 Balancing

Here, we will get interested in the special case when vectorization and folding are simply the
polyphase operators and . We introduce the polyphase description of the refinement
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Figure 1.2: Reproduction of two input signals (Left: constant signal, Right: piecewise poly-
nomial) by the lowpass branch of a DGHM multifilter bank; it illustrates the behavior of a
unbalanced multifilter bank without prefiltering.

mask

...
(1.18)

This enables to rewrite as a time-varying filter. Namely, let and ,
going to -domain, we get that

...
...

where is the polyphase decomposition of . Introducing in the same
way, and , the multifilter bank is then easily transformed into a channels
time-varying filter bank (Fig. 1.1).

An intuitive way of understanding the problems that may appear in that situation is then the fol-
lowing: if the components of the lowpass synthesis operator have
different spectral behavior, e.g. lowpass behavior for one, highpass for the other, it then leads
to unbalanced channels that cannot preserve even constant signals. In that case, the polyphase
method of vectorization leads to a mixing of the coarse resolution and details coefficients cre-
ating strong oscillations in the signal reconstructed from only (Fig. 1.2). This problem
is crucial. One of the important issues of subband coding is the behavior of the lowpass branch
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on polynomial signals. Namely, this branch should carry all the information on the input signal
when this one is sufficiently smooth. In other terms, one expects some class of smooth signals
to be well reproduced using only the lowpass coefficients, i.e. one expect these signals to be
eigensignals of the lowpass branch.

However, most of the multifilter banks constructed so far don’t verify this simple requirement
of as illustrated in Fig. 1.2. We will see in Chapter 3 how to add some pre/post filtering of the
input/output signal to adapt it to the spectral imbalance of the filter bank. But, as we will show
here, one may rather directly design orthonormal multifilters with a good balancing between
the polyphase components of the synthesis lowpass operator . Consequently, recalling that

stands for the 1D version of the lowpass synthesis operator (and in the same
way and ), we will look for the preservation of constant signals by . Let ,
we introduce

Definition 1.9 A multifilter bank is said to be balanced (of order 1) iff the lowpass
synthesis operator preserves the constant signals.

By linearity, and without loss of generality, it is sufficient to impose . Now, by the PR
and biorthonormality relations

we get and . From we get
and i.e. is preserved by the lowpass branch and canceled by the highpass branch.

Now, we can state the following result giving equivalent conditions for balancing, and especially
linking balancing to a condition on the factorization of the refinement mask :

Theorem 1.10 Balancing of order 1 is equivalent to any of the following conditions:

.

and .

has zeros1 at for and .

1Conditions B3 and its generalization to higher order balancing were first given by Selesnick [1998].
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One can factorize2 with

. . .
...

...
. . . . . . . . .
. . . . . .

...
...

Proof.

[B0 B1]: Assuming B0, we have by transposition . Writing explicitly the e-
quations, we get . So

and . Since and
, we have condition B1.

[B1 B3]: . So
. Now, if with and

, then and so . If with and ,
then and . So has roots at for

.

[B3 B0]: Taking , from the time-varying filter bank representation (Fig. 1.1),
we get that the possible outputs are for

. Denoting the polyphase component of , we get that

Hence is an eigenvector of the operator .

[B1 B4]: This is Theorem 4.1 [(b) (c)] from [Plonka, 1997] for the special case
.

[B4 B3]: Assuming B4, since

...

2This factorization is a special case of the Strela/Plonka factorizations [Plonka, 1997; Plonka and Strela, 1998]
(aka 2-scale similarity transforms).
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we have

. . .
...

...
. . . . . . . . .
. . . . . .

. . .
...

...
. . . . . .

...
...

. . .
...

so

...

and this is condition B3.

1.2.3 High order balancing

A natural generalization of the concept of balancing is then to impose higher degree polynomi-
al signals (where is any polynomial of degree
smaller than ) to be also preserved by the lowpass branch. Thus, we define:

Definition 1.11 A multifilter bank is said to be balanced of order iff the lowpass synthesis
operator preserves the polynomial signals of degree less or equal to , i.e. is
invariant by .

Again, this condition does not imply that exactly preserves polynomial signals. However,
since has finite dimension, and is one-to-one, we have that i.e. the
is globally preserved. We also get from the PR and biorthonormality conditions that

. Furthermore, this also gives that , for every i.e. the
polynomial structure (up to degree ) of the input signal is canceled by the highpass branch
and exactly preserved by the lowpass branch.
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Using an approach introduced by [Herley, 1995; Selesnick, 1998] based on the interpolation
of all the polyphase components of a polynomial signal from a single one, we will get that
on polynomial signals of degree smaller than the order of balancing (i.e. ), the lowpass
synthesis operator (with its intricate time-varying structure) is in fact equivalent to a scalar
subdivision scheme (on which the classical results from the scalar wavelet theory apply). The
following lemma is the core result of this approach.

Lemma 1.12 Let be the -transform of the polyphase compo-
nents of the polynomial signal (seen as a tempered distribution), i.e.

then for , there exists a unique polynomial of degree such that we have

the equality and the normalization . Similarly, there exists

a unique normalized polynomial of degree such that we have .

Proof. Using Padé approximants [Nikishin and Sorokin, 1991; Baker, 1996], we construct the
Hörner scheme of interpolation of the sequence from the sequence

given by

(1.19)

Thus, we have

(1.20)

Furthermore, it is easily seen that one can write

(1.21)

consequently cannot be formally canceled by multiplication with a polynomial, and so
we have the uniqueness. Similarly,

(1.22)
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interpolates from the sequence . As before, we have the uniqueness and we can write

(1.23)

Remark 1.13 For the case , we give and for .

By natural extension, we also define . We then introduce the vectors

(1.24)

(1.25)

Introducing for ,

(1.26)

and , we get

(1.27)

We set

(1.28)

with . We then have

Proposition 1.14 For any , the two operators and agree on
the space of polynomial signals of degree less or equal to .
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Proof. By linearity, we have that interpolates the polyphase component of any
polynomial signal of degree smaller than from the polyphase component. That means that
on , we have . Letting and going to -domain, we get
that

...
(1.29)

Thus, the two operators and agree on . This gives in block
diagram notation that , i.e.

(1.30)

is equivalent on to the scalar -subdivision scheme

(1.31)

Hence the result.

Remark 1.15 The operator gives an example of a non trivial vectorization
operator such that on (we can take ). However, and are not adjoint
operators.

As a result, we will study thoroughly in next section the preservation of polynomial signals by
scalar -subdivision operators.

1.3 Scalar subdivision operators

In this section, we will study the algebraic properties of scalar -subdivision operators. The
principal issue we are concerned with is the behavior of these operators on polynomial signals.
Our approach owes a lot to the very comprehensive monograph of Cavaretta et al. [1991] and
many of the results given here are only adaptations or easy extensions for our special needs.
First, we will introduce the polyphase decomposition approach. This will enable us to give
necessary and sufficient conditions on the preservation of polynomial signals by scalar -
subdivision operators. In this direction, the major result obtained is certainly a theorem where,
once more, the famous Strang-Fix conditions [Strang and Fix, 1973] appear to be central. Fi-
nally, we show that the eigenvectors of such operators have a particular nice structure since they
appear to be the discrete-time version of Appell sequence of polynomials.
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In all this section, will be a fixed positive integer. We introduce the scalar -subdivision
operator defined by

(1.32)

where is a finite length sequence of complex numbers. For , we
introduce the sequences

(1.33)

One easily see that for ,

is -periodic.

form a sublattice partition of .

-periodic sequences are constant on .

.

So every -periodic sequence can be written as , where for convenience,
we write for the summation . We can endow the space of -periodic sequences
with an Hilbert structure with scalar product . has dimension
and is an obvious basis. We also introduce for .

For , we get that . Intuitively, is just a modulo
version of the Kronecker symbol. Its enables to split a sequence as a sum of -downsampled
subsequences.

Lemma 1.16 For , we have .

Proof. We can always write for some and , we then have

We introduce the subspace of -periodic sequences with zero mean, i.e. .
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Lemma 1.17 , for , form an orthogonal basis of
(usually called the DFT basis).

Proof. is a subspace of , then obviously and since
and are linearly independent, then .
Now, all we have to prove is that for are linearly independent.
Namely, for ,

So spans , hence the result.

1.3.1 Polynomial signals

The previous polyphase decomposition of the output of the subdivision operator make it now
simple to study the influence of subdivision operators on polynomial signals. As before, we will
write for the polynomial signal associated to a polynomial (i.e. we have ).
We also write for the space of polynomial signals and denotes the subspace of polynomial
signals associated to a polynomial of degree less or equal to .

Lemma 1.18 For , such that .

Proof. Take , then for , we have

The last equality being just Lemma 1.16. From the definition of and the isomorphism of
and , we have clearly the uniqueness.

Proposition 1.19 Let a polynomial signal, a necessary and sufficient condition for
to be polynomial is

(1.34)
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In this case, the polynomial signal is associated to the polynomial

(1.35)

Proof.
Assume that is polynomial and let . From the previous lemma, we have

that . Then, for , taking , we get
by the isomorphism between and , so , , i.e. and .

Using the definition of , this means that . Now, since
spans , we get

Reciprocally, taking , we get . Thus , i.e. is
polynomial.

Now, using , we get that

Consequently, , hence the result.

At the continuous-time level, we introduce the spaces
and for , . We also introduce their discrete-time coun-
terparts and . Further-
more, one says that is translation invariant iff is translation invariant i.e

. In that case, we define . Clearly,
and so are translation invariant for any . Furthermore,

Lemma 1.20 .

Proof. Namely, let , then there exists finite sets and
, such that . First, we notice that necessarily

. Thus, and so . is then a compact subspace
of (with its usual Fréchet topology). And since

, by compactness, . By induction, we get that
. Finally, by the Taylor expansion , we get

.
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Proposition 1.21 We have then the following results:

1. is translation invariant.

