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Abstract: 

 Sociologists are often interested in estimating and testing whether some causal effect varies 

by a modifier of interest. The conventional regression estimator for effect modification is inflexible 

in functional form and prone to misspecification bias. Machine Learning (ML) algorithms can aid 

the estimation of effect modification in observational studies by controlling for confounders in a 

highly flexible, automated, yet principled way. Therefore, leveraging ML for effect modification 

helps reduce misspecification bias and enhance the credibility of causal identification. We 

introduce a novel estimator that estimates effect modification in a familiar regression framework 

after using ML algorithms to fit nuisance components of the model. We show that this estimator 

is more flexible than the conventional regression model while more efficient and suitable for 

theory-driven sociological research than other ML-based methods. We use the new estimator to 

study the modification in the effect of a college degree on adult family income by gender and 

 
1 This paper has been presented at the annual meeting of the American Sociological Association and the Stanford 
conference on computational sociology, both in 2020. We would like to thank Felix Elwert, Xiang Zhou, and Eric 
Grodsky for helpful suggestions.  
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family income in adolescence in the United States. Along these two dimensions, the benefits of a 

college degree are rather equally distributed.  

 

1. Introduction  

Machine Learning (ML) has been making its way into empirical sociology in recent years.  

For example, methodological adaptations of a wide variety of ML methods have appeared in life 

course research (Billari, Fürnkranz, and Prskawetz 2006), criminology (Baćak and Kennedy 2019), 

survey design (Fu, Guo, and Land 2018), text and image analysis (Rona-Tas et al. 2019; Zhang 

and Pan 2019), causal inference (Brand et al. 2021; Liu 2021; Torrats-Espinosa 2021), log-linear 

modelling (Bucca and Urbina 2019), and general evaluation of the predictability of life and 

physical outcomes (Daoud, Kim, and Subramanian 2019; Salganik et al. 2020).  

For causal inference tasks based on observational data, ML can provide flexible yet 

principled ways to control for confounders, hence buttressing the credibility of causal estimates. 

Effect heterogeneity, as a specific causal inference problem, is at the core of sociological research 

(Xie 2013). And some recent developments in statistics and econometrics have started to harness 

the strength of ML to address effect heterogeneity. Molina and Garip (2019, p34, p37-38), in a 

general review of machine learning for sociologists, have briefly introduced some developments 

in using ML for effect heterogeneity.  

However, the existing ML algorithms for effect heterogeneity target the approximation of 

individual-level treatment effects, taking an optimal treatment assignment regime as the eventual 

goal (Athey and Imbens 2019). It is rare that sociological research is guided by that goal. Indeed, 

most sociological research involving treatment heterogeneity focuses instead on theoretically 

motivated dimensions along which the treatment effects may vary, such as gender (Legewie and 
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DiPrete 2012), race (Gorry 2019), socioeconomic status (Xie et al. 2020), occupational 

characteristics (Yu and Kuo 2017) age (Wodtke, Elwert, and Harding 2016), and genotype 

(Fletcher 2012). In other words, the dominant approach to effect heterogeneity in sociology is 

effect modification, which is about whether and how some causal effect varies with specified 

modifiers of interest. The distinction between effect modification and other approaches of studying 

effect heterogeneity has not been adequately addressed in the methodological literature, potentially 

hindering optimally leveraging ML for effect modification in sociology.    

This paper is structured as follows. First, we will review how ML-based methods can, in 

general, facilitate causal inference with observational data and introduce, in particular, the effect 

modification estimand. Second, we will also demonstrate, in more detail, differences between the 

effect modification estimand and other approaches to examine effect heterogeneity. Third, we will 

introduce a new ML-based Sample Splitting (ML-SS) regression estimator which is an extension 

of the Groupwise Inference Method developed by Park and Kang (2019). Compared with the 

Groupwise Inference Method, the ML-SS regression can accommodate arbitrary parametrizations 

of the treatment effect function and various auxiliary adjustments for survey data. Fourth, we will 

demonstrate that the ML-SS is particularly suitable for the effect modification estimand in a 

simulation study. Finally, we will present an empirical study that applies the ML-SS regression to 

investigate the modification roles of gender and family income in adolescence in the treatment 

effect of college degree on adult family income. 

2. ML-based Methods and Observational Studies  

In observational studies on causal effect, conditioning on observable confounders is a 

common strategy for identification of both average treatment effect (ATE) and effect modification. 
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For instance, one conventional way of estimating and testing effect modification is using the 

following generalized linear regression:  

𝑔[𝐸(𝑌|𝑊,𝑀,𝑿)] = 𝛼 + 𝛽!𝑊 + 𝛽"𝑀 + 𝛽#𝑊 ∙ 𝑀 + 𝛽$𝑿, 

where 𝑊 is the treatment, 𝑀 is the modifier of interest, 𝑔(∙) is a link function such as logit or 

probit. And 𝛽#, the coefficient for the product term between the treatment and modifier, is taken 

as evidence of effect modification by 𝑀, or its lack thereof. Importantly, in this conventional model, 

the vector of control variables, 𝑿, enters the model linearly or some other researcher-specified way.  

In the conditioning-on-observables framework, the identifiability of the causal estimand 

depends first on whether the confounders are available to the researcher. If some confounders are 

simply not measured at all, then the researcher must either select an alternative identification 

strategy or use sensitivity analysis. However, even in a case where all confounders are observed 

in some form, there is still a considerable degree of uncertainty in how to practically implement 

the conditioning. Indeed, researchers often have access to a large number of potential confounders, 

but do not have a strong theory about which covariates (and which interaction terms between them) 

need to be conditioned on and in what functional form. However, misspecification in any manner 

will likely lead to bias in estimates and false conclusions. In particular, in the conventional 

regression for effect modification, the linearity assumed for the relationship between control 

variables and the outcome is a highly restrictive functional form. If there is deviation in the true 

function from linearity regarding the confounders, then bias will arise in the estimation of effect 

modification (see Breen, Choi, and Holm 2015).  

In the face of uncertainty about model form and the peril of misspecification bias, 

sociologists have proposed to characterize the uncertainty in terms of a distribution and incorporate 

it in the analysis. Muñoz and Young (2018) propose to obtain estimates across all plausible model 
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forms and assess the entire distribution of these estimates. The approach of Winship and Western 

(2016) is to designate a Bayesian prior distribution for a parameter that represents misspecification 

in OLS and integrate that distribution into inference. In a comment on Muñoz and Young (2018), 

Western (2018) also describes another distributional solution that amounts to averaging 

coefficients in all possible models, weighted by the posterior probability of each model.  

In this paper, we focus on a different and complementary approach, where we strive to find 

an optimal model, instead of just recognizing the uncertainty as a distribution. One key to obtain 

the model that best approximates the true functional form is to allow for more flexibility in 

modelling. ML-based methods are generally nonparametric or semiparametric, fitting the model 

in a data-driven way without imposing researcher-specified parametrization. Consequently, ML-

based causal inference has the advantage of flexibility over traditional parametric models.  