2. For , if is translation invariant, then is also translation invariant.

3. For , .

Proof. We have

1. Let . For , introduce . Now, taking ,
we have by Proposition 1.19,

Hence, , i.e. is translation invariant.

2. Let . For , such that ,

So,

Furthermore, since is translation invariant, and is polynomial,
so such that and . Necessarily,

and . That means that is also translation
invariant.

3. Since is a translation invariant linear subspace of , assuming that , we get
clearly that and so that is also translation invariant. Furthermore,
from the previous part, we have that , hence

.

Denoting the monomials , where is a positive integer, we get that
, and

Proposition 1.22 is polynomial iff is invariant by .
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Proof.
By the previous proposition, . Furthermore, denoting
, we have

So , then .
If , then there exist finite sets and

, such that

Let , then and so is polynomial.

Remark 1.23 For , we introduce the operator

(1.36)

Then, clearly . If furthermore, , then . In that
case, taking , we get that is polynomial iff .

1.3.2 Strang-Fix

Here, we get the central result of this part: an equivalence between the property of preserva-
tion of polynomial signals and the famous Strang-Fix conditions on the -transform

of the sequence . Then, denoting , we have

Proposition 1.24 For , is polynomial iff for
.

Proof.
Expanding the notations, we have and for
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, we get . Then

(1.37)

Hence, for ,

Since this is true , taking , we have ,

Now, since spans , , , i.e. by Proposi-
tion 1.19, is polynomial.

If is polynomial, by Proposition 1.19, for and ,

Now, writing , we get for , ,
which generalize to all . Hence, from (1.37), , for

.

Corollary 1.25 is polynomial iff for and .

Proof. This comes from .

1.3.3 Appell sequences

Assuming that is polynomial, we will prove that we can construct a sequence of polyno-
mial signals that are eigenvectors of the subdivision operator . This sequence has
a very nice structure. As we will see, it is associated to an Appell sequence of polynomials (
special case of Sheffer sequence [Roman, 1984]).
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Definition 1.26 A sequence of polynomials of is called an Appell sequence iff
and .

Proposition 1.27 Appell sequences have the following properties:

They are uniquely determined by a sequence of scalar such that
.

Introducing the formal series , we have that

(1.38)

is called the generating formal series associated to the Appell sequence .

Appell identity: .

Proof. The reader is referred to this very good reference on formal series [Roman, 1984].

We can see Appell sequences as generalization of the canonic Appell sequence: (in
that case and the Appell identity turns out to be the binomial formula).

From now on, we will assume that . We then get

Theorem 1.28 is polynomial iff there exists an Appell sequence such that
for .

Proof. is polynomial and , so . Thus, is
one-to-one onto and we have the commutative diagram:

(1.39)

Now, consider the functional equation:

Since is an entire function and , then there exists an unique solution
such that and is analytic at . Let , it satisfies

(1.40)
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We introduce the Appell sequence associated to .
Now, we will verify that . Namely, from (1.38),

Then, for , . Now, by the isomorphisms of the commutative
diagram, we get for , that .

By induction: so is polynomial. Now, assuming is polyno-
mial for , since

Then, taking , we get that , so is
also polynomial, hence the result by induction up to .

Remark 1.29

1. The generating function is the unique entire solution of

(1.41)

2. Introducing for , the polyphase operators in continuous-time,

we get that is polynomial iff there exists an Appell sequence of common
eigenvectors of for the eigenvalues for .
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1.4 On balancing conditions

In this section, we will connect balancing order to other discrete-time properties of multifilter
banks. In particular, balancing will be shown to be equivalent to a special, much simpler,
case of Plonka and Strela [1998] factorization of the refinement mask and various versions of
the Strang-Fix conditions. These equivalences will be key results for the design of balanced
multifilter banks in Chapter 3.

1.4.1 The scalar approach

It was proven in Proposition 1.14, that on polynomial signals of degree less or equal to ,
the two operators and agree, .i.e.

(1.42)

is equivalent on to the scalar -subdivision scheme

(1.43)

Now, using the results from previous section, we get

Proposition 1.30 Balancing of order is equivalent to
having zeros of order at for and .

Proof.
Since , and so balancing of order implies

that is preserved by the scalar -subdivision operator . In particular, is
polynomial, hence the result by Proposition 1.24 and its Corollary 1.25.

From Proposition 1.24 and Proposition 1.22, we have that is invariant by
. Since furthermore , we get that is invariant by and so

by , hence the result.

We will now prove that balancing implies that the eigenvectors of are also derived from an
Appell sequence of polynomials.

Proposition 1.31 Balancing of order is equivalent to the existence of an Appell sequence
such that the polynomial signals are eigenvectors of for the eigen-

values , i.e. they satisfy for .

Proof.
: This is an adaptation of the proof of Theorem 1.28. All we have to prove is that there
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exists an Appell sequence of polynomials verifying , since this
will imply by the isomorphisms of the commutative diagram (1.39) that .

Consider the functional equation:

(1.44)

Since is an entire function and , then there exists an unique
solution such that and is analytic at . Let , it
satisfies

(1.45)

We introduce the Appell sequence associated to .
Now, we will verify that . Namely, from (1.38),

Then, for , . Now, by the isomorphisms of the commuta-
tive diagram, taking , we get for , that and so

.

: Since , we get that is invariant by .

1.4.2 Balanced vanishing moments

From the definition of vanishing moments in [Plonka, 1997; Plonka and Strela, 1998], we in-
troduce

Definition 1.32 A multifilter bank has balanced vanishing moments of order iff there exist an
Appell sequence such that for , the lowpass synthesis refinement

48



mask has the following vanishing moments

(1.46)

with .

Now, by a straightforward adaptation of the proof of Theorem 3.2 in [Plonka and Strela, 1998],
we get

Proposition 1.33 If there exist an Appell sequence such that the polynomial signals
satisfy for , then has balanced vanishing

moments of order .

1.4.3 Equivalences on balancing

Let

. . .
...

...
. . . . . .

...
...

. . .

(1.47)

where is the finite differences matrix

. . .
...

...
. . . . . . . . .
. . . . . .

(1.48)

it is easily seen that . We then have the following useful lemma

Lemma 1.34 , we can factorize

(1.49)

where i.e. vector polynomial in .
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Proof. By induction on ,
:

. . .
...

...
. . . . . . . . .
. . . . . .

Now, assume for , that

with polynomial. Then since , we get that

Now, it is easily computed that . So, there exists
, such that

(1.50)

Thus, with polynomial, hence the result.

We have

Theorem 1.35 Balancing of order is equivalent to any of the following conditions:

There exists an Appell sequence such that the discrete-time polynomial
signals are eigenvectors of for the eigenvalues , i.e. they satisfy

for .

has balanced vanishing moments of order .

has zeros of order at for and
.

For , can be factored as

(1.51)

with ...
... and defined as before.
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Proof.

From Proposition 1.30 and Proposition 1.31, we have the equivalence between balancing
of order , and .

: This is Proposition .

: Applying Corollary 4.3. from [Plonka, 1997], we get the factorization

(1.52)

with

. . .
...

...
. . . . . . . . .
. . . . . .

(1.53)

and the polynomial matrix verifying where

obtained recursively from . So, for , we get
and .

: First, we give a digest of the proof in the case , for (case
is a consequence of Theorem 1.10).

– For , we have

(1.54)

– For ,

(1.55)
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For the general case: using Lemma 1.34 and the hypothesis,

(1.56)

Now, we get the result from the fact is clearly polynomial.

Remark 1.36 Using the equivalence between conditions and , condition (balanced
vanishing moments of order ) can be weakened in a more elegant form:

and for .

Again, these conditions can be seen as a matrix version of Strang-Fix conditions (Proposi-
tion 1.24).

Proof.
: . From the factorization, we

have

By Lemma 1.34, with polynomial in . Thus,

Since all the terms of are polynomials in , then have
a zero of order in , hence the result.

: has a zero of order at . Taking for ,
, we get that is a zero of order of ,

hence the result.
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Chapter 2

Going continuous-time

In the previous chapter, we gave a detailed study of multifilter banks and their major properties.
However, we gave little consideration to the process of iterations of the multifilter bank. Multi-
filter banks are rarely applied only once on an input signal. We usually expect that by iterating
the analysis on the coarse signal, we may get some better extraction of the fundamental infor-
mation conveyed by the signal. This is of great importance for applications like compression or
denoising. Here, we will look at the iterations of the multifilter bank on the lowpass branch and
show that under some natural conditions, it leads to a function of (called the scaling function)
that generates a multiresolution analysis (MRA) of by the functional equation it satisfies. By
looking closely at the scaling function and the MRA, a lot can then be said about some other
properties of the multifilter bank: regularity, smoothness and interpolating properties are the
most important ones.

2.1 From multifilters to multiwavelets

Here, we will first construct the scaling function by the cascade algorithm. It will help us ana-
lyzing the convergence of the subdivision scheme associated to the lowpass synthesis operator.
Finally, we will describe the MRA generated by the scaling function and introduce the associ-
ated multiwavelets.

2.1.1 Transition and bracket operators

For , we introduce the transition operator,

(2.1)

We first have to prove that this operator maps Toeplitz operators into Toeplitz operators. In-
deed, for , clearly . Furthermore,

, so .
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Proposition 2.1 For , we have that

Proof. Taking , . Then, for
, let . Letting , we get that .

Now, , then
, hence the result.

Remark 2.2 Let . From above, we have and so, we get
in the -domain, for ,

(2.2)

Proposition 2.3 Let such that then

(2.3)

is a finite dimensional subspace of invariant by .

Proof. Clearly, is a subspace of having finite dimension . Now,
for , let . From the assumptions, we get that
and so that . Since , we get that

, hence the result.

From this last result, we introduce as the restriction of to . Furthermore, since
has finite dimension, by taking an orthonormal basis of , we can represent every

by a vector in this basis and by its associated matrix in this basis. Then, is
naturally represented by . Assuming that the transition operator satisfies

Condition E: its associated matrix has all its eigenvalues except for a simple
eigenvalue ,

we get that has a block-Jordan factorization of the form

... (2.4)

where is a matrix composed of Jordan blocks and and are resp. the right and left normalized
( ) eigenvectors of for the simple eigenvalue . Furthermore, since all other
eigenvalues , then and so . We write , this
defines an operator on . We have then the following proposition,

Proposition 2.4 For any , the sequence converges (in the sense of any
norm on the finite space ) to .
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Now, for with compact support, we define
and in the same way. We introduce the bracket operator,

(2.5)

is an infinite size block matrix with coefficients
. Thus, taking , we have

(because of the finite supports of and ) and we can identify with the Toeplitz operator
. Besides, for , we have that (by

linearity), so, . Similarly, we get . Intuitively, the bracket
operator can be seen as a measurement of the correlation between the two finitely generated
shift invariant spaces and

. When , it then characterizes the orthogonality of the basis
.

2.1.2 Iterations and convergence

In this paragraph, we will show that the previous result on the convergence of the transition
operator implies under some natural conditions the existence of a limit function that char-
acterize the multifilter . The approach taken here is a continuation of the work of Strang
[1996] and Turcajová and Kautsky [1995]. Assuming a PR biorthogonal multifilter bank
with multifilters and , we first have

Lemma 2.5 Assuming that is polynomial preserving of order 1, then there exists
with , such that and .

Proof. Let and be the vectorization and folding operators associated to , and let
, then polynomial preservation of order 1 means that constant signals are preserved by

, i.e. , i.e. . Now, since is polynomial, we get .
Clearly and from , we derive . Then, such
that . So, , i.e. .
This gives , so and .
Besides, we can always normalize such that .

Remark 2.6 This also implies that such that and . Thus,
. Furthermore, from , we get and .

We will, from now on, assume that the multifilter bank is polynomial preserving of order 1
and that is a simple eigenvalue for . This is often abbreviated as Condition .
We also impose that the transition operator associated to satisfies Condition E. Under these
conditions, we will prove that the cascade algorithm, as defined below, converges.
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The cascade algorithm:

Start from such that and .

Iterate on ,

(2.6)

Thus, we construct the sequence of functions . Clearly, . Now
assuming, and , we get

Also, since and , then .

So, by induction on , we get and .

From this last property, we also get that . Also, since

by rewriting this in vector form, we have . Thus, for , we get

(2.7)

In addition,

and similarly,
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Thus, we have ,

(2.8)

We then introduce the subset of ,

(2.9)

This is the kernel of an affine map on the finite-dimensional space . Consequently, is a
closed convex subset of . In addition, is invariant by . Namely, for ,

Furthermore, this set has the interesting property that the equation has a unique
solution in it. Namely, by condition E, the solutions of in form a linear space of
dimension 1. Taking any solution , we have

But, since and is a simple eigenvalue of , we then get that
for some . Now, let’s write for the unique solution such that ,

i.e. . Thus, is the one and only solution of in . This gives

Lemma 2.7 For every , the sequence converges to .

Proof. By Proposition 2.4, converges to some . Since is closed
and invariant by , we get that . Furthermore, by continuity, we have , so
necessarily .

We then have,

Theorem 2.8 The cascade algorithm converges in norm to the unique solution
of the two-scale equation,

(2.10)

such that . Furthermore, .

Proof. Taking , we will prove that is a Cauchy sequence in .
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Furthermore, from the previous lemma, we have ,

Now, using a diagonal sequence argument, we also get for that

Thus,

Taking , we then get

This mean that is a Cauchy sequence in . By completeness, there exists a unique
such that

Furthermore, from (2.7), we get that and so . In addition, since
is a closed subspace of , we get that . So, using the

Cauchy-Schwarz inequality, we get that and convergence. Thus, we also have
.

Now, for the uniqueness: by continuity of the cascade operator, we get that satisfies the
two-scale equation,

(2.11)

Going to Fourier domain, we have the refinement equation,

(2.12)

By iterating this product, we get

(2.13)
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Now, conditions and E ensure that the product converges uniformly on com-
pact sets [Cohen et al., 1997] to . Also, implies that is continuous, and so
we get that

(2.14)

We get from this the uniqueness of the solution of the two-scale equation.

Now, one can prove that we have convergence of the cascade algorithm for any satisfying
the condition [Durand, 1996].

It is easily seen that condition on imposes by biorthonormality that satisfies also
condition with : and . If furthermore, satisfies condition
E, then the cascade algorithm associated to converges in norm to the unique solution

of the two-scale equation,

(2.15)

such that . Furthermore, is compactly supported and is biorthogonal to ,

(2.16)

Now, considering the subdivision operator associated to , we construct the subdivision
scheme:

Start from .

Iterate on ,

(2.17)

Now, for each , we associate a function , defined by

(2.18)

Now, we look at the convergence of the sequence of functions . More precisely, a sub-
division scheme is said to be convergent iff for any starting sequence , there exist a
continuous function such that the sequence satisfies

(2.19)
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It is in fact sufficient to study the convergence for sequences of the form where
. Under the conditions of the previous section, we get that the scheme converges in

the Fourier domain to

(2.20)

For more details on vector subdivision schemes, the reader is referred to Michelli and Sauer
[1997].

2.1.3 Multiwavelets and MRA

If furthermore and are invertible [Shen, 1998],
and are dual Riesz bases of . We then construct a
biorthogonal multiresolution analysis of from
. For more details, the reader is referred to Strang [1996].

Now, assuming that generate a biorthonormal MRA, then for , we get

(2.21)

Then from , we get

(2.22)

hence the well known Mallat algorithm giving the relations between the coefficients at the
analysis step

(2.23)

(2.24)

and for the synthesis, we get

(2.25)

These relations make the link between the MRA and the multifilter bank.

2.2 The regularity issue

Here, we will clarify how the property of balancing on the multifilter bank relates to the more
classical notions of regularity on the multiresolution analysis: approximation order and poly-
nomial reproduction.
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2.2.1 Approximation order

Amultiresolution analysis of is said to have approximation order iff for any function
, there exists a constant such that ,

(2.26)

For a MRA generated by the function , we also say that has approximation order
. Furthermore, in the case has compact support, we can prove that approximation order
is equivalent to the property of polynomial reproduction of order : one can reconstruct the
polynomials using only and their integer translates,
i.e. for , there exists a sequence such that

(2.27)

For more details on the subjects of approximation order and shift-invariant spaces, the reader is
referred to the classic paper by Jia and Lei [1993].

Now, assuming that the multifilter bank is balanced of order , we get that the lowpass
synthesis refinement mask factorizes for as

(2.28)

with . So applying times Theorem 2.6 [Plonka and Strela,
1998], we get that has at least approximation order . Hence,

Proposition 2.9 Whenever the multifilter bank produces a bona-fide MRA, balancing of or-
der implies that the synthesis multiresolution analysis has at least approximation order
.

We can notice that the converse is false: the DGHM [Donovan et al., 1996] multiwavelet has an
approximation order of 2 but the associated multifilter bank is not even balanced, as detailed in
next chapter. Nevertheless, by adding some conditions on the moments of the scaling functions,
we get the following equivalence result,

Theorem 2.10 Whenever the multifilter bank produces a bona-fide MRA, balancing of order
is equivalent to the following condition:

has approximation order and, for , the shifted analysis scaling
functions have identical first moments: for

and .
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Proof. We recall that a refinement mask is said to have balanced vanishing moments
of order iff there exist an Appell sequence of polynomials such that has, for

, the following vanishing moments:

(2.29)

(2.30)

where

(2.31)

It was proven in Theorem 1.35 that this condition on the lowpass synthesis refinement mask
is equivalent to balancing of order . We will prove that is equivalent to balanced

vanishing moments of order .

: From the previous lemma, balancing of order implies that reproduces the
polynomials up to degree and so has approximation order . More precisely, for

, we have

(2.32)

where by , . Now, by biorthonormality of and ,
we have

(2.33)

Then, for , we get , i.e. for ,
.

Assume that for and , we have . We
get then for ,
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and from (2.33),

we then get . Hence, the result by induction on .

: Approximation order implies that reproduces the polynomials up to degree
, i.e. for , there exists sequences , such that

Furthermore, we have , so by biorthonormality, .
Now, let’s define , we then get

So, defining , we get an Appell sequence such that
for . Also by Lemma 1.33, approximation order

implies that has vanishing moments for ,

i.e. has balanced vanishing moments of order .

2.2.2 Superfunction theory

First, recall the Strang-Fix theorem for multiple generator and superfunction theory. Here, we
show that in the case of multiwavelets balanced of order , the superfunction has a simple
expression.
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Theorem 2.11 Whenever the multifilter bank produces a bona-fide MRA, balancing of order
is equivalent to the following condition:

Let defined by , then verifies the Strang-Fix

conditions of order : and , for and .

Proof.

: First, .
Now, we have by the refinement equation

that

So, from condition , we get that , for . We get the result
for all by iterating the refinement since we can always write as with odd.

: By the Strang-Fix theorem, we get that has approximation order . Since,
, has approximation order and so has vanishing moments with vectors

. Furthermore, we show that imposes a structure on the , so that we get in
fact balanced vanishing moments.

Remark 2.12 is called the superfunction [Plonka and Amos, 1998] corresponding to
. generates a closed linear subspace having the same approx-

imation order as .

Recalling, for completeness, the definition of balancing of order :

A multifilter bank is balanced of order iff its associated lowpass synthesis operator
preserves discrete-time polynomial signals of degree less than (i.e.

is invariant by ).