Flexibility in estimation can be trivially achieved by aggressively adding more covariates 

in the model in ever more flexible forms. However, doing so will also increasingly cause 

overfitting, reduce efficiency, and weaken replicability. Hence, as we endeavor to avoid 

misspecification, we also need to guard against overfitting and efficiency loss. This is what ML 

methods are designed to do, as they regularize (limit) model complexity for best out-of-sample 

performance via cross-validation instead of greedily fitting the current sample.  

When integrated with causal inference, ML methods are often also combined with cross-

fitting, which amounts to using one part of the sample to fit the function that is used to predict 

values for another part of the sample. Cross-fitting also helps avoid overfitting and is crucial for 

valid inference after applying ML algorithms as part of the estimation. An early version of cross-

fitting appeared in Chernozhukov et al., (2018) and has been adopted widely for causal inference 

using ML for nuisance functions (eg. Knaus, Lechner, and Strittmatter 2021; Nie and Wager 2020). 
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The “honest” estimation of Causal Tree in Athey and Imbens (2016) is also a type of cross-fitting. 

The ML-SS estimator that we introduce in this paper also uses cross-fitting, which is premised on 

sampling-splitting.  

In summary, ML methods can provide principled flexibility in controlling for confounders, 

resulting in functional forms that are neither overly restrictive nor overly complex.  

Furthermore, ML algorithms are automated procedures that, when applied to controlling 

for confounders, enable researchers to be free of ad-hoc decisions with regard to the confounders 

and focus on specifying and interpreting parameters of substantive interest. Automating the 

modelling of control variables can also help with preventing the bias-inducing behavior of model 

refinement or specification searching, i.e. p-hacking on the part of the researcher(Christensen, 

Freese, and Miguel 2019; Muñoz and Young 2018). 2  ML-based causal inference, thus, facilitates 

research practices that are both convenient and of integrity.  

3. Effect Modification and Various ML Methods for Effect Heterogeneity 

We first define the effect modification estimand formally. Next, we explain why existing 

ML methods are designed instead for individual-level effect prediction hence not directly and 

optimally suitable for sociological research targeting effect modification as the estimand. We will 

also briefly discuss the possibility of using ML methods to discover previously unknown modifiers, 

which is yet another goal of research different from the effect modification estimand. Figure 1 

summarizes the relationships between the estimands or goals of research appearing in this paper.  

Let 𝑊% be a binary treatment variable,  𝑌% be the measured outcome and 𝑌%(𝑊% = 𝑤) be the 

potential outcome that would be observed if 𝑖’s treatment 𝑊% was set to 𝑤 by external intervention. 

 
2 Correspondingly, we argue that with regard to the parameters of interest, variables and functional forms should be 
pre-specified based on theory, preferably pre-registered.  
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Finally, let 𝑀% be a low dimensional and pre-specified vector of pre-treatment variables.  The effect 

modification estimand can then be defined as such: 

𝐸[𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0)|𝑀%]. (1) 

Importantly, the effect modification estimand is different from the causal interaction 

estimand based on the potential outcomes 𝐸[𝑌%(𝑊% , 𝑀%)] . The difference is that the effect 

modification estimand only seeks to identify the causal effect of 𝑊%, but not that of 𝑀% (Keele and 

Stevenson 2020; VanderWeele 2009).  

However, existing methods leverage ML for effect heterogeneity in a different way. The 

estimands of these methods can be similarly written in potential outcomes as  

𝐸[𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0)|𝑪𝒊]. (2) 

This can be called the individual-level effect prediction estimand, and the substantive goal of this 

estimand is to predict the individual-level treatment effect 𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0) for each out-

of-sample individual 𝑖 as accurately as possible. 3 The key difference between individual-level 

effect prediction estimand in (2)  and the effect modification estimand in (1) lies in that 𝑪𝒊 is a 

high-dimensional vector of modifiers that are not pre-specified. Hence, while (2) aims to capture 

the entire generating process of treatment effects using as many modifiers 𝑪𝒊  as possible, (1) 

summarizes the effect heterogeneity in a substantively important or interesting way with respect 

to just one modifier of interest, 𝑀%. Formally, 𝑀% ∈ 𝑪𝒊, and the relationship between (1) and (2) 

can be expressed in terms of an iterated conditional expectation:  

𝐸[𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0)|𝑀%] = 𝐸{𝐸[𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0)|𝑪𝒊]|𝑀%}, 

 
3 Equivalently, the goal is also to approximate what is called the Conditional Average Treatment Effect function that 
includes all modifiers there are (Künzel et al. 2019:4157). 
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meaning that the effect modification estimand is a conditional expectation of the individual-level 

effect heterogeneity estimand, aggregating the latter over all modifiers except for 𝑀%.  

 

There has been a fast growing number of methods that target the estimand in (2). They 

optimize the accuracy of individual-level predictions and directly output predictions at the 

individual level as opposed to the aggregate level of substantive interest. The causal forests, a 

variant of Generalized Random Forests (GRF), (Athey, Tibshirani, and Wager 2019; Athey and 

Wager 2019) is a prominent example in this category and has been applied in multiple social 

science settings (Brand et al. 2021; Daoud and Johansson 2019; Knittel and Stolper 2019; Tiffin 
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2019). Other examples include the R-learner (Nie and Wager 2020), the X-learner (Künzel et al. 

2019), and the Modified Covariate Method (Chen et al. 2017; Tian et al. 2014). In fact, there were 

already at least 23 types of ML methods that target treatment effects at the individual level as of 

2018 (Knaus et al. 2021) and the literature is still growing very rapidly. These methods tend to 

perform well for the task they explicitly target, i.e., predicting treatment effects for individuals, 

hence it is obvious that they are very promising for practical applications such as personalized 

recommendation and precision medicine. However, when the goal is to estimate and test effect 

modification, they become practically cumbersome and statistically inefficient, as they do not 

directly summarize effect heterogeneity along key dimensions of interest, nor do they allow for 

directly comparing treatment effects at different values of the modifier. In order to obtain effect 

modification estimates using these methods above, one has to manually average over modifiers in 

𝑪𝒊 but not in 𝑀%, which is an unnecessary detour step and essentially wastes statistical power at 

the more granular level that is not of theoretical interest. This type of averaging procedure is indeed 

proposed by Lechner (2018) and Athey and Wager (2019) based on different specific 

implementations (for a sociological application, also see Liu 2021). However, as our simulation 

study will demonstrate, using the Augmented Inverse Propensity Weighting (AIPW) procedure in 

Athey and Wager (2019) to aggregate individual-level estimates to the group level is less efficient 

than the ML-SS regression that we propose and that directly estimates effect modification.  

Apart from effect modification and individual-level effect prediction, there is yet another 

goal that may interest empirical researchers. Researchers have also employed ML methods to 

discover important effect modifiers that are previously ignored and may lead to novel insights 

about effect heterogeneity (Brand et al. 2021). For example, causal forests output a variable 

importance metric that can be used for this purpose.  
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In summary, of the three approaches for heterogeneity in treatment effect, individual-level 

effect prediction and important modifier discovery are exploratory analyses and do not follow the 

hypothesis-testing logic. The effect modification estimand, on the other hand, is fundamentally 

confirmatory, hence requiring a pre-specified modifier of interest and statistical testing for it. For 

effect modification, we need a more well-tailored method.  