We then have

Theorem 2.13 Assuming the multifilter bank produces a bona-fide MRA, we get that balanc-
ing of order is equivalent to any of the following conditions:

There exists an Appell sequence such that the discrete-time polynomial
signals are eigenvectors of for the eigenvalues , i.e. for

.

64



has balanced vanishing moments of order .

and for .

has an approximation order of and for , the shifted analysis scal-
ing functions have identical first moments i.e.
for and .

The filter has zeros of order at for
and .

For , can be factored as

with and defined as before.

Let defined by , then verifies the Strang-

Fix conditions of order : and , for and
.

2.2.3 MultiCoiflets

Assume the multifilter bank is balanced of order , then has an approximation order of
and for , the shifted analysis scaling functions have identical

first moments i.e. for and .
Now, if the scaling function has furthermore vanishing moments (i.e. for

), we get a multiwavelet generalization of Coiflets [Daubechies, 1992]. We
have then the following properties:

and .

for .

defined by satisfies now extended Strang-Fix conditions
for . This function is called the canonical [Plon-

ka and Amos, 1998] superfunction associated to the MRA: among all functions in
satisfying the extended Strang-Fix conditions, it has the smallest support.

MultiCoiflets are then constructed as balanced multiwavelets with more stringent conditions on
the moments of . For practical design, we will use the following extension of the
condition. For , we have

(2.34)

(2.35)
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2.3 Smoothness

Smoothness is a very important and well-understood property at the continuous-time level. As
shown by [Blu and Unser, 1999], the smoothness is of first importance in the computation of
the constant (2.26) involved in the approximation order of the multiresolution . The smooth-
ness of the scaling functions gives a good idea of the “quality” of the associated multiresolution
analysis. This explains for example why splines yield better subdivision schemes. Besides, it
was shown in the framework of scalar wavelets that the smoothness of the scaling function was
inducing some good behavior of the filter bank. Namely, Cavaretta et al. [1991] proved that
having continuous derivatives on the scaling function implies that the associated subdivision
operator preserves the polynomial signals up to degree . Rioul [1993b] motivated his intensive
analysis of smoothness by the fact that smooth wavelets produce filter banks that are less sensi-
tive to quantization error, round-off errors or missing samples. This is of the highest importance
in applications like coding or denoising. However, it is not clear that these relations still hold in
the case of multiwavelets.

In this section, we will give two very different approaches to the estimation of the smooth-
ness of a multifilter bank. In the first part, we will quickly recall the classical results extended
from the scalar case. They are mostly based on iterated matrix methods. These results will be
applied to our special case of balanced multiwavelets. For the general results and most of the de-
tails, the reader is referred to the works of Cohen, Daubechies and Plonka [Cohen et al., 1997].
In the second part, we will give an alternative strategy to deal with the notion of smoothness by
focusing more on the multifilter bank and its equivalent time-varying subdivision scheme.

2.3.1 Iterated matrix approach

We first recall that a function is said to be Hölder continuous where , if
and there exists a constant , such that and , we have

(2.36)

We also introduce the classical Sobolev smoothness,

(2.37)

We have by the Sobolev inclusion property that .

Characterizations of the Sobolev smoothness can be done by analyzing the decay of as
. For example, we get Sobolev smoothness by proving that for arbitrarily

small, we have
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Now, in the special case the multifilter banks has balancing order , we have the factorization
for ,

with . Assuming furthermore that and
introducing

(2.38)

we get by Theorem 4.1 [Cohen et al., 1997] that there exists a constant , such that
,

(2.39)

However, the computation of this supremum is highly impractical. Here, we introduce the
heuristic of the invariant cycles that have been proved to be optimal in many cases [Cavaretta
et al., 1991; Cohen and Daubechies, 1996]. Intuitively, to characterize the smoothness, we are
interested in the decay as of for . From the convergence (2.14),

we form the truncated products . Evaluating these on the invariant
cycle of , we get

(2.40)

then we study the asymptotic behavior of this product by looking at the eigenvalues of

(2.41)

where diag . If then
the scaling functions cannot have Sobolev exponent of more than and so cannot be more than

times continuously differentiable [Eirola, 1992; Heller and Wells, 1996]. Thus, we
get an upper-bound on the smoothness:

Proposition 2.14 If an orthonormal multiwavelet system has balancing order and the spec-
tral radius of in the factorization (1.51) verifies , then defining

(2.42)

with invariant cycles of , and , we get that
is at most Hölder continuous (and has at most Sobolev exponent ).
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As proved in some simple cases [Cavaretta et al., 1991; Cohen and Daubechies, 1996; Heller
and Wells, 1996], the supremum

is usually attained on invariant cycles. Furthemore, it is often achieved on the smallest length
invariant cycle. One can then take for the smallest invariant cycle as a good estimate
of the Sobolev exponents of and so .

For example, in the case of the Haar multiwavelet (multiplexed scalar Haar filter [Vetterli and
Strang, 1994]), with , , it then proves that the scaling functions
cannot be continuous. In the case of the DGHM multiwavelet, , it proves
that the scaling functions can be at most . DGHM scaling functions and wavelets are in fact
Lipschitz.

Cohen et al. [1997] developed another method using the transition operator. This method gives
the exact Sobolev smoothness of and . Another approach giving a good lower bound
of the Sobolev smoothness for each scaling function is detailed in [Plonka and Amos,
1998].

2.3.2 Discrete time approach

As insinuated above, it seems that in the case of multiwavelets, the concept of smoothness
in continuous-time hardly transfer to discrete-time. First, the result of Cavaretta et al. [1991]
cannot be generalized. In the multiwavelet case, the preservation of polynomial signals is e-
quivalent to the property of balancing and it is easy to construct very smooth multiwavelets
that don’t give balanced multifilter banks. In addition, Selesnick [2000] pointed out that the
continuous-time smoothness associated to a refinement mask was not even invariant by shifts
on the coefficients of the refinement mask. This later subject has also been investigated by Blu
[1993] in the framework of rational filter banks with the concept of amnesia.

Consequently, we need a new notion of smoothness that is more related to the discrete-
time properties of the multifilter bank on scalar signals. A good candidate for this notion is to
consider the behavior of the subdivision operator on smooth signals and particularly polynomial
signals. This behavior is furthermore easy to analyze since on discrete-time polynomial signals,
the lowpass synthesis operator (with its intricate time-varying structure) is in fact equivalent
to a scalar subdivision scheme (on which the classical results from the scalar wavelet theory
apply). From Proposition 1.14, we have in block diagram notation that , i.e.

(2.43)

is equivalent on to the scalar -subdivision scheme

(2.44)
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Thus, on polynomial signals, iterating is equivalent to iterating . Then, using the
noble identities, will be equal on to

(2.45)

Thus, the smoothness associated to the time-varying subdivision operator can be
characterized by the smoothness of the scaling function satisfying the two-scale equa-
tion

(2.46)

We will call total balanced smoothness of a multifilter bank the vector where
is the smoothness of .

Rioul’s method

Rioul [1993b] gave an extremely efficient method to compute the smoothness of the limit func-
tion associated to a scalar subdivision operator by looking at how the shape of the function
remains stable in the cascade algorithm. We will here adapt this method to our case.

By the property of balancing of order , the interpolation filter has zeros at .
So we can factorize

(2.47)

We then introduce the iterated products

(2.48)

with the associated sequences .

Introducing the matrix ,

(2.49)

for with . The Hölder exponent associated to
satisfies the following inequality:

(2.50)
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with the lower bound converging quickly as to the exact Hölder exponent associated to
. For more details, the reader is referred to [Rioul, 1992, 1993b].

We mention finally, that one could also put other notions of smoothness on .
Namely, the existence of smooth derivatives for the scaling function associated to is
not a necessity. It has even been noticed in applications like compression that having rather
a slowly varying limit function may be more important. This leads to concepts like bounded
variations. Odegard and Burrus [1996] gave an interesting highlight on this issue.
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Chapter 3

Design and applications

In this chapter, we will at last get practical and show how to construct high order balanced
multifilters with different nice properties. After having first highlighted the limitations of direct
design (modifying existing unbalanced multifilters, complex filters design), we will introduce
the hardcore algebra we need to analyze and solve the systems of polynomial equations that
we face in the design of families of high order balanced multifilters. Finally, we will detail an
application of high order balanced multifilters to image coding.

3.1 Straight design

Here we give some simple schemes for the design of balanced multifilters. We also show the
limits of these approaches and some surprising minimality result on the design of high order
balanced orthonormal multifilters.

3.1.1 Balancing the unbalanced

Many multifilters leading to multiwavelets have been constructed these last years. Neverthe-
less, none has acquired the celebrity of the one designed by Geronimo et al. [1994]; Strang and
Strela [1995]; Donovan et al. [1996] that were the first to exhibit that it was possible to design
an orthonormal, finite length multifilter with symmetric filters that lead to smooth, compactly
supported, orthonormal, (anti)symmetric scaling functions and wavelets generating a multires-
olution analysis.

(3.1)

However, at the same time, this multifilter turned out to be rather disappointing for applications:
it required tedious pre/postfiltering of the signals. As we know from the previous chapters, this
is mainly due to the fact that this multifilter is not balanced. We will show here that with some
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Figure 3.1: Balancing of order 1 of the DGHM multifilter: orthogonality and compact sup-
port are maintained, the symmetries are preserved on the wavelets but are lost on the scaling
functions.

relaxation in the properties, we can derive an orthonormal balanced multifilter from .
Namely, we have that and we would like in fact to be a left
eigenvector associated with eigenvalue 1 of . The way to achieve this is then to introduce
a unitary transform of the refinement mask. So let introduce a unitary matrix such that

. This gives

we then get

(3.2)

Then defining the new refinement mask

(3.3)

and the new two-scale equation

(3.4)

we get that is a left eigenvector of for and since the transformation is
unitary, is orthonormal. Furthermore, . We notice that in the iteration,
and cancel, except for the first and last term. The convergence of the iterated matrix product
(2.12) for imply then the convergence for and the smoothness and approximation
order are also unchanged. Moreover, the whole orthogonality of the filter bank is maintained
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Figure 3.2: Balancing of order 2 of the DGHM multifilter: orthogonality is lost for the scaling
functions, the symmetries and orthogonality are again preserved on the wavelets.

and although the symmetry of the scaling functions is usually lost, the symmetry / antisymmetry
of the multiwavelets can be maintained, by taking for the highpass refinement mask

. Namely,

(3.5)

We then obtained orthogonal, compactly supported scaling functions and symmetric multi-
wavelets as seen in Fig. 3.1.

One can generalize what was done above for balancing non-balanced multifilters to higher order
balancing. Namely, in the case of DGHM, since we have approximation order of 2, we should
be able to balance the multifilter up to order 2. Introducing the new refinement mask

(3.6)

we want to be balanced of order 2. Setting up the system, by imposing condition , we
get a finite number of solutions for , the one leading to the smoothest solution being

We get the new two-scale equation

(3.7)
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Then, the time-varying filter bank based on this refinement mask keeps constant and linear input
signals unchanged. Again, the convergence of the matrix product for implies the convergence
for and the smoothness and approximation order are therefore unchanged. However, this
time, the symmetry and orthogonality by shifts of the scaling functions is lost. Nevertheless,
the system remains orthogonal in the sense that the scaling functions are orthogonal to the
wavelets and so it still decorrelates coarse resolution and details. Moreover, as seen in Fig. 3.2,
the symmetry/antisymmetry and orthogonality by shifts of the multiwavelets can be maintained
by taking for the highpass refinement mask . We notice that in this case

.

The approach developed is in fact closely linked to the design of orthogonal FIR prefilter-
ing/postfiltering that preserve the approximation order. For a detailed exposition, we refer the
reader to the papers of Hardin and Roach [1997]; Attakitmongcol et al. [1999]. This method has
however some limitations in practical signal processing. Namely, the FIR, orthogonal, approx-
imation order preserving vectorization/folding operators don’t have symmetries that enables a
clean processing of finite length signals.

In a another direction, Selesnick [2000] achieved the construction of balanced (up to order 4)
DGHM like multifilters leading to scaling functions and wavelets that are orthgonal, compactly
supported and (anti-)symmetric.

3.1.2 Daubechies complex filters

Another simple way to construct balanced multiwavelets of arbitrary order is to derive them
from the complex Daubechies filters. Daubechies filters are constructed using the halfband
filter

(3.8)

such that with and . One gets the usual
Daubechies lowpass filters: with a spectral factor of
with real coefficients. We can’t achieve orthogonality and symmetry with real coefficients
[Daubechies, 1992], however by allowing complex coefficients in the spectral factorization,
one can construct symmetric, orthogonal FIR filters [Lawton, 1993; Lina and Mayrand, 1995].
Writing for the lowpass filter, we construct the matrix coeffi-
cients

(3.9)

and the refinement mask is then

(3.10)
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Figure 3.3: Balanced (order 1) multiwavelet derived from the complex Daubechies filters (same
approximation order and smoothness as D14). Left: scaling functions, Right: wavelets.

The multifilter bank is semi-orthogonal: , but the scaling functions and wavelets are not
orthogonal to their own shifted versions. For more details on semi-orthogonal multiresolution,
the reader is referred to the papers of Abry and Aldroubi [1995]; Aldroubi [1997]. It is easily
seen that the smoothness and approximation order of the Daubechies complex scaling function
and wavelet transfer to the scaling functions and multiwavelets. Namely, by defining

where is the multiscaling function associated to , we get that
verifies the two-scale equation

(3.11)

so is the scaling function associated to the complex Daubechies filters, hence we get the
same smoothness and approximation power for the scaling functions and the multiwavelets. We
also easily derive that the multiscaling functions and multiwavelets are symmetric / antisymmet-
ric as seen in Fig. 6. However, this refinement mask when iterated doesn’t converge properly
because has eigenvalues with left eigenvectors , i.e. doesn’t sat-
isfy condition . We get only a constrained [Heil and Colella, 1996] convergence, hence the
poor behavior of these multiwavelets as more detailed in [Lebrun and Vetterli, 1998a].

3.1.3 Minimality

Trying to design the shortest length orthogonal multifilter banks for a given balancing order (no
other condition imposed), we were always ending up constructing degenerated multifilters in
the sense that was in fact a multiplexed filter:
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thus leading to wavelets and not really bona-fide multiwavelets. Looking more closely at the
problem, we proved the following surprising result (for the case ):

Theorem 3.1 The orthonormal multifilter bank of multiplicity and balancing order
with the shortest length refinement masks is a multiplexed Daubechies filter of length .

Remark 3.2 We define the length of a matrix Laurent polynomial
with and , to be .
One verifies easily that .

To prove the theorem, we will first prove that the minimal length condition with balancing and
orthogonality implies that the refinement mask has a multiplexed filter structure. That means
that the time-varying filter bank can be simplified into a scalar wavelet filter bank, the result is
then easily derived.

Lemma 3.3 Let be the lowpass refinement mask associated to an orthonormal multifilter
bank of multiplicity and balancing order . If is of minimal length, then

.

Proof. Assuming is the refinement mask associated with an orthonormal multiscaling
function of balancing order , we have by orthonormality condition:

(3.12)

Besides, balancing of order gives us

(3.13)

with and .

Introducing , one gets

(3.14)

Furthermore, one can write

(3.15)

with .
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Thus for to verify

(3.16)

one needs . Introducing , then

(3.17)

is an obvious minimal length solution of (3.16). So one has to prove now that there is no other
minimal length solution. Since all even degrees of are uniquely determined by (3.16),
all the other minimal length solutions will be of the form and
should factorize as . Thus,

(3.18)

Since , multiplying (3.18) by on the left and
by on the right, we have

(3.19)

For , we obtain

(3.20)

Changing , we also get

(3.21)

Now again, multiplying (3.18) by on the left and by on the right, we get

(3.22)

i.e. for ,

(3.23)

So adding equations (3.21) and (3.23), one gets

(3.24)
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hence,

(3.25)

(3.26)

thus

By multiplying (3.18) by on the left and by on the right, we get

(3.27)

and so

(3.28)

i.e. there exits a unique Laurent polynomial such that

(3.29)

Furthermore, from (3.18), , then , and so
. Hence, is at least of length 3. Thus is at least of length and because it

is of odd length by structure, so it is at least of length . Hence, we have that is
the unique minimal length solution.

Since for , then

(3.30)

Now, since , we have

(3.31)

Also, since , one can write

(3.32)

so

(3.33)

Hence and so .

We are now able to prove Theorem 3.1
Proof. Using Lemma 3.3 and the balancing order condition , we get that
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must have zeros of order at .
Moreover for , we have

which implies that must have zeros at . Since

with and the polyphase components of , then the orthonormality condi-
tion gives that is a real conjugate mirror filter. Then, from the well-known theorem of
Daubechies [1992], this implies that has at least non-zero coefficients, and that the
minimal length filters are Daubechies filters (classical or Symlets of order ).

This also implies that:

Corollary 3.4 An orthonormal multifilter bank of multiplicity and balancing order has
a lowpass refinement mask with at least non-zero ( ) taps.

3.2 A computational algebra digest

Recently, major advances have been achieved in the field of computational algebraic geometry
that lead to new efficient ways to deal with one of the central application of computer algebra:
solving systems of multivariate polynomial equations. Using the new algorithms that have been
developed, practical problems can now be solved exactly in a way that is very competitive
with numerical methods. One of the most promising approach to solve systems of polynomial
equations has been by computing Gröbner bases. We will describe here this approach (that
will be applied in the next section to the design of balanced multiwavelets). At the same time,
even though the computation of a Gröbner basis is the crucial point in our approach, one should
not forget that it is only the first step in the solving process. Methods to implement change of
ordering of the Gröbner basis, and alternative approaches like triangular systems and rational
univariate representation of the system are also key tools. We will also discuss some of these
methods in the following.

3.2.1 Introducing Gröbner bases

In this paragraph, we will review the major algorithms involved in the computation of Gröbner
bases. We will not go much into the details, since many good books ranging from introductory
[Fröberg, 1997] to advanced level [Cox et al., 1992, 1998] have been written on this now popular
subject. We will rather develop an intuitive understanding of what a Gröbner basis is and
describe some ways to compute them by using analogies to linear algebra.
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We define a multivariate polynomial to be a finite sum of terms , where a term
is the product of a coefficient and a monomial . One can draw an analogy between solving
linear systems that can be seen as the study of the associated vector subspace and solving a
polynomial system that can be seen as the study of the associated ideal. Namely, a polynomial
system of equations is defined by a list of multivariate polynomials with rational
coefficients ( ). We associate to this system the generated ideal

i.e. the smallest ideal containing as well as , for any
. Intuitively, the idea is that the polynomials have a

common zero iff any polynomial of the ideal vanishes also at that location. It is then equivalent
to study a system of polynomial equations or the ideal generated by the polynomials.

For a set of linear equation, the Gauss elimination algorithm enables us to compute an equivalent
triangular system by canceling the leading term of each equation. Here we will see that a
similar algorithm can be developed for the case of multivariate polynomials. An important
aspect of the Gauss elimination algorithm is in the choice of the pivots that are used during the
triangularization of the system. For the same reasons, the first thing we will have to define is
an ordering on the monomials (that need to be compatible with polynomial multiplication). We
introduce here two monomial orderings that will be used intensively in the following:

The lexicographic ordering, abbreviated lex. This is the ordering used in dictionaries:

(3.34)

The degree reverse lexicographic order, abbreviated drl. This is a modified reversed lexi-
cographic ordering taking first into account the total degree of the polynomials:

(3.35)

We then introduce the leading term of a polynomial as its term with the highest order
according to the ordering , we also introduce the leading monomial as the leading
term with a coefficient normalized to 1 and as the leading coefficient. Notice that when
no doubt remains, we will omit to mention the ordering. In a very similar way to what is done
in the Gauss elimination algorithm, we introduce the Spolynomial as a monomial combination
of two polynomials so as to cancel their leading terms.