4. An ML-based Sample Splitting Regression Model for Effect Modification 

 We introduce a new ML-based Sample Splitting (ML-SS) regression estimator that targets 

effect modification by design. This new estimator extends the Groupwise Inference Method 

recently developed by Park and Kang (2019) to broader types of modifiers and integrates the 

Groupwise Inference Method with familiar practices in sociology with survey data. The strength 

of ML-SS regression lies in leveraging ML to nonparametrically control for confounders while 

focusing on parametrized modifiers based on theoretical hypotheses in the familiar and 

interpretable structure of a regression model.  

 Causal identification of effect modification using ML-SS regression depends on three 

identifying assumptions that routinely appear in causal inference on the familiar ATE (eg. Morgan 

and Winship 2014): 

1) Conditional ignorability assumption: 

𝑌%(𝑊% = 1), 𝑌%(𝑊% = 0) ⊥ 𝑊%|𝑿𝒊. 

The conditional ignorability assumption states that conditional on a vector of pre-treatment 

control variables 𝑿𝒊 , 𝑊%  is statistically independent of the two potential outcomes of 𝑌%  under 

assignment of 𝑊% = 1 and 𝑊% = 0. Roughly speaking, the conditional ignorability assumption is 

satisfied when there is no unobserved confounder that influences both treatment assignment and 

potential outcomes.  



 

 

11 

2) Consistency assumption: 

𝑌% = 𝑌%(𝑊% = 0) + [𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0)]𝑊%. 

The consistency assumption states that the observed outcome equals the potential outcome 

of the treatment that was actually assigned. Substantively, this means the hypothetical intervention 

does not change the causal mechanism linking 𝑊% and 𝑌%.  

3) Positivity assumption: 

0 < 𝑃(𝑊% = 1|𝑿𝒊 = 𝒙) < 1	𝑓𝑜𝑟	𝑎𝑙𝑙	𝒙. 

The positivity assumption requires that for all values of the confounder, the DGP does not 

mechanically rule out the possibility of being assigned to either treatment or control. This makes 

sure the expected potential outcomes 𝐸[𝑌(𝑊% = 1)|𝑿𝒊 = 𝒙]  and 𝐸[𝑌(𝑊% = 0)|𝑿𝒊 = 𝒙]  are 

sensible for all 𝒙.4  

Under these identifying assumptions, we can apply ML-SS regression to effect 

modification estimation, which involves two steps. In the first step, the original sample is split into 

two subsamples. In the first subsample, ML-SS fits two nuisance functions, 𝐸(𝑌%|𝑿𝒊)  and 

𝐸(𝑊%|𝑿𝒊), 5  using any ML algorithm whose fitted function converges to the true conditional 

expectation function (CEF) in large sample. These two CEFs are called nuisance functions because 

they are only necessary for controlling confounders 𝑿𝒊 and do not capture what is of interest, 

namely effect modification. Next, our estimator predicts 𝐸G(𝑌%|𝑿𝒊)  and 𝐸G(𝑊%|𝑿𝒊)  for each 

individual in the second subsample using the model fitted in the first subsample. Then the roles of 

first and second subsamples are switched so that every data point is used to both fit the nuisance 

functions and to predict 𝐸G(𝑌%|𝑿𝒊) and 𝐸G(𝑊%|𝑿𝒊).  

 
4 Technically, the positivity assumption is also needed for the design matrix in our final regression model to be 
invertible however we define ℎ(𝑀!).  
5 𝐸(𝑊!|𝑿𝒊) is the propensity score.  
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After estimating 𝐸G(𝑌%|𝑿𝒊) and 𝐸G(𝑊%|𝑿𝒊) for every data point in the sample, the estimator 

proceeds to the second step, which is fitting a regression model with outcome and treatment 

residualized against the nuisance functions. The regression model in the second step is as follows: 

𝑌% − 𝐸G(𝑌%|𝑿𝒊) = H𝑊% − 𝐸G(𝑊%|𝑿𝒊)Iℎ(𝑀%) + 𝜖% , (3) 

which is a model regressing the residualized 𝑌%  on the interaction term between ℎ(𝑀%)  and 

residualized 𝑊% , where ℎ(𝑀%)  is a parametrized characterization of effect modification. 6  In 

practice, the researcher needs to specify a parametric form for ℎ(𝑀%), then the regression model 

can be simply fitted using any standard statistical package, such as the “regress” command in Stata 

or the “lm” command in R. If 𝑀%  is a discrete variable, it is natural to use a groupwise 

parametrization: 

ℎ(𝑀%) = ∑ 𝜏'𝐼'(𝑀%)(
')! , 

where 𝐼'(𝑀%)  is an indicator for each value of 𝑀%  and 𝜏'  captures the groupwise ATE 

corresponding to group 𝑔 . Therefore, the vector of 𝜏' , and the difference between the 𝜏'  for 

different groups g, directly capture groupwise effect modification. In the regression model in (3), 

𝜏' are just the coefficients on the interaction terms between 𝐼'(𝑀%) and H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I.  

If the modifier 𝑀% is originally a continuous variable, it will be necessary to parametrize 

ℎ(𝑀%). Depending on one’s belief about the true DGP, one can opt to discretize 𝑀%  into, for 

example, quantile groups and use the groupwise parametrization as above. Alternatively, it is 

possible to retain the continuous nature of 𝑀% and use, for example, a linear parametrization for 

ℎ(𝑀%): 

ℎ(𝑀%) = 𝜏* + 𝜏+𝑀%, 

 
6 Residualization eliminates the intercept in the regression.   
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where 𝜏* is a treatment effect constant indicating the baseline treatment effect when 𝑀% =

0 and 𝜏+ is a treatment effect slope on 𝑀% showing show the treatment effect linearly increases or 

decreases with 𝑀%. Concretely, 𝜏* is the coefficient on the “main effect” of H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I and 

𝜏+ is the coefficient on the interaction term between 𝑀%  and H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I in the regression 

model in (3). Of course, for a continuous modifier, there are other possible parametrizations that 

may involve recentering or polynomials. The original Groupwise Inference Method (Park and 

Kang 2019) only focuses on the groupwise parametrization and in this paper, we extend the 

estimator to accommodate any arbitrary parametrizations.  

It is important to parametrize ℎ(𝑀%) in a way that captures the true treatment effect as a 

function of 𝑀% . ML-SS regression will exactly achieve its theoretically guaranteed properties 

(detailed below) when ℎ(𝑀%)  is the same as the true conditional treatment effect function. 

Although this may appear a strong requirement, one can always conduct diagnostics for the chosen 

parametrization using the residuals from the regression model in a manner analogous to the 

diagnostics in the conventional regression setting. This is due to the regression formulation of the 

ML-SS regression. We will showcase the diagnostics in the empirical application.  