(3.36)

where stands for the least common multiple of a set of polynomials. For example, with the
ordering , and , we get
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. We have canceled the leading terms of and . Of particular interest is when
for some polynomial (e.g., and ). In

that case, we say that is reducible by and that is the reduction of by . Formalizing
the reduction algorithms, we get

DEFINE:
Input:
Output: Boolean
if divides then
return true

else
return false

end if

DEFINE:
Input:
Output: Polynomial
if then
return

else
return

end if

This last algorithm can easily be extended to the reduction of a polynomial by an ordered list of
polynomials, .

DEFINE:
Input:
Output: Polynomial
for to do
if then

end if
end for
return

We shall emphasize the importance of the order in which the reductions are done: the same
set of polynomials reordered in a different list will usually give rise to a different output of the
reduction process. We will see in the following, that for any list of polynomials there exists an
equivalent list such that the order has no influence anymore.
We now introduce the famous Buchberger algorithm that transforms a general ordered list of
polynomials generating the ideal into an equivalent one that makes it much easier to deal with
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the ideal generated. The list of polynomials obtained by the Buchberger algorithm is called a
Gröbner basis. One of the major properties of Gröbner bases is that it makes it algorithmically
easy to verify if a given polynomial belongs or not to the ideal generated.

DEFINE:
Input:
Output: An ordered set of polynomials
# define the set of pairs

while do
# selection step
choose in

# reduction step

# test the termination of the reduction process
if then

end if
end while
return

The major features of the Buchberger algorithm is that the list obtained still
generates and satisfies the following property: reduces to modulo , for every

. Such a list is called a Gröbner basis of . It is easily seen that Gröbner bases have
the following equivalent characterizations:

iff reduces to modulo ( ).

The leading term of any element of is divisible by at least one leading term of .

For an ideal , let denote the ideal of leading terms of , i.e. the ideal generated by the
set of leading terms . We then get that
is a Gröbner basis of iff the ideal of leading terms of is generated by the leading terms of
i.e. .

Usually, one can compute infinitely many Gröbner bases. However, among all theses, one
satisfies some nicer properties: every element of the basis has its leading term normalized
(coefficient equal to 1) and , no term of is divisible by a leading monomial

. This particular basis is called the reduced Gröbner basis: one verifies that for a given
monomial ordering monomial , a non empty polynomial ideal has always a unique reduced
Gröbner basis.
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We give here how to derive a reduced Gröbner basis from the output of the Buchberger algo-
rithm:

DEFINE:
Input:
Output: A reduced Gröbner basis
# compute a Gröbner basis

# eliminate the reducible elements

for all such that is false do

end for
# reduce completely and normalize
for all do

end for
return

With the reduced Gröbner basis, we get the very nice feature that the output of
does not depend anymore on the order of the polynomials in the list: is the canon-
ical reduction modulo .

In the case is lexicographic, the reduced Gröbner basis has a very nice structure. Namely, the
reduced Buchberger algorithm gives a union of triangular arrays of polynomials of the following
form:

(3.37)

where gives the number of remaining degrees of freedom of the system when all of the e-
quations are satisfied ( are now parameters). is called the algebraic dimension of
the ideal: the solutions of system of polynomial equations can be seen as a geometric vari-
ety that can be classified by its algebraic dimension: : finite number of isolated points,

: curves, : surfaces and so on. In the case the system has different kind of solutions
(e.g. isolated points and curves), the global dimension is just the maximum dimension of each
component.
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When , i.e. when the system has a finite number of solutions, we get that the first equation
becomes a univariate polynomial equation and we can then rewrite the reduced Gröbner basis
as:

(3.38)

On such a system, it is now easy to carry out any of the following operations (as detailed in
[Gonzalez-Vega et al., 1999]):

Count exactly all complex/real solutions including the multiplicity.

Isolate the real roots with the desired precision (no rounding error).

Compute approximations of the complex roots (rounding errors).

For example, to numerically solve the system: first solve the univariate equation
, then recursively substitute and solve the next equations. Moreover, in the case the variable
is separating (intuitively two solutions can’t have the same first component; a rigorous definition
is given next section), we get that . The system is then of the form

(3.39)

and all we have to do is to solve and substitute in the other equations. This is called
the Shape lemma case [Rouillier, 1999].

3.2.2 Linear algebra methods

The necessary time to compute a reduced Gröbner basis by the Buchberger algorithm depends
strongly on the monomial ordering that is used. In general, computing a reduced Gröbner bases
for the lexicographic ordering is much more time and memory consuming than computing the
corresponding drl Gröbner basis. However, this additional computational cost is worth it be-
cause, as seen before, the lexicographic ordering provides a triangular like structure (similar
to the one obtained by Gauss elimination) that is really suitable for further processing. Fortu-
nately, recent algorithms enable to compute efficiently lexicographic Gröbner bases by using an
alternative approach:
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First, we compute a Gröbner basis for the drl ordering, using, for example, the standard
Buchberger algorithm (note that the algorithm can be highly improved by using heuris-
tics for the choice of the critical pairs and the reductors in the reducing process). An even
better approach is to completely suppress the influence of these choices, by in fact not
choosing anymore as introduced by Faugère [1999] in his algorithm: instead of choos-
ing one critical pair, we take a subset of critical pairs and reduce this set. By using a linear
algebra approach to deal with the pairs, the algorithm can be made extremely efficient for
the computation of drl Gröbner bases. An implementation named FGb of this algorithm
can be tested on the Web at

Finally, we compute the lexicographic Gröbner basis from the drl one by a change of
ordering. For the case when the ideal is zero-dimensional, a very efficient algorithm called
FGLM [Faugère et al., 1994] has been developed using again a linear algebra approach.
Implementations of this algorithm are now available in most of the computer algebra
programs.

We will now give some details on how the linear algebra approach works. Again, for more
details, the reader can read the survey on the subject by Mourrain [1999]. Starting from a list
of polynomials such that the generated ideal is zero-dimensional, we show that

the quotient space inherits a structure of finite-dimensional algebra.
Namely, assuming a reduced Gröbner basis for some ordering (typically
drl), any element of has the form for some . Since

, we easily construct a linear basis of from the set of mono-
mials , by taking in increasing order the monomials under the staircase, i.e.
the that are not a multiple of (since this implies that ).
The linear basis obtained this way is called the monomial basis of . Fi-
nally, constructing the multiplication table of , we get a full description of the linear
algebraic framework in which we will deal with the polynomials.

Now, any element can be expressed as a vector since . The FGLM
algorithm can then be described using linear algebra in . The lexicographic Gröbner basis
is obtained by detecting linear combinations of monomials in . The idea is to construct in
parallel the lex Gröbner basis and a full rank matrix , by scanning the monomials
in increasing lex ordering (starting from 1). There are two possibilities:

1. is linearly dependent of the previous vectors put in , i.e. , then
we add to (namely, and ).

2. is linearly independent of the previous vectors put in , then add to .

Repeat the scan until ; is then a lex Gröbner basis of .
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3.2.3 The rational univariate representation

In many situation, the computation of a lex Gröbner basis of the ideal is a bit of an overkill
in the sense that in fact, all we are really interested in, is a good description of the set of
solutions of the system, (we will denote by
the multiplicity of a solution ). Here, we will describe an alternative method to the change
of ordering algorithm (FGLM). In the approach developed by Gonzalez-Vega et al. [1999];
Rouillier [1999], one constructs a list of polynomials
of such that: if is a solution of the system, then is a root of with
the same multiplicity and conversely, if is a root of , then

(3.40)

is a solution of the system with the same multiplicity. Hence, is fully characterized.

For any polynomial , we introduce the linear operator on ,

(3.41)

We will also identify with its matrix representation in the monomial basis of . This
matrix is easily computed by expressing in the monomial basis, this gives the column of

.
From the computation of , we derive some important information on and the sys-
tem in general. Namely, by the Stickelberger theorem [Rouillier, 1999], we get that has
eigenvalues with multiplicity , where . This gives that

.

.

(characteristic polynomial of ).

Computing directly the characteristic polynomial (incl. the determinant) of a matrix like
can be time and memory consuming. We detail here an alternative method based on traces
of matrices and taking advantage of the special structure of the matrices . Let

and be its derivative, then

(3.42)
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So, we have

and also

we then get

Thus, we can compute from the scalars: for .
We also introduce the square-free part of :

(3.43)

Now, assume is separating , i.e. on (that implies that
has eigenvalues with multiplicity ), we finally introduce

(3.44)

This can be rewritten as

(3.45)

Taking and , we get

(3.46)

We then get the central result of the rational univariate representation

(3.47)

Hence, for , we get

(3.48)
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Theorem 3.5 If is a solution of the system, then is a root of with the same multi-
plicity and conversely, if is a root of , then

is a solution of the system with the same multiplicity.

Now, all we have still to detail is a practical way to compute . In a similar way to what
is done to compute , we get

(3.49)

Writing and let be its Hörner sequence of
polynomials, we then get

(3.50)

So, the are easily computed from and the , for . There
is furthermore an easy way to compute these traces by noticing that
where

(3.51)

Now, since , we get by induction and
.

To really complete the algorithm, we introduce the matrix defined by ,
i.e.

...
... (3.52)

We easily prove that . This gives us an easy way of testing whether
a polynomial is separating: should be equal to . Furthermore, we prove that the set
of polynomials contains at least one
separating polynomial.