The formulation in (3) reveals the nature and strength of ML-SS regression, which takes a 

unique approach to estimate effect modification. ML-SS regression estimates the nuisance 

components of the model nonparametrically, hence providing much more flexibility and ensuing 

credibility in the controlling strategy for confounders than the conventional regression model. At 

the same time, by subtracting the predicted values of the nuisance components, this estimator 

isolates the quantity of interest in ℎ(𝑀%) and estimates it in the form of a pre-specified parametric 

function. 7 As a result, ML-SS regression gains advantageous statistical power relative to ML-

 
7 This maneuver is called Robinson (1988) Transformation. 
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based methods that do not prioritize the pre-specified 𝑀%  by design and need to aggregate 

individual level predictions to the group level. In fact, when 𝜖%  in (3) is homoscedastic, the 

estimates reach the semiparametric efficiency bound (Park and Kang 2019). Therefore, ML-SS 

regression is a unique combination of the theory-driven and data-driven approaches, finding a 

middle ground between the conventional regression estimator and ML-based methods for 

individual effect prediction. 

ML-SS regression has desirable theoretical properties including consistency and 

asymptotic normality. Park and Kang (2019) originally prove these properties specifically for the 

case of groupwise parametrization. But they be extended to cover arbitrary parametrization of 

ℎ(𝑀%) . In Appendix A, we sketch a proof of the consistency of the estimator with any 

parametrization of effect modification. Specifically, under aforementioned identifying 

assumptions and correct specification of ℎ(𝑀%), ℎG(𝑀%) estimated using the OLS model in (3) is 

consistent for 𝐸[𝑌%(𝑊% = 1) − 𝑌%(𝑊% = 0)|𝑀%], the effect modification estimand.  

As for inference, the estimates of 𝜏̂, namely 𝜏̂', 	𝜏̂* for groupwise parametrizations or 𝜏̂+ 

for linear parametrization are asymptotically normally distributed (Park and Kang 2019). 

Therefore, standard errors in large samples are analytically derived, and the construction of 

confidence intervals is straightforward using the standard normal quantile function. The standard 

errors for the coefficients in our estimator can be consistently estimated using Huber-White 

heteroskedasticity-robust standard errors for linear regression models: 

For groupwise parametrization: 

𝑠. 𝑒.S ,# = T
∑ 𝜖%̂"H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I

"𝐼'(𝑀%)%

U∑ H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I
"𝐼'(𝑀%)% V

" for	each	𝑔. 

For linear parametrization: 
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𝑠. 𝑒.S ,$ = T
∑ 𝜖%̂"H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I

"
%

U∑ H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I
"

% V
" for	treatment	effect	constant	𝛾- , 

𝑠. 𝑒.S ,% = T
∑ 𝜖%̂"H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I

"
𝑀%
"

%

U∑ H𝑊% − 𝐸G(𝑊%|𝑿𝒊)I
"𝑀%

"
% V

" for	treatment	effect	slope	𝜏- , 

where 𝜖%̂ = 𝑌% − 𝐸G(𝑌%|𝑿𝒊) − H𝑊% − 𝐸G(𝑊%|𝑿𝒊)IℎG(𝑀%). The 1 − 𝛼 confidence interval for the point 

estimates can be easily constructed as  

𝜏̂ ± 𝑧./"𝑠. 𝑒.S , 

where 𝑧./" is the 1 − 𝛼/2 quantile of the standard normal distribution. Correspondingly, the p 

value for the null hypothesis that the point estimate equals to zero is 2 × U1 − Φj |,1|
+.3.4
kV, where Φ 

is the cumulative distribution function of standard normal distribution. To construct confidence 

interval for the difference between two groupwise ATEs when ℎ(𝑀%) is groupwise-parametrized, 

the following can be used 

l𝜏̂')! − 𝜏̂')"m ± 𝑧.
"
n𝑠. 𝑒.S "

')!+ 𝑠. 𝑒.S "
')", 

and the p value under the null hypothesis that the groupwise difference equals to zero is 

2 × H1 − Φl|𝜏̂'| o𝑠. 𝑒.S "
')!+ 𝑠. 𝑒.S "

')"⁄ mI. 

There are some other methods that provide flexibility via non- or semi-parametric 

estimation and also privilege a low dimensional set of modifiers chosen based on substantive 

reasons. Blackwell and Olson (2021) apply the post-double-selection Lasso developed by Belloni, 

Chernozhukov, and Hansen (2014b, 2014a) to the study of effect modification. Zeldow et al., 

(2019) adapt Bayesian Additive Regression Trees (BART) to effect modification and propose to 

parametrically estimate a linear interaction effect between the treatment and the modifier and 
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nonparametrically fit the baseline outcome as a function of control variables. Hainmueller et al., 

(2019) introduce a kernel estimator developed by Li and Racine (2010), which automates the 

fitting of functions in a smooth manner. The bandwidths of the kernels are automatically selected 

via cross-validation. Abrevaya et al., (2015) also develop a kernel estimator to flexibly fit the 

relationship between a continuous modifier and treatment effects using nonparametric or 

semiparametric estimation in a first step.  

The methods of Blackwell and Olson (2021) and Zeldow et al., (2019) are in the same spirit 

as ML-SS regression since they also require researcher-specified parametrization for the treatment 

effect function. But these methods are respectively based on one specific algorithm (LASSO and 

BART, respectively), hence not enabling the researcher to leverage the full range of ML algorithms 

like our estimator does. Different ML methods are adept at fitting different underlying functions 

in terms of the presence of irrelevant features, nonlinearities, and interactions (Athey and Imbens 

2019). ML-SS regression allows the researcher to choose any ML method for the estimation of the 

nuisance components in the model as they see fit. The kernel methods of Hainmueller et al., (2019) 

and Abrevaya et al., (2015), on the other hand, take a data-driven approach regarding the 

specification of the effect modification function for continuous modifiers. Consequently, their 

methods do not allow succinct summarization of effect modification in a parametric form, nor 

could statistical tests and confidence intervals be constructed. Nevertheless, they could 

complement the ML-SS regression as exploratory tools in preparation for the confirmatory 

analysis performed by the ML-SS regression.  

5. Simulation Study 

We conduct a simulation study to compare the ML-SS regression relative to both 

conventional regression models and causal forests that target individual-level effect prediction. 
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We also investigate whether the relative advantage of the ML-SS regression varies by the 

covariance between confounders.   

In each iteration, we first generate 5500 independent samples of 𝑋!,	𝑋!, 𝑋#, 𝑋$, 𝑋5, 𝜖6, 

and 𝜖, following multivariate normal distribution,  
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The sample size is to imitate the empirical application in this paper, and we vary Q to be 0.2, 0.4, 

0.6, and 0.8 in order to capture variation in the performance of the estimators. Then, we generate 

the outcome, 𝑌, and the treatment, 𝑊, according to the rules below. We make the data generating 

process for confounding highly nonlinear to showcase the flexibility of ML-based estimation 

compared with OLS with restrictive functional form.  

𝑌(𝑊 = 0) = arctan(𝑋!) + 𝑋!𝑋" + 𝐼(𝑋" < 2) + 𝐼(𝑋" >= 4) − 𝑋#" + o|𝑋$| +

exp(− 𝑒𝑥𝑝(𝑋5)) + 𝜖6. 