We finally have all the tools to efficiently compute the rational univariate representation of a
zero-dimensional ideal from a reduced Gröbner basis :
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DEFINE:
Input: A zero-dimensional reduced Gröbner basis for any ordering
Output: A rational univariate representation
# setup the linear framework
compute the monomial basis of
compute the matrix

# find a separating polynomial
repeat
choose # by increasing lex order
compute
for to do
compute

end for
compute
deduce

until
# compute the traces
for to and to do
compute

end for
# deduce the RUR
compute
return

This algorithm gives us a bijection between , the set of solutions of the system, and the
roots of the univariate polynomial . All we have to do now to get is to isolate the
roots of . We then derive the solutions of the system using the RUR. The isolation of roots
is usually a difficult problem. However, in the case we are only interested in the real solutions
of the system, we can locate them very efficiently by computing the signature of trace matrices
[Pedersen et al., 1993].

Alternatively, we can also factorize . We construct this way local algebras [Gonzalez-Vega
et al., 1999] that enable us to simplify the problem of isolating the roots by lowering the degrees
of characteristic polynomials in the RURs.

In short, the RUR approach appears to be a very efficient alternative to the computation of a
lexicographic Gröbner basis: as detailed in [Rouillier, 1999], it is computationally easier to
compute a RUR than to apply the FGLM algorithm and the characteristic polynomial is
usually easier to deal with than , the leading polynomial of the lexicographic Gröbner
basis.
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3.3 Algebraic design of multiwavelets

From the previous section, we now have all the tools and algorithms to deal with and solve the
systems of polynomials equations that appear when designing high order balanced multifilters.
Using the results obtained in the previous chapters (especially the factorization of the refinement
mask) and inspired by the techniques used by Park et al. [1996]; Faugère et al. [1998] on similar
problems of design, we are now ready to investigate the construction of orthonormal multifilters
of arbitrary balancing order in a similar way to what Daubechies [1992] did for her well-known
filters.

3.3.1 Symmetry oriented design: the Bat family

Given a balancing order , we are looking for the shortest length orthonormal multifilters with
real coefficients and symmetries. As seen in next section, the symmetries on the filters allow
easy and practical implementations on finite length signals. The scheme of construction is then
the following.

First, we construct the refinement mask , by putting degrees of freedom on a matrix
.

1. Impose the order of balancing to be , i.e. for ,

with . This way we reduce the number of degrees of
freedom in the design.

2. Impose the condition O (orthonormality) on ,

This gives quadratic equations on the free variables of (the idea is to introduce
the Laurent polynomial matrix and translate
the orthonormality condition on this matrix; for more details, the reader may look at the
proof of Lemma 3.3).

3. Impose symmetries condition: here we look for flipping property on (i.e.
). The flipping property enables an easy lossless symmetrization

(detailed in the section about image coding) of finite length input signals.

4. We now have a system of polynomial equations. We compute the algebraic dimension of
the system using a drl Gröbner basis approach and increase the degree of freedom until
we get solutions (and a drl Gröbner basis of dimension 0). We used here the programs
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Figure 3.4: Order 1(resp. 2) of balanced orthogonal multiwavelet: the scaling functions are
flipped around 1 (resp. 2), the wavelets are symmetric/antisymmetric, the length is 3(resp. 5)
taps (2x2) and the estimate of the smoothness by invariant cycles gives the Sobolev exponent s
= 0.64 (resp. 1.15).
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[Greuel et al., 2000] for order and FGb [Faugère, 1999] for the
order . We now have a zero-dimensional drl Gröbner basis that we can either
transform into a lex Gröbner basis using FGLM in the case or in the case

, where FGLM showed its limits, we compute a rational univariate representation of
by a modified version of the program RealSolving [Rouillier, 1999]. We can then

factorize the leading polynomial of the lex Gröbner basis in Maple and thus get rid
of the multiplicities of the solutions. This means we factorize the Gröbner basis in local
algebras that are much easier to solve exactly. In the case , we deal with a RUR and
a similar idea is applied to the characteristic polynomial . We then have the set of
solutions for the system.

5. Among this finite number of solutions, we can look for the one leading to the smoothest
scaling functions using the estimate by invariant cycles.

Then, we easily derive the highpass filters from the lowpass filters by
imposing to be symmetric and to be antisymmetric. The orthonormality conditions
give a unique solution up to a change of sign.

Using this approach, we have been able to construct all the orthonormal multiwavelets with
compact support and flipped scaling functions, symmetric/antisymmetric wavelets for
order 1,2,3 and 4 of balancing. Figures 3.4, and 3.5 show the smoothest high order balanced
multiwavelets with these properties. Tables 3.11, 3.2 and 3.3 in appendix give the closed form
expressions of the coefficients obtained. For order 4 of balancing, because of the degree of the
characteristic polynomial in the RUR, a real roots localization program (included in RealSolv-
ing) has been used and only numerical solutions (in fact exact intervals containing the solutions)
have been obtained.

3.3.2 Smoothness oriented design: the PPZ family

The purpose of this family of balanced multiwavelets is to test our new notion of total balanced
smoothness. The design procedure is very similar to the one for the Bat family above. Thus, we
will only detail the differences and the computational issues.

Following the ideas of Heller and Wells [1996], we have added the condition of imposing a
zero on at either (preperiodic point of the -invariant cycle ) or
at (preperiodic point of the -invariant cycle ). This gives
equations with polynomials in or . The computation of
the drl Gröbner basis is then achieved by introducing the dummy variable and the poly-
nomial in the system, doing all the computations with this dumb variable and
retransforming the solutions with or .

1The coefficients of BAT O1 also appeared in [Chui and Lian, 1996; Strela et al., 1999].
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Figure 3.6: Order 3 PPZ (5Pi/6) balanced orthogonal multiwavelet: the scaling functions are
flipped around 7/2, the wavelets are symmetric/antisymmetric, the length is 7 taps (2x2) and the
total smoothness estimate is [2.32; 0.97, 1.67, 1.20, 0.31].
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Figure 3.7: Order 3 PPZ (5Pi/6) balanced orthogonal multiwavelet: the scaling functions are
flipped around 7/2, the wavelets are symmetric/antisymmetric, the length is 8 taps (2x2) and the
total smoothness estimate is [1.99; 0.94, 1.69, 1.99, 1.14].
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Using this approach, we constructed all the PPZ ( ) orthonormal multiwavelets with compact
support, flipped scaling functions and symmetric/antisymmetric wavelets for balancing order
3. Figures 3.6, 3.7 show the two smoothest ones. As we can notice, the smoothest one in the
continous sense is not the smoothest one in the discrete-time sense. In Fig. 3.8, we give also a
family of PPZ ( ) orthonormal multiwavelets with compact support, flipped scaling functions
and symmetric/antisymmetric wavelets. Suprisingly, the three first members of this family have
the same total balanced smoothness.

3.3.3 Interpolation oriented design: M-Coiflets

Again, the design procedure is very similar to the one for the Bat family above. Two new
conditions are added:

1. The filter and are supposed to be odd length and symmetric.

2. satisfies the multiCoiflet conditions for ,

(3.53)

(3.54)

Using this approach, we have been able to construct all the orthonormal multiCoiflets with
compact support , symmetric scaling functions, symmetric/antisymmetric wavelets
for order 1,2 and 3 of balancing. The Figure 3.8 show the smoothest multiCoiflets with these
properties.

Finally let’s mention that Selesnick [1999] constructed a family of cardinal multiwavelets
that appear to be generalized multiCoiflets (the center of mass of the scaling functions is not on
an integer, however the filters are interpolating).

3.4 Image coding with balanced multiwavelets

Most lossy transform coders can be split into three distinct stages: transform, quantization and
entropy coding. While some of these might be combined, their separation not only helps the
implementation, but it also enables a clean analysis of the performance impact of different
design choices for each stage. Wavelet based methods, as pioneered in [Antonini et al., 1992],
have become a standard and successful way of implementing transform coding.

The underlying filter banks are now well studied, and thus the design procedure is well un-
derstood. By the structure of the problem, certain issues are ruled out: e.g. impossibility of
constructing orthogonal FIR linear phase filter banks. This is a serious drawback since in many
applications, and especially image coding, the following three properties are important: (1) FIR
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for obvious computational reasons, (2) linear phase to work on finite length signals without re-
dundancy and artifacts, and (3) orthogonality as a necessary condition for the decorrelation of
subband coefficients. However, by relaxing the time-invariance constraint, it has been proved
in the previous sections that new solutions are possible: with multiwavelets, one is finally able
to construct orthogonal linear phase FIR transform systems.

In the light of this, we thus decided to modify an existing transform coder (the well-known
SPIHT codec [Said and Pearlman, 1996] based on the significance tree quantization (STQ)
principle) — based on the classic 9/7 biorthogonal wavelet — by replacing the transform stage
with one based on balanced multiwavelets that are specially designed for signal compression.
Therefore we get a quite fair comparison of the compression performance of the two wavelets,
since the complexity of the other stages remains the same.

The organization of this section is as follows: first we gives a very short overview of standard
wavelet image coders where we briefly describe the SPIHT coder, which we used as our com-
parison platform. We then details some implementation aspects of a significance tree image
coder based on balanced multifilters. Finally, we present and discuss the achieved results. We
conclude with an outlook on future research in this domain.

3.4.1 Zero trees and the SPIHT algorithm

The SPIHT algorithm designed by Said and Pearlman [1996] belongs to a class of embedded
transform coders which originated with Shapiro’s embedded zerotree wavelet scheme (EZW
[Shapiro, 1993]). Here, we describe only its main operating principles. First, the image is trans-
formed into its dyadic (pyramid) wavelet decomposition. The coefficients are then assigned to
the nodes of a hierarchical tree, such that the coefficients in the parent nodes are representative
(in terms of energy) for their offspring nodes. The coder output is generated by successively
refining the (quantized) coefficients in order of decreasing magnitude (concept of significance
[Davis and Chawla, 1997]). This can be done very efficiently, since the tree structure exploits
the self-similarity across scales of the wavelet transform. Finally, an arithmetic coding stage
removes the remaining redundancy.