𝑊 ∈ (0,1) is drawn from a binomial distribution with 

𝑝 = 1/�1 + expH1 − 0.2 ∙ l𝑋!𝑋" + 𝐼(𝑋" < 2) + 𝐼(𝑋" >= 4) + 𝑋#" +o|𝑋$| +

exp(− 𝑒𝑥𝑝(𝑋5))mI�. 

Finally, the treatment effect and the observed outcome are generated so that the treatment effect 

varies systematically only with 𝑋# and randomly across individuals: 

𝜏 = 𝐼(𝑋# ≥ 1.5) − 𝐼(𝑋# < 1.5) + 𝜖,, 

𝑌 = 𝑌(𝑊 = 0) +𝑊𝜏. 
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For effect modification by 𝑋#, we fit four models. All of them have the correct treatment 

effect function, i.e., the group membership specification is correct in all models. Two of them are 

conventional OLS models, one with linear additive specification for confounders (all five X 

variables), as is often the case in practice, and the other with the correct specification for 

confounders, which is implausible in actual research. The OLS model with linear specification 

takes this form: 

𝑌 = 𝛼 + 𝛽!𝑋! + 𝛽"𝑋" + 𝛽#𝑋# + 𝛽$𝑋$ + 𝛽5𝑋5 + 𝛾𝐼(𝑋# ≥ 1.5)𝑋# + 𝜉. 

And the OLS model with correct specification is: 

𝑌 = arctan(𝑋!) + 𝑋!𝑋" + 𝐼(𝑋" < 2) + 𝐼(𝑋" >= 4) − 𝑋#" + o|𝑋$| +

exp(− 𝑒𝑥𝑝(𝑋5)) + 𝛾𝐼(𝑋# ≥ 1.5)𝑋# + 𝜉. 

We also fit ML-SS regression and causal forests. For the nuisance functions in ML-SS regression, 

we use an ensemble of Random Forests and Single Layer Neural Networks, both of which are used 

in the empirical application of this paper and will be explained in that section. And the ensemble 

weights are estimated using a generalized linear model. In the case of causal forests, we aggregate 

individual-level effect predictions to group level via AIPW.  

In Table 1, we report the average bias, the empirical standard error, and the empirical 

coverage rate of 95% confidence interval for each of the four models over 500 iterations of Monte 

Carlo simulation. Bias in each simulation iteration is measured as the square root of the mean 

squared errors for the two treatment effect groups defined in terms of 𝑋# , namely, 

�
7,1&'().+8,&'().+9

,
:7,1&'-).+8,&'-).+9

,

"
�

)
,
. As for empirical standard error, we report the square root of 

the mean empirical variances of the two treatment effect groups, �;<=
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the rate of confidence interval coverage is the average (over groups) proportion of simulation 

iterations where the estimated confidence interval by each method covers the true treatment effect.  

 

Table 1. Performance of the models in the simulation study  

 Confounders’ 

covariance    

ML-SS 

regression 

OLS 

linear 

OLS correct causal 

forests 

Average bias 0.2 0.043 1.130 0.018 0.061 

 0.4 0.040 0.819 0.018 0.052 

 0.6 0.038 0.402 0.019 0.047 

 0.8 0.037 0.288 0.019 0.065 

Empirical standard error 0.2 0.034 0.082 0.017 0.033 

 0.4 0.031 0.081 0.016 0.033 

 0.6 0.032 0.070 0.017 0.039 

 0.8 0.032 0.060 0.017 0.086 

Confidence interval coverage   0.2 0.956 0 0.92 0.928 

 0.4 0.954 0 0.922 0.906 

 0.6 0.926 0 0.916 0.882 

 0.8 0.938 0.042 0.912 0.872 

 

In Table 1, the two OLS models are two extremes on the spectrum of performance. The 

OLS model with linear specification for confounders always produces very large biases, leading 

to confidence intervals that miss the true effects in all or most iterations, depending on the value 

of confounders’ covariance. This reflects how serious the misspecification bias can become even 
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if the researcher controls for all the necessary confounders in some way. On the other hand, the 

OLS model with correct specification for confounders has the lowest biases and standard errors. 

However, the correct model is infeasible in practice as researchers rarely know what the true 

functional forms for confounders are.  

Estimates of ML-SS regression always have small biases relative to the true ATEs, which 

are -1 and 1 in the two groups. And the coverage rate of its estimated confidence interval is close 

to the nominal coverage rate of 95% with all covariance values, fulfilling the estimator’s 

theoretical property. Despite the presence of complicated nuisance functions, ML-SS regression 

still manages to fit the functions well enough and reduce bias substantially relative to the OLS 

model with linear specification. In practice, the flexible fitting of nuisance functions in the ML-

SS approach allows researchers to remain agnostic about confounders’ functional forms while 

achieving consistent estimation. 

We also compare the ML-SS method with the popular causal forests method (Athey et al. 

2019). With only one exception where causal forests have very slightly lower empirical standard 

error, our method outperforms causal forests in having 19% to 43% lower biases, 6% to 63% lower 

empirical standard errors, and confidence intervals that are 65% to 91% closer to the theoretical 

coverage rate. Using a different simulation design, Park and Kang (2019) also show that the ML-

SS regression has higher statistical power in testing the groupwise differences in treatment effect 

compared with causal forests. These results confirm that by targeting a prespecified low-

dimensional treatment effect function, the ML-SS regression is more efficient than methods aiming 

at individual-level predictions.  

Comparing the ML-SS regression with causal forests across the confounder covariances, 

we notice that the empirical standard errors and interval coverage rates of causal forests deteriorate 
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as the covariance increases, while ML-SS regression maintains stably good performance. 

Intuitively, we suspect this is because non-focal confounders/modifiers become more predictive 

of individual-level treatment effects as the covariance increases, simply by virtue of their stronger 

covariance with the focal modifier (𝑋#, in this case). Hence, targeting individual-level treatment 

effects, the statistical power of causal forests gets more diluted by non-focal modifiers when they 

become more strongly correlated. The practical implication of this simulation study is that the ML-

SS regression should generally be preferred for effect modification estimation, but especially when 

the confounders are highly correlated with the focal modifier.  

6. Empirical application 

We use an empirical application to showcase how researchers can apply the ML-SS 

regression in a typical study in sociology. Using National Longitudinal Survey of Youth 1979 

(NLSY79), we investigate modification of the effect of a college degree on adult income along the 

dimensions of gender and income origin. Studying college effect heterogeneity provides insights 

about higher education and inform the influence of potential policies that could affect the college 

admission process (Brand et al. 2021; Brand and Xie 2010; Forster, van de Werfhorst, and Leopold 

2021; Heckman, Humphries, and Veramendi 2018). In addition, the pattern of effect modification 

also implies whether college education serves as an equalizer that reduces inequality in terms of 

the focal modifier. In particular, if college is an equalizer, then its effect should be higher for more 

disadvantaged students. The equalizer role of college with regard to income origin has been 

extensively examined with mixed findings (Fiel 2020; Hout 2012; Karlson 2019; Torche 2011; 

Zhou 2019).  
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We measure the outcome, adult income, by the percentile rank, in order for it to reflect 

stabilized and overall economic well-being. 8 of family income averaged over five waves of survey 

when the respondent is 35 to 44 years old and divided by the square root of family size. The 

treatment variable is a binary indicator of whether the respondent graduates from college by the 

age of 31. We constructed 34 control variables 9 for the nuisance functions 𝐸G(𝑌%|𝑿𝒊) and 𝐸G(𝑊%|𝑿𝒊), 

which are expanded to 68 after factor variables are binarized and variables with very low variances 

are dropped. All control variables originally have less than 20% missing values.  