3.4.2 The 2D multiwavelet transform

Since multiwavelets are defined for vector-valued signals, one might be tempted to vectorize an
image signal by grouping pairs of rows or columns together. But besides introducing a funda-
mental asymmetry, this approach also doesn’t fit the notion that the -subband represents a
coarse approximation of the original image.2 The latter is a key to the performance of SPIHT,
and consequently we decided that no vectorization should be used. This is in fact possible by
viewing the MW transform as a time-varying filter bank (see Fig. 1.1). The coefficients of the

2The main hurdle is that SPIHT cannot handle vector-valued coefficients without undergoing a major revision
of the partitioning and quantization mechanisms.
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two lowpass (highpass) filters are simply interleaved at the output, e.g. in the one-dimensional
case we get the following lowpass signal: . A separable 2-D
transform can now be defined in the usual way as the tensor product of two 1-D transforms.
Obviously this approach is symmetric in the coordinates, i.e. every combination of horizontal
and vertical filters appears at the output. But now we get 16 subbands, instead of the usual 4
with scalar wavelet transforms. The question is how this fits into the subband decomposition
scheme required by SPIHT.

Let us first observe that the lowpass image, corresponding to the classic subband, contains
the four lowpass-only bands and will be composed of 2x2 blocks as follows:

Since this lowpass image undergoes further decomposition, we have to verify that it is a coarse
approximation of the original. And it is indeed: as we can see in Fig. 3.5, the two lowpass
filters (scaling functions) are flipped versions of each other (mutual symmetry) with a group
delay of 2. Thus our lowpass image closely resembles the output of a classic biorthogonal
wavelet transform. Since the compression performance depends critically on this approximation
behavior, we can say that our experimental results clearly confirm these arguments. This is
no surprise since these arguments were the starting point of the balancing concept (i.e. the
preservation/cancellation of discrete-time polynomial signals by the lowpass/highpass branches
of the time-varying filter bank).

Another implementation aspect which differentiates multiwavelets from biorthogonal wavelets
is the handling of boundary conditions. That is, the extension of a finite support input signal
such that the transform coefficients have specific symmetry properties. The goal is to get a non-
expansive transform, i.e. input and output dimensionality should be the same. For multirate
linear phase FIR filter banks this problem has been treated extensively in [Brislawn, 1995]. But
our lowpass filters are only mutually symmetric and thus we had to develop specific methods of
signal extension. In the following we limit ourselves to 1-D transforms, as the extension to 2-D
is implicit for separable transforms. Further we assume that the signal has length , a multiple
of 4, and that is larger than the filter size (to avoid wrap-around conditions).

With an -periodic signal extension the coefficients obey the trivial symmetry condition
. But this simple periodic approach may introduce discontinuities and hence add

energy to the high frequency bands. Therefore it should be avoided in coding application-
s, as confirmed by our compression tests. The method of choice is a symmetric extension
(with period ), whereby the signal is extended to

The boundary points have to be doubled due to the even filter
support . To make sure that only coefficients are needed to reconstruct , we
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have to exploit the following filter symmetries:

where . These equations yield different symmetries for the coefficients
, depending on the filter shift ( stands for any of the four filters). The

natural choice does not work, since then there are no symmetries to compute the
coefficients . We have determined the values for order 1 balancing (with ),

for order 2 (with ), and for order 3 ( ). Then one gets the following
coefficient symmetries:

for . Hence coefficients suffice to represent the input signal.

3.4.3 Results, discussion and further extensions

Fig. 3.9 shows that order 2 balanced multiwavelets achieve fairly good results with PSNR val-
ues within 0.5 dB of the original SPIHT with biorthogonal 9/7-tap filters. This is pretty good,
since the significance tree and arithmetic compression stages have not been fine-tuned to match
the time-varying nature of the MW transform. It also means an average of 5 dB improvement
in PSNR for “Lena” compared to previous multiwavelet based image coders (DGHM multi-
wavelet with pre/post filtering [Strela et al., 1999]). This proves the superiority of the balanced
multiwavelet approach over MW systems requiring pre/post filtering of the input data because
of unbalanced lowpass filters . Namely, with balancing one is able to take full
advantage of the interesting properties of multiwavelet systems. The balancing order 3 mul-
tiwavelets are slightly better than order 2 at rates below 0.2 bpp, above that, they are slightly
worse. We also implemented a coder with the new balanced DGHM multiwavelets first intro-
duced in [Selesnick, 1998]. The bad performance can partly be explained by the fact that there
is no easy way to make the transform non-expansive. We had to interpolate a coefficient to get
that property. While the formula is exact for real coefficient values, the distortion introduced by
the quantization could have been amplified.

On a more subjective level, a visual comparison (Fig. 3.10 and 3.11) reveals a disturbing tiling
effect for balancing order 2 multiwavelets. If the order 3 MW is used instead, the more familiar
ringing artifacts almost “cover up” these tiling effects. We suspect two main reasons for these
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Figure 3.10: Lena at 0.1 bpp, from top to bottom: 9/7-tap biorthogonal (30.23 dB PSNR), 8-tap
multiwavelet (balancing order 2, 29.78 dB), 12-tap multiwavelet (balancing order 3, 29.83 dB)
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Figure 3.11: Detail of Lena at 0.25 bpp: 8-tap multiwavelet transform (left), original SPIHT
with 9/7-tap filters (right)

tiling effects to be: first, the two lowpass filters introduce a 0.5 pixel phase shift at each iteration,
due to their structure and the implementation constraints (border symmetrization). Thus high
energy coefficients at an image discontinuity will be less well aligned across scales, hampering
the efficiency of the tree prediction as illustrated in Fig. 3.12. Secondly, the two highpass
filters have very different spectral characteristics, and therefore their outputs should be treated
separately in the tree/entropy coding stages. Possibly some smoothing filter could be used to
lessen the disturbing tiling effect.

Given the relatively small performance gap, the question is whether balanced multiwavelets
could outperform biorthogonal wavelets. Fig. 3.13 shows that the MW transform produces
more high amplitude coefficients then the 9/7-tap wavelets (at threshold 8, about 18(20) % of
all coefficients are significant). This is a strong indication that the MW transform is not suited
for low bitrate compression. Every improvement in successive stages (tree, entropy coding)
could as well be applied to biorthogonal wavelets. It is therefore the transform itself, or rather
its implementation, which would have to be improved. But this proves difficult, since e.g. the
constraints imposed by the downsampling factor and the border symmetry conditions imply
that the mentioned lowpass phase shift cannot be avoided. On the other hand, it is possible
to construct a highpass filter pair with flip-symmetry as in the lowpass branch. However the
coding results are worse than for the symmetric/antisymmetric highpass construction presented
here.

Here, we implemented a balanced multiwavelet transform for a significance tree quantization
image coder (namely SPIHT). With the introduction of the balancing concept, it is possible to
design general families of high order balanced multiwavelets with the properties required for
practical signal processing (preservation/cancellation of discrete-time polynomial signals in the
lowpass/highpass subbands, FIR, linear phase and orthogonality). The results obtained so far
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Figure 3.12: Tree decomposition of the horizontal subband magnitudes: 9/7-tap biorthogonal
wavelet (left), 8-tap multiwavelet (right). The latter has less well-localized high-energy coeffi-
cients.

show substantial improvement over previous MW-based image coders [Strela et al., 1999].

On the other hand, our results are also experimental evidence for the well-known fact that strict
orthogonality plays a minor role in image transform coding. Design parameters such as filter
length, smoothness and regularity have heavier impact on performance. The design of non-
expansive transforms, which are essential for image coding, is harder in the multiwavelet case.
In conclusion, the multiwavelets known so far are still no plug-in replacements for the more
traditional scalar wavelets.

Nevertheless, we strongly believe that significant improvements could be achieved by some
modifications, which includes modifying the significance tree in order to account for the group
delay of the two lowpass filters, and a new quantization/thresholding stage, which works on 2x2
coefficient blocks.
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Conclusion

By introducing the concept of high order balancing, we have clarified an important issue in the
design of multiwavelets. We have proved that this concept is the natural counterpart of the zeros
at condition in the standard wavelet theory. With these results, we made it possible to design
general families of high order balanced multiwavelets with the required properties for practi-
cal signal processing (preservation/cancellation of polynomial signals in the lowpass/highpass
subbands and FIR, linear phase, orthogonal filters). The proposed design methods are making
extensive use of computationally heavy methods (Gröbner basis decomposition, rational uni-
variate representations) and it is not clear how far we can go with these tools. Matrix spectral
factorization could be a way to overcome this limitation. Besides, we investigated the influ-
ence of ergodic properties (zeros at pre-periodic points of invariant cycles) on the smoothness
of multiwavelets. This brought us to introduce the useful concept of balanced smoothness of a
multifilter bank. Many of the results there have been obtained using quite ad hoc approaches. A
more systematic study would be welcome. MultiCoiflets have been introduced as a special case
of balanced multiwavelets. Examples of orthogonal, compactly supported, symmetric multi-
Coiflets are given. We detailed also an application of high order balanced multifilters to image
coding. Again, a lot could be done on that “sisyphic” subject. Finally, by its nature, the Toeplitz
approach to multifilter banks could be easily extended to the case of signals living in Hilbert
spaces and filters with coefficients being Hilbert-Schmidt operators. This would give a nice
framework to do multirate signal processing on second order random signals.
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Table 3.1: Coefficients of BAT O1: first order balanced orthogonal multiwavelet

Table 3.2: Coefficients of BAT O2: order 2 balanced orthogonal multiwavelet

Table 3.3: Coefficients of BAT O3: order 3 balanced orthogonal multiwavelet
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