For effect modification by gender, we use a groupwise parametrization, estimating 

groupwise ATE for men and women. For income origin, we constructed a percentile rank measure 

based on the average of the respondent’s family incomes in the first three waves of the survey 

(1979, 1980, and 1981) divided by the square root of the family size. And for effect modification 

by income origin, we use both a linear parametrization using the percentile rank measure and a 

groupwise parametrization by quartile groups. In linear modification by income origin, since 

income origin and income destination are both percentile ranks, the modification estimates have 

the interpretation of changes in the rank-rank slope. We will test the appropriateness of these 

parametrizations using residual diagnostics. 

We only use the subset of the data where respondents are between 14 to 17 years old at the 

time of the baseline survey so that we can reasonably assume income origin is measured prior to 

 
8 Both income origin percentile rank and destination percentile rank are constructed on the basis of weighted sample 
and income values in each survey year are harmonized to the dollar value in 2019 using personal consumption 
expenditures index. 
9 These control variables are drawn with the goal of covering as many plausible confounders as possible and in 
reference to prior publications using NLSY79 to study the effect of college education. 
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treatment, i.e., the earliest age the vast majority of respondents might have a chance to graduate 

from college. 10 The resulting sample size is 5583. 

We use three ML algorithms to fit the nuisance functions for the ML-SS regression, Elastic 

Net, Random Forests, and Neural Networks. Elastic Net 11 is a data-adaptive synthesis of LASSO 

and Ridge regressions. It operates in a generalized linear setting and selects important covariates 

based on regularizing factors that penalize the number and size of coefficients. Random Forests is 

an ensemble method based on pooling many “trees”, each of which fits the data by recursively 

splitting the covariate space into “leaves”. And tree pruning is used to prevent over-fitting. Neural 

Networks flexibly combine the original covariates into many hidden nodes and further combine 

the generated hidden nodes into another set of nodes. We use Single Layer Neural Networks which 

is often enough to approximate fairly complicated functions, although multilayer neural networks 

may further improve the performance at expense of computational time.  Introductions to these 

methods aiming at a social science audience can be found in Zeng (1999), Montgomery and 

Olivella (2018), and Athey and Imbens (2019). All these methods can be used for both regression 

and classification tasks, corresponding to estimating 𝐸G(𝑌%|𝑿𝒊) and 𝐸G(𝑊%|𝑿𝒊), respectively. In our 

application, the method applied to 𝐸G(𝑌%|𝑿𝒊) and to 𝐸G(𝑊%|𝑿𝒊) are always the same, but it is entirely 

at researchers’ discretion to use either the same or different methods for each of them.  

ML-SS regression can be combined with various axillary tools common in data analysis in 

sociology, such as weighting, clustering, and multiple imputation. To illustrate how to integrate 

ML-SS regression with these tools, we use multiple imputation with five imputed datasets to deal 

 
10 Income origin is measured by a three-year average and the last survey year contributing to that average is 1981, 
recording family income in 1980, and the oldest people in our sample are 18 years old in 1980.  
11 Since Elastic Net does not generate interaction terms itself (unlike Random Forest and Neural Network), we 
manually create all pairwise interactions between all covariates and squared terms of all continuous covariates and 
then drop those with very low variances, resulting in over one thousand covariates being fed into the Elastic Net (the 
number of covariates ranges from 1035 to 1045 over multiply imputed samples).  
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with missing values in our analysis. We also weight the sample with custom survey weights of 

NLSY79. Similarly, empirical practitioners may adjust for clustering and other structures in 

residuals straightforwardly when using the ML-SS regression.   

Pooling results from multiply imputed datasets, the final point estimates and their standard 

errors are calculated as follows: 

𝜏̂?,AB =
1
𝑀 � 𝜏̂?

(D)
A

D)!

 

, 𝜏̂?
(D) is the point estimate of 𝜏', 𝜏*, or 𝜏+ using ML method 𝑘 in the 𝑚th imputed sample. 

𝑀  is the number of imputed datasets. The final estimate is just an average of the groupwise 

estimates over imputed samples. The post-imputation standard error estimate is 

𝑠. 𝑒.S AB =
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𝑠. 𝑒.S "
?
(D) is the squared standard error of the point estimate using ML method 𝑘 in the 𝑚th imputed 

sample. 𝜏̂?
(D) and 𝜏̂?,AB are defined as above.  

The estimation of point estimates and standard errors can also easily accommodate survey 

weights. Combining weight specification with robust standard error in off-the-shelf statistical 

packages will easily enable researchers to do so. If multiple imputation is employed in conjunction 

with, 𝜏̂?
(D) and 𝑠. 𝑒.S "

?
(D) will be replaced by weighted estimates in each imputed sample.  

We present results on effect modification by gender in Figure 2. Apart from the ML-SS 

regression implemented via the three chosen ML algorithms, we also include results from a 

conventional OLS model where control variables are conditioned on linearly and an interaction 
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term between gender and college completion is used to calculate groupwise ATEs. All 

implementations of our estimator, as well as the conventional model, agree that the college effect 

on adult income is slightly higher for men than for women. In this case, the conventional model 

appears to produce fairly similar results to those of our estimator. However, as we have shown 

using simulation, this is not always true, and one would not know how much the results of the 

conventional model are tied to its restrictive functional form had they not also made use of the 

flexible ML-based method.  
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Figure 3 show effect modification by income origin in both groupwise parametrization and 

linear parametrization. 12 The three implementations of ML-SS regression agree that the third 

income origin quartile group has a slightly stronger causal effect of college than other quartile 

groups and correspondingly, there is a slightly upward slope on income origin percentile. On the 

contrary, the conventional model has the third quartile group ranked as the lowest in effect and 

hence producing a slightly downward slope on income origin percentile. Therefore, there is some 

evidence that the conventional model may suffer from misspecification bias due to its restrictive 

functional form. In other words, although the variables as input are the same for conventional 

regression and ML-SS regression, the use of ML algorithms does make a difference by adaptively 

specifying how they are modelled.  

As can be seen in both Figure 2 and Figure 3, college completion has a strong positive 

effect for all groups we consider. Across groups and ML algorithms employed in the ML-SS 

 
12 The confidence interval for the linear parametrization is calculated as 𝜏̂.𝑴! ± 𝑧//1.𝑴!

.Σ0𝑴!, where Σ0 =

2∑ [𝑊! − 𝐸0(𝑊!|𝑿𝒊)]1[𝑴!𝑴!
.]! 7232∑ 𝜖!̂1[𝑊! − 𝐸0(𝑊!|𝑿𝒊)]1[𝑴!𝑴!

.]! 72∑ [𝑊! − 𝐸0(𝑊!|𝑿𝒊)]1[𝑴!𝑴!
.]! 723, and 𝑴! =

(1,𝑀!)., 𝜏̂ = (𝜏4 , 𝜏5).. 
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regression, the lowest groupwise estimate is an 8.6 percentile increase in adult income and the 

highest estimate is 13 percentiles. The linear parametrization of effect modification by income 

origin also illustrates that across the distribution of income origin, everybody benefits from college 

degree by about 10 percentiles in adult income. In particular, even for the neural network estimates, 

where the slope is the steepest, individuals of the highest income origin only have a treatment 

higher by 2.2 percentiles than that of individuals of the lowest income origin.    

 Table 2 shows all statistical tests we perform based on the estimates of our estimator. Since 

for each ML algorithm, we perform 15 tests, we adjust the threshold of statistical significance to 

be . 05/15 = 	 .0033 by a Bonferroni correction in order to obtain a conventional .05 Family-Wise 

Error Rate. All the groupwise ATEs and the constant treatment effect for linear effect modification 

by income origin are significantly different from 0 across algorithms even after the Bonferroni 

correction, confirming the result that college degree causally boosts income across modifier values 

considered in this study. Meanwhile, all groupwise differences and the treatment effect slope on 

income percentile are not significantly different from zero, suggesting that evidence is scarce for 

effect modification along these dimensions. The non-significance, however, is highly informative, 

given the nonconclusive findings of previous research (see Abadie 2020). Substantively, our 

findings lend strong support to the absence of modification, tipping the balance in the literature.   

 In summary, the treatment effect of college degree on adult earnings does not appear to be 

modified by gender and income origin. From gender and income origin perspectives, everybody 

gains rather equally from attending and graduating college in the United States. In agreement with 

Zhou (2019), Fiel (2020), and Forster et al. (2021), our finding also casts doubt on the great 

equalizer role of college, which would require higher treatment effect among disadvantaged groups 

(cf. Brand et al. 2021; Torche 2011). If anything, high-income-origin is associated with a slightly 
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higher return to college education. However, it is important that our findings do not rule out the 

possibility that college effect may be modified by some other variables we do not examine here. It 

is also noteworthy that the specific choice of ML algorithm for the nuisance components of the 

model do not appear to matter substantially for the results. In addition, as suggested by the 

confidence intervals in Figure 2 and Figure 3, the much higher level of functional flexibility 

afforded by our ML-based estimator does not come at much cost of efficiency and statistical power 

compared with the conventional regression model. 13 Finally, the second step of ML-SS regression 

is just a regression model with residualized 𝑌% and 𝑊%, which enables us to use residual plots to 

detect incorrect specification of the treatment effect function ℎ(𝑀%). Based on the plots we present 

in Appendix B, both the linear and groupwise parametrizations of the effect modification by 

income origin seem to be valid. 14  

 

Table 2. P Values for Statistical Tests for the Results of the ML-SS Regression 

H0 Elastic 

Net 

Random 

Forest 

Neural 

Network  

H0 Elastic 

Net 

Random 

Forest 

Neural 

Network  

Male=0 <.0001 <.0001 <.0001 Q1-Q2=0 .921 .801 .951 

Female=0 <.0001 <.0001 <.0001 Q1-Q3=0 .614 .520 .729 

Male-Female=0 .685 .772 .687 Q1-Q4=0 .914 .729 .846 

Origin Q1=0 .0020 .0014 .0009 Q2-Q3=0 .545 .367 .683 

 
13 The conventional OLS model has smaller standard errors because it imposes more structure on the functional form. 
However, as is clear in the case of modification by income origin, the functional form imposed by the conventional 
model leads to some misspecification bias. Briefly, the way ML-SS regression tackles the bias variance dilemma 
makes it have smaller specification error while losing a little efficiency, when compared with the conventional OLS. 
14 We do not show the plots for effect modification by gender because there is not a continuous raw measure against 
which the residuals can be plotted. But for any modifier, the same diagnostics can also be used to detect omitted 
modifiers when the plot is against suspected modifiers that are not included in the model.  
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Origin Q2=0 .0009 .0020 .0010 Q2-Q4=0 .843 .907 .801 

Origin Q3=0 <.0001 <.0001 <.0001 Q3-Q4=0 .711 .330 .903 

Origin Q4=0 .0023 .0151 .0016 Origin Constant=0 .003 .002 .003 

    Origin Slope=0 .754 .975 .706 

Note: bold values are smaller than the threshold of .05 Family-Wise Error Rate under Bonferroni correction. 

 

7. Conclusion 

ML methods may help sociologists who are interested in the estimation of effect 

modification by controlling for confounders in an automated manner, providing principled 

flexibility in model specification. However, despite the presence of numerous ML-based methods 

that address effect heterogeneity, they in fact target the estimation of individual-level treatment 

effects rather than effect modification by substantively important or interesting variables that 

dominates the sociological approach to effect heterogeneity. In this article, we introduced the ML-

based Sample Splitting regression, which is adopted from the Groupwise Inference Method (Park 

and Kang 2019), which corresponds to the groupwise parametrization in this article. And we 

extend the use of it to other parametrizations of effect modification and particularly show that the 

linear parametrization which, in some cases, lead to familiar interpretation of the results such as 

changes in rank-rank slope. We also further enhance the applicability of the estimator by 

integrating it with multiple imputation and survey weights.  

As both the simulation study and the empirical application show, our estimator improves 

upon the conventional regression for effect modification by controlling for the confounders 

nonparametrically without compromising much efficiency. Compared with another ML-based 

method for effect heterogeneity, causal forests, the ML-SS regression also has superior 
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performance, especially when the covariance between other confounders and the focal modifier is 

high. Thus, the ML-SS regression is flexible, efficient, easy to combine with common tools in 

empirical analysis, and directly suitable for research on effect modification. On the other hand, 

although the ML-SS regression substantially relaxes functional form assumptions regarding the 

confounder-outcome relationship relative to the conventional regression, it still imposes a 

functional form to the relationship between the modifier and the treatment effect. Therefore, its 

optimal use is when the researcher is willing to estimate the effect modification pattern as a 

parametrized function. 

 

 

Appendix A 

We sketch a proof for the consistency of the final OLS model 

𝑌% − 𝐸G(𝑌%|𝑿𝒊) = H𝑊% − 𝐸G(𝑊%|𝑿𝒊)Iℎ(𝑀%) + 𝜖% . (𝐴1) 

For a more rigorous and complete proof of the consistency and asymptotic normality of the 

estimator, see the appendix of Park and Kang (2019). 

Consider the infeasible regression model (𝐴2)  where the unknown 𝐸(𝑌%|𝑿𝒊)  and 

𝐸(𝑊%|𝑿𝒊) are present. We will first show the unbiasedness of the infeasible model for ℎ(𝑀%). 

𝑌% − 𝐸(𝑌%|𝑿𝒊) = [𝑊% − 𝐸(𝑊%|𝑿𝒊)]ℎ(𝑀%) + 𝜖% . (𝐴2) 
By consistency assumption,  

𝑌% = 𝑌(0)% + 𝜏%𝑊% , (𝐴3) 

where 𝜏% = 𝑌%(1) − 𝑌%(0). Taking expectation conditional on the confounder vector on both sides 

of (𝐴3), we get  

𝐸(𝑌%|𝑿𝒊) = 𝐸[𝑌(0)%|𝑿𝒊] + 𝐸(𝜏%𝑊%|𝑿𝒊).  

By the conditional ignorability assumption,  



 

 

31 

𝐸(𝑌%|𝑿𝒊) = 𝐸[𝑌(0)%|𝑿𝒊] + 𝐸(𝜏%|𝑿𝒊)𝐸(𝑊%|𝑿𝒊). (𝐴4) 

Note that by the positivity assumption,	𝐸(𝜏%|𝑿𝒊) is well defined for all 𝑿 values. 

Subtracting (𝐴4) from (𝐴3) on both sides, 

𝑌% − 𝐸(𝑌%|𝑿𝒊) = 𝑌(0)% − 𝐸[𝑌(0)%|𝑿𝒊] + 𝜏%𝑊% − 𝐸(𝜏%|𝑿𝒊)𝐸(𝑊%|𝑿𝒊) 

= 𝑌(0)% − 𝐸[𝑌(0)%|𝑿𝒊] + 𝐸(𝜏%|𝑿𝒊)𝑊% − 𝐸(𝜏%|𝑿𝒊)𝐸(𝑊%|𝑿𝒊) + [𝑊%𝜏% −𝑊%𝐸(𝜏%|𝑿𝒊)] 

= 𝐸(𝜏%|𝑿𝒊)[𝑊% − 𝐸(𝑊%|𝑿𝒊)] + 𝑌(0)% − 𝐸[𝑌(0)%|𝑿𝒊] + [𝑊%𝜏% −𝑊%𝐸(𝜏%|𝑿𝒊)]. 

Then we parametrize 𝐸(𝜏%|𝑿𝒊) by ℎ(𝑀%), where 𝑀% ∈ 𝑿𝒊 is one single modifier of interest. 

In the case of groupwise parametrization, ℎ(𝑀%) = ∑ 𝜏'𝐼'%(𝑀%)(
')! , and in the case of linear 

parametrization for a continuous 𝑀%, ℎ(𝑀%) = 𝜏* + 𝜏-𝑀%. Note that, since 𝜏', 𝜏*, and 𝜏- represent 

parametrized 𝐸(𝜏%|𝑿𝒊), they are all causal estimands defined by counterfactuals. Then,  

𝑌% − 𝐸(𝑌%|𝑿𝒊)

= [𝑊% − 𝐸(𝑊%|𝑿𝒊)]ℎ(𝑀%)

+ 𝑌(0)% − 𝐸[𝑌(0)%|𝑿𝒊] +𝑊%𝜏% −𝑊%𝐸(𝜏%|𝑿𝒊) + [𝑊% − 𝐸(𝑊%|𝑿𝒊)][𝐸(𝜏%|𝑿𝒊) − ℎ(𝑀%)]�����������������������������������������������������. 

And the underbraced part becomes the error term 𝜖% in the structural model behind (𝐴2). As the 

regressor(s) in (𝐴2), [𝑊% − 𝐸(𝑊%|𝑿𝒊)]ℎ(𝑀%), is a function of 𝑊% and 𝑿𝒊, we need 𝐸(𝜖%|𝑊% , 𝑿𝒊) =

0 to show that coefficients in ℎ(𝑀%) in (𝐴2) are unbiased for the corresponding causal quantities 

they are meant to estimate.  

𝐸(𝜖%|𝑊% , 𝑿𝒊) = 𝐸[𝑌(0)%|𝑊% , 𝑿𝒊] − 𝐸{𝐸[𝑌(0)%|𝑿𝒊]|𝑊% , 𝑿𝒊} + 𝐸(𝑊%𝜏%|𝑊% , 𝑿𝒊)

− 𝐸[𝑊%𝐸(𝜏%|𝑿𝒊)|𝑊% , 𝑿𝒊] + 𝐸{[𝑊% − 𝐸(𝑊%|𝑿𝒊)][𝐸(𝜏%|𝑿𝒊) − ℎ(𝑀%)]|𝑊% , 𝑿𝒊} 

= 𝐸[𝑌(0)%|𝑊% , 𝑿𝒊] − 𝐸[𝑌(0)%|𝑿𝒊] +𝑊%𝐸(𝜏%|𝑊% , 𝑿𝒊) −𝑊%𝐸(𝜏%|𝑿𝒊)

+ [𝑊% − 𝐸(𝑊%|𝑿𝒊)][𝐸(𝜏%|𝑿𝒊) − ℎ(𝑀%)]. 

Again, by the conditional ignorability assumption,  
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= 𝐸[𝑌(0)%|𝑿𝒊] − 𝐸[𝑌(0)%|𝑿𝒊] +𝑊%𝐸(𝜏%|𝑿𝒊) −𝑊%𝐸(𝜏%|𝑿𝒊)

+ [𝑊% − 𝐸(𝑊%|𝑿𝒊)][𝐸(𝜏%|𝑿𝒊) − ℎ(𝑀%)] 

= [𝑊% − 𝐸(𝑊%|𝑿𝒊)][𝐸(𝜏%|𝑿𝒊) − ℎ(𝑀%)]. 

Under the assumption that ℎ(𝑀%) correctly characterizes 𝐸(𝜏%|𝑿𝒊),  

𝐸(𝜏%|𝑿𝒊) − ℎ(𝑀%) = 0, 

hence 𝐸(𝜖%|𝑊% , 𝑿𝒊) = 0. Therefore, coefficients in the infeasible model (𝐴2) are unbiased for the 

causal quantities 𝜏', 𝜏*, and 𝜏- that we use to characterize groupwise and linear effect modification. 

 Further, using the fact that 𝐸G(𝑌%|𝑿𝒊) and 𝐸G(𝑊%|𝑿𝒊) are estimated using sample splitting and 

under the assumption that our ML estimates of these conditional expectation functions converge 

to their true values at a certain rate, it can be shown that the plug-in feasible estimator as in (𝐴1) 

is consistent. The asymptotic normality of estimates by (𝐴1) and the fact that they reach the 

semiparametric efficiency bound also follow (Park and Kang 2019).  

 

Appendix B 

Below we show some residual plots as a diagnostic tool. Conditional on treatment status, 

i.e., college graduation status in the current study, the residuals from the regression model in the 

second step should not have any trend that is not paralleled with the x-axis when plotted against 

the underlying continuous measure of income percentile. In other words, similar to the residual 

plots for conventional regression models, misspecification of the treatment effect function will 

show in these plots as some unexpected pattern. To save space, we only show the plots for one of 

the five multiple imputation samples. 
